SplitKit.cpp revision 77ee1140a3297e6fbd6cb7cf586872af6d00d07e
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28
29using namespace llvm;
30
31STATISTIC(NumFinished, "Number of splits finished");
32STATISTIC(NumSimple,   "Number of splits that were simple");
33STATISTIC(NumCopies,   "Number of copies inserted for splitting");
34STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
35STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
36
37//===----------------------------------------------------------------------===//
38//                                 Split Analysis
39//===----------------------------------------------------------------------===//
40
41SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
42                             const LiveIntervals &lis,
43                             const MachineLoopInfo &mli)
44  : MF(vrm.getMachineFunction()),
45    VRM(vrm),
46    LIS(lis),
47    Loops(mli),
48    TII(*MF.getTarget().getInstrInfo()),
49    CurLI(0),
50    LastSplitPoint(MF.getNumBlockIDs()) {}
51
52void SplitAnalysis::clear() {
53  UseSlots.clear();
54  UseBlocks.clear();
55  ThroughBlocks.clear();
56  CurLI = 0;
57  DidRepairRange = false;
58}
59
60SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
61  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
62  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
63  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
64
65  // Compute split points on the first call. The pair is independent of the
66  // current live interval.
67  if (!LSP.first.isValid()) {
68    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
69    if (FirstTerm == MBB->end())
70      LSP.first = LIS.getMBBEndIdx(MBB);
71    else
72      LSP.first = LIS.getInstructionIndex(FirstTerm);
73
74    // If there is a landing pad successor, also find the call instruction.
75    if (!LPad)
76      return LSP.first;
77    // There may not be a call instruction (?) in which case we ignore LPad.
78    LSP.second = LSP.first;
79    for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
80         I != E;) {
81      --I;
82      if (I->getDesc().isCall()) {
83        LSP.second = LIS.getInstructionIndex(I);
84        break;
85      }
86    }
87  }
88
89  // If CurLI is live into a landing pad successor, move the last split point
90  // back to the call that may throw.
91  if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
92    return LSP.second;
93  else
94    return LSP.first;
95}
96
97/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
98void SplitAnalysis::analyzeUses() {
99  assert(UseSlots.empty() && "Call clear first");
100
101  // First get all the defs from the interval values. This provides the correct
102  // slots for early clobbers.
103  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
104       E = CurLI->vni_end(); I != E; ++I)
105    if (!(*I)->isPHIDef() && !(*I)->isUnused())
106      UseSlots.push_back((*I)->def);
107
108  // Get use slots form the use-def chain.
109  const MachineRegisterInfo &MRI = MF.getRegInfo();
110  for (MachineRegisterInfo::use_nodbg_iterator
111       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
112       ++I)
113    if (!I.getOperand().isUndef())
114      UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
115
116  array_pod_sort(UseSlots.begin(), UseSlots.end());
117
118  // Remove duplicates, keeping the smaller slot for each instruction.
119  // That is what we want for early clobbers.
120  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
121                             SlotIndex::isSameInstr),
122                 UseSlots.end());
123
124  // Compute per-live block info.
125  if (!calcLiveBlockInfo()) {
126    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
127    // I am looking at you, RegisterCoalescer!
128    DidRepairRange = true;
129    ++NumRepairs;
130    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
131    const_cast<LiveIntervals&>(LIS)
132      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
133    UseBlocks.clear();
134    ThroughBlocks.clear();
135    bool fixed = calcLiveBlockInfo();
136    (void)fixed;
137    assert(fixed && "Couldn't fix broken live interval");
138  }
139
140  DEBUG(dbgs() << "Analyze counted "
141               << UseSlots.size() << " instrs in "
142               << UseBlocks.size() << " blocks, through "
143               << NumThroughBlocks << " blocks.\n");
144}
145
146/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
147/// where CurLI is live.
148bool SplitAnalysis::calcLiveBlockInfo() {
149  ThroughBlocks.resize(MF.getNumBlockIDs());
150  NumThroughBlocks = NumGapBlocks = 0;
151  if (CurLI->empty())
152    return true;
153
154  LiveInterval::const_iterator LVI = CurLI->begin();
155  LiveInterval::const_iterator LVE = CurLI->end();
156
157  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
158  UseI = UseSlots.begin();
159  UseE = UseSlots.end();
160
161  // Loop over basic blocks where CurLI is live.
162  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
163  for (;;) {
164    BlockInfo BI;
165    BI.MBB = MFI;
166    SlotIndex Start, Stop;
167    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
168
169    // If the block contains no uses, the range must be live through. At one
170    // point, RegisterCoalescer could create dangling ranges that ended
171    // mid-block.
172    if (UseI == UseE || *UseI >= Stop) {
173      ++NumThroughBlocks;
174      ThroughBlocks.set(BI.MBB->getNumber());
175      // The range shouldn't end mid-block if there are no uses. This shouldn't
176      // happen.
177      if (LVI->end < Stop)
178        return false;
179    } else {
180      // This block has uses. Find the first and last uses in the block.
181      BI.FirstUse = *UseI;
182      assert(BI.FirstUse >= Start);
183      do ++UseI;
184      while (UseI != UseE && *UseI < Stop);
185      BI.LastUse = UseI[-1];
186      assert(BI.LastUse < Stop);
187
188      // LVI is the first live segment overlapping MBB.
189      BI.LiveIn = LVI->start <= Start;
190
191      // When not live in, the first use should be a def.
192      if (!BI.LiveIn) {
193        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
194        assert(LVI->start == BI.FirstUse && "First instr should be a def");
195        BI.FirstDef = BI.FirstUse;
196      }
197
198      // Look for gaps in the live range.
199      BI.LiveOut = true;
200      while (LVI->end < Stop) {
201        SlotIndex LastStop = LVI->end;
202        if (++LVI == LVE || LVI->start >= Stop) {
203          BI.LiveOut = false;
204          BI.LastUse = LastStop;
205          break;
206        }
207
208        if (LastStop < LVI->start) {
209          // There is a gap in the live range. Create duplicate entries for the
210          // live-in snippet and the live-out snippet.
211          ++NumGapBlocks;
212
213          // Push the Live-in part.
214          BI.LiveOut = false;
215          UseBlocks.push_back(BI);
216          UseBlocks.back().LastUse = LastStop;
217
218          // Set up BI for the live-out part.
219          BI.LiveIn = false;
220          BI.LiveOut = true;
221          BI.FirstUse = BI.FirstDef = LVI->start;
222        }
223
224        // A LiveRange that starts in the middle of the block must be a def.
225        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
226        if (!BI.FirstDef)
227          BI.FirstDef = LVI->start;
228      }
229
230      UseBlocks.push_back(BI);
231
232      // LVI is now at LVE or LVI->end >= Stop.
233      if (LVI == LVE)
234        break;
235    }
236
237    // Live segment ends exactly at Stop. Move to the next segment.
238    if (LVI->end == Stop && ++LVI == LVE)
239      break;
240
241    // Pick the next basic block.
242    if (LVI->start < Stop)
243      ++MFI;
244    else
245      MFI = LIS.getMBBFromIndex(LVI->start);
246  }
247
248  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
249  return true;
250}
251
252unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
253  if (cli->empty())
254    return 0;
255  LiveInterval *li = const_cast<LiveInterval*>(cli);
256  LiveInterval::iterator LVI = li->begin();
257  LiveInterval::iterator LVE = li->end();
258  unsigned Count = 0;
259
260  // Loop over basic blocks where li is live.
261  MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
262  SlotIndex Stop = LIS.getMBBEndIdx(MFI);
263  for (;;) {
264    ++Count;
265    LVI = li->advanceTo(LVI, Stop);
266    if (LVI == LVE)
267      return Count;
268    do {
269      ++MFI;
270      Stop = LIS.getMBBEndIdx(MFI);
271    } while (Stop <= LVI->start);
272  }
273}
274
275bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
276  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
277  const LiveInterval &Orig = LIS.getInterval(OrigReg);
278  assert(!Orig.empty() && "Splitting empty interval?");
279  LiveInterval::const_iterator I = Orig.find(Idx);
280
281  // Range containing Idx should begin at Idx.
282  if (I != Orig.end() && I->start <= Idx)
283    return I->start == Idx;
284
285  // Range does not contain Idx, previous must end at Idx.
286  return I != Orig.begin() && (--I)->end == Idx;
287}
288
289void SplitAnalysis::analyze(const LiveInterval *li) {
290  clear();
291  CurLI = li;
292  analyzeUses();
293}
294
295
296//===----------------------------------------------------------------------===//
297//                               Split Editor
298//===----------------------------------------------------------------------===//
299
300/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
301SplitEditor::SplitEditor(SplitAnalysis &sa,
302                         LiveIntervals &lis,
303                         VirtRegMap &vrm,
304                         MachineDominatorTree &mdt)
305  : SA(sa), LIS(lis), VRM(vrm),
306    MRI(vrm.getMachineFunction().getRegInfo()),
307    MDT(mdt),
308    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
309    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
310    Edit(0),
311    OpenIdx(0),
312    RegAssign(Allocator)
313{}
314
315void SplitEditor::reset(LiveRangeEdit &lre) {
316  Edit = &lre;
317  OpenIdx = 0;
318  RegAssign.clear();
319  Values.clear();
320
321  // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
322  LiveOutSeen.clear();
323
324  // We don't need an AliasAnalysis since we will only be performing
325  // cheap-as-a-copy remats anyway.
326  Edit->anyRematerializable(LIS, TII, 0);
327}
328
329void SplitEditor::dump() const {
330  if (RegAssign.empty()) {
331    dbgs() << " empty\n";
332    return;
333  }
334
335  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
336    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
337  dbgs() << '\n';
338}
339
340VNInfo *SplitEditor::defValue(unsigned RegIdx,
341                              const VNInfo *ParentVNI,
342                              SlotIndex Idx) {
343  assert(ParentVNI && "Mapping  NULL value");
344  assert(Idx.isValid() && "Invalid SlotIndex");
345  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
346  LiveInterval *LI = Edit->get(RegIdx);
347
348  // Create a new value.
349  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
350
351  // Use insert for lookup, so we can add missing values with a second lookup.
352  std::pair<ValueMap::iterator, bool> InsP =
353    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
354
355  // This was the first time (RegIdx, ParentVNI) was mapped.
356  // Keep it as a simple def without any liveness.
357  if (InsP.second)
358    return VNI;
359
360  // If the previous value was a simple mapping, add liveness for it now.
361  if (VNInfo *OldVNI = InsP.first->second) {
362    SlotIndex Def = OldVNI->def;
363    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
364    // No longer a simple mapping.
365    InsP.first->second = 0;
366  }
367
368  // This is a complex mapping, add liveness for VNI
369  SlotIndex Def = VNI->def;
370  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
371
372  return VNI;
373}
374
375void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
376  assert(ParentVNI && "Mapping  NULL value");
377  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
378
379  // ParentVNI was either unmapped or already complex mapped. Either way.
380  if (!VNI)
381    return;
382
383  // This was previously a single mapping. Make sure the old def is represented
384  // by a trivial live range.
385  SlotIndex Def = VNI->def;
386  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
387  VNI = 0;
388}
389
390// extendRange - Extend the live range to reach Idx.
391// Potentially create phi-def values.
392void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
393  assert(Idx.isValid() && "Invalid SlotIndex");
394  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
395  assert(IdxMBB && "No MBB at Idx");
396  LiveInterval *LI = Edit->get(RegIdx);
397
398  // Is there a def in the same MBB we can extend?
399  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
400    return;
401
402  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
403  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
404  // Perform a search for all predecessor blocks where we know the dominating
405  // VNInfo.
406  VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
407
408  // When there were multiple different values, we may need new PHIs.
409  if (!VNI)
410    return updateSSA();
411
412  // Poor man's SSA update for the single-value case.
413  LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
414  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
415         E = LiveInBlocks.end(); I != E; ++I) {
416    MachineBasicBlock *MBB = I->DomNode->getBlock();
417    SlotIndex Start = LIS.getMBBStartIdx(MBB);
418    if (I->Kill.isValid())
419      LI->addRange(LiveRange(Start, I->Kill, VNI));
420    else {
421      LiveOutCache[MBB] = LOP;
422      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
423    }
424  }
425}
426
427/// findReachingDefs - Search the CFG for known live-out values.
428/// Add required live-in blocks to LiveInBlocks.
429VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
430                                      MachineBasicBlock *KillMBB,
431                                      SlotIndex Kill) {
432  // Initialize the live-out cache the first time it is needed.
433  if (LiveOutSeen.empty()) {
434    unsigned N = VRM.getMachineFunction().getNumBlockIDs();
435    LiveOutSeen.resize(N);
436    LiveOutCache.resize(N);
437  }
438
439  // Blocks where LI should be live-in.
440  SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
441
442  // Remember if we have seen more than one value.
443  bool UniqueVNI = true;
444  VNInfo *TheVNI = 0;
445
446  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
447  for (unsigned i = 0; i != WorkList.size(); ++i) {
448    MachineBasicBlock *MBB = WorkList[i];
449    assert(!MBB->pred_empty() && "Value live-in to entry block?");
450    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
451           PE = MBB->pred_end(); PI != PE; ++PI) {
452       MachineBasicBlock *Pred = *PI;
453       LiveOutPair &LOP = LiveOutCache[Pred];
454
455       // Is this a known live-out block?
456       if (LiveOutSeen.test(Pred->getNumber())) {
457         if (VNInfo *VNI = LOP.first) {
458           if (TheVNI && TheVNI != VNI)
459             UniqueVNI = false;
460           TheVNI = VNI;
461         }
462         continue;
463       }
464
465       // First time. LOP is garbage and must be cleared below.
466       LiveOutSeen.set(Pred->getNumber());
467
468       // Does Pred provide a live-out value?
469       SlotIndex Start, Last;
470       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
471       Last = Last.getPrevSlot();
472       VNInfo *VNI = LI->extendInBlock(Start, Last);
473       LOP.first = VNI;
474       if (VNI) {
475         LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
476         if (TheVNI && TheVNI != VNI)
477           UniqueVNI = false;
478         TheVNI = VNI;
479         continue;
480       }
481       LOP.second = 0;
482
483       // No, we need a live-in value for Pred as well
484       if (Pred != KillMBB)
485          WorkList.push_back(Pred);
486       else
487          // Loopback to KillMBB, so value is really live through.
488         Kill = SlotIndex();
489    }
490  }
491
492  // Transfer WorkList to LiveInBlocks in reverse order.
493  // This ordering works best with updateSSA().
494  LiveInBlocks.clear();
495  LiveInBlocks.reserve(WorkList.size());
496  while(!WorkList.empty())
497    LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
498
499  // The kill block may not be live-through.
500  assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
501  LiveInBlocks.back().Kill = Kill;
502
503  return UniqueVNI ? TheVNI : 0;
504}
505
506void SplitEditor::updateSSA() {
507  // This is essentially the same iterative algorithm that SSAUpdater uses,
508  // except we already have a dominator tree, so we don't have to recompute it.
509  unsigned Changes;
510  do {
511    Changes = 0;
512    // Propagate live-out values down the dominator tree, inserting phi-defs
513    // when necessary.
514    for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
515           E = LiveInBlocks.end(); I != E; ++I) {
516      MachineDomTreeNode *Node = I->DomNode;
517      // Skip block if the live-in value has already been determined.
518      if (!Node)
519        continue;
520      MachineBasicBlock *MBB = Node->getBlock();
521      MachineDomTreeNode *IDom = Node->getIDom();
522      LiveOutPair IDomValue;
523
524      // We need a live-in value to a block with no immediate dominator?
525      // This is probably an unreachable block that has survived somehow.
526      bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
527
528      // IDom dominates all of our predecessors, but it may not be their
529      // immediate dominator. Check if any of them have live-out values that are
530      // properly dominated by IDom. If so, we need a phi-def here.
531      if (!needPHI) {
532        IDomValue = LiveOutCache[IDom->getBlock()];
533        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
534               PE = MBB->pred_end(); PI != PE; ++PI) {
535          LiveOutPair Value = LiveOutCache[*PI];
536          if (!Value.first || Value.first == IDomValue.first)
537            continue;
538          // This predecessor is carrying something other than IDomValue.
539          // It could be because IDomValue hasn't propagated yet, or it could be
540          // because MBB is in the dominance frontier of that value.
541          if (MDT.dominates(IDom, Value.second)) {
542            needPHI = true;
543            break;
544          }
545        }
546      }
547
548      // The value may be live-through even if Kill is set, as can happen when
549      // we are called from extendRange. In that case LiveOutSeen is true, and
550      // LiveOutCache indicates a foreign or missing value.
551      LiveOutPair &LOP = LiveOutCache[MBB];
552
553      // Create a phi-def if required.
554      if (needPHI) {
555        ++Changes;
556        SlotIndex Start = LIS.getMBBStartIdx(MBB);
557        unsigned RegIdx = RegAssign.lookup(Start);
558        LiveInterval *LI = Edit->get(RegIdx);
559        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
560        VNI->setIsPHIDef(true);
561        I->Value = VNI;
562        // This block is done, we know the final value.
563        I->DomNode = 0;
564        if (I->Kill.isValid())
565          LI->addRange(LiveRange(Start, I->Kill, VNI));
566        else {
567          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
568          LOP = LiveOutPair(VNI, Node);
569        }
570      } else if (IDomValue.first) {
571        // No phi-def here. Remember incoming value.
572        I->Value = IDomValue.first;
573        if (I->Kill.isValid())
574          continue;
575        // Propagate IDomValue if needed:
576        // MBB is live-out and doesn't define its own value.
577        if (LOP.second != Node && LOP.first != IDomValue.first) {
578          ++Changes;
579          LOP = IDomValue;
580        }
581      }
582    }
583  } while (Changes);
584
585  // The values in LiveInBlocks are now accurate. No more phi-defs are needed
586  // for these blocks, so we can color the live ranges.
587  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
588         E = LiveInBlocks.end(); I != E; ++I) {
589    if (!I->DomNode)
590      continue;
591    assert(I->Value && "No live-in value found");
592    MachineBasicBlock *MBB = I->DomNode->getBlock();
593    SlotIndex Start = LIS.getMBBStartIdx(MBB);
594    unsigned RegIdx = RegAssign.lookup(Start);
595    LiveInterval *LI = Edit->get(RegIdx);
596    LI->addRange(LiveRange(Start, I->Kill.isValid() ?
597                                  I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
598  }
599}
600
601VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
602                                   VNInfo *ParentVNI,
603                                   SlotIndex UseIdx,
604                                   MachineBasicBlock &MBB,
605                                   MachineBasicBlock::iterator I) {
606  MachineInstr *CopyMI = 0;
607  SlotIndex Def;
608  LiveInterval *LI = Edit->get(RegIdx);
609
610  // We may be trying to avoid interference that ends at a deleted instruction,
611  // so always begin RegIdx 0 early and all others late.
612  bool Late = RegIdx != 0;
613
614  // Attempt cheap-as-a-copy rematerialization.
615  LiveRangeEdit::Remat RM(ParentVNI);
616  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
617    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
618    ++NumRemats;
619  } else {
620    // Can't remat, just insert a copy from parent.
621    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
622               .addReg(Edit->getReg());
623    Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
624            .getDefIndex();
625    ++NumCopies;
626  }
627
628  // Define the value in Reg.
629  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
630  VNI->setCopy(CopyMI);
631  return VNI;
632}
633
634/// Create a new virtual register and live interval.
635unsigned SplitEditor::openIntv() {
636  // Create the complement as index 0.
637  if (Edit->empty())
638    Edit->create(LIS, VRM);
639
640  // Create the open interval.
641  OpenIdx = Edit->size();
642  Edit->create(LIS, VRM);
643  return OpenIdx;
644}
645
646void SplitEditor::selectIntv(unsigned Idx) {
647  assert(Idx != 0 && "Cannot select the complement interval");
648  assert(Idx < Edit->size() && "Can only select previously opened interval");
649  DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
650  OpenIdx = Idx;
651}
652
653SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
654  assert(OpenIdx && "openIntv not called before enterIntvBefore");
655  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
656  Idx = Idx.getBaseIndex();
657  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
658  if (!ParentVNI) {
659    DEBUG(dbgs() << ": not live\n");
660    return Idx;
661  }
662  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
663  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
664  assert(MI && "enterIntvBefore called with invalid index");
665
666  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
667  return VNI->def;
668}
669
670SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
671  assert(OpenIdx && "openIntv not called before enterIntvAfter");
672  DEBUG(dbgs() << "    enterIntvAfter " << Idx);
673  Idx = Idx.getBoundaryIndex();
674  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
675  if (!ParentVNI) {
676    DEBUG(dbgs() << ": not live\n");
677    return Idx;
678  }
679  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
680  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
681  assert(MI && "enterIntvAfter called with invalid index");
682
683  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
684                              llvm::next(MachineBasicBlock::iterator(MI)));
685  return VNI->def;
686}
687
688SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
689  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
690  SlotIndex End = LIS.getMBBEndIdx(&MBB);
691  SlotIndex Last = End.getPrevSlot();
692  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
693  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
694  if (!ParentVNI) {
695    DEBUG(dbgs() << ": not live\n");
696    return End;
697  }
698  DEBUG(dbgs() << ": valno " << ParentVNI->id);
699  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
700                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
701  RegAssign.insert(VNI->def, End, OpenIdx);
702  DEBUG(dump());
703  return VNI->def;
704}
705
706/// useIntv - indicate that all instructions in MBB should use OpenLI.
707void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
708  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
709}
710
711void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
712  assert(OpenIdx && "openIntv not called before useIntv");
713  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
714  RegAssign.insert(Start, End, OpenIdx);
715  DEBUG(dump());
716}
717
718SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
719  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
720  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
721
722  // The interval must be live beyond the instruction at Idx.
723  Idx = Idx.getBoundaryIndex();
724  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
725  if (!ParentVNI) {
726    DEBUG(dbgs() << ": not live\n");
727    return Idx.getNextSlot();
728  }
729  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
730
731  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
732  assert(MI && "No instruction at index");
733  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
734                              llvm::next(MachineBasicBlock::iterator(MI)));
735  return VNI->def;
736}
737
738SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
739  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
740  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
741
742  // The interval must be live into the instruction at Idx.
743  Idx = Idx.getBaseIndex();
744  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
745  if (!ParentVNI) {
746    DEBUG(dbgs() << ": not live\n");
747    return Idx.getNextSlot();
748  }
749  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
750
751  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
752  assert(MI && "No instruction at index");
753  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
754  return VNI->def;
755}
756
757SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
758  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
759  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
760  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
761
762  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
763  if (!ParentVNI) {
764    DEBUG(dbgs() << ": not live\n");
765    return Start;
766  }
767
768  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
769                              MBB.SkipPHIsAndLabels(MBB.begin()));
770  RegAssign.insert(Start, VNI->def, OpenIdx);
771  DEBUG(dump());
772  return VNI->def;
773}
774
775void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
776  assert(OpenIdx && "openIntv not called before overlapIntv");
777  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
778  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
779         "Parent changes value in extended range");
780  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
781         "Range cannot span basic blocks");
782
783  // The complement interval will be extended as needed by extendRange().
784  if (ParentVNI)
785    markComplexMapped(0, ParentVNI);
786  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
787  RegAssign.insert(Start, End, OpenIdx);
788  DEBUG(dump());
789}
790
791/// transferValues - Transfer all possible values to the new live ranges.
792/// Values that were rematerialized are left alone, they need extendRange().
793bool SplitEditor::transferValues() {
794  bool Skipped = false;
795  LiveInBlocks.clear();
796  RegAssignMap::const_iterator AssignI = RegAssign.begin();
797  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
798         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
799    DEBUG(dbgs() << "  blit " << *ParentI << ':');
800    VNInfo *ParentVNI = ParentI->valno;
801    // RegAssign has holes where RegIdx 0 should be used.
802    SlotIndex Start = ParentI->start;
803    AssignI.advanceTo(Start);
804    do {
805      unsigned RegIdx;
806      SlotIndex End = ParentI->end;
807      if (!AssignI.valid()) {
808        RegIdx = 0;
809      } else if (AssignI.start() <= Start) {
810        RegIdx = AssignI.value();
811        if (AssignI.stop() < End) {
812          End = AssignI.stop();
813          ++AssignI;
814        }
815      } else {
816        RegIdx = 0;
817        End = std::min(End, AssignI.start());
818      }
819
820      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
821      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
822      LiveInterval *LI = Edit->get(RegIdx);
823
824      // Check for a simply defined value that can be blitted directly.
825      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
826        DEBUG(dbgs() << ':' << VNI->id);
827        LI->addRange(LiveRange(Start, End, VNI));
828        Start = End;
829        continue;
830      }
831
832      // Skip rematerialized values, we need to use extendRange() and
833      // extendPHIKillRanges() to completely recompute the live ranges.
834      if (Edit->didRematerialize(ParentVNI)) {
835        DEBUG(dbgs() << "(remat)");
836        Skipped = true;
837        Start = End;
838        continue;
839      }
840
841      // Initialize the live-out cache the first time it is needed.
842      if (LiveOutSeen.empty()) {
843        unsigned N = VRM.getMachineFunction().getNumBlockIDs();
844        LiveOutSeen.resize(N);
845        LiveOutCache.resize(N);
846      }
847
848      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
849      // so the live range is accurate. Add live-in blocks in [Start;End) to the
850      // LiveInBlocks.
851      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
852      SlotIndex BlockStart, BlockEnd;
853      tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
854
855      // The first block may be live-in, or it may have its own def.
856      if (Start != BlockStart) {
857        VNInfo *VNI = LI->extendInBlock(BlockStart,
858                                        std::min(BlockEnd, End).getPrevSlot());
859        assert(VNI && "Missing def for complex mapped value");
860        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
861        // MBB has its own def. Is it also live-out?
862        if (BlockEnd <= End) {
863          LiveOutSeen.set(MBB->getNumber());
864          LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
865        }
866        // Skip to the next block for live-in.
867        ++MBB;
868        BlockStart = BlockEnd;
869      }
870
871      // Handle the live-in blocks covered by [Start;End).
872      assert(Start <= BlockStart && "Expected live-in block");
873      while (BlockStart < End) {
874        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
875        BlockEnd = LIS.getMBBEndIdx(MBB);
876        if (BlockStart == ParentVNI->def) {
877          // This block has the def of a parent PHI, so it isn't live-in.
878          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
879          VNInfo *VNI = LI->extendInBlock(BlockStart,
880                                         std::min(BlockEnd, End).getPrevSlot());
881          assert(VNI && "Missing def for complex mapped parent PHI");
882          if (End >= BlockEnd) {
883            // Live-out as well.
884            LiveOutSeen.set(MBB->getNumber());
885            LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
886          }
887        } else {
888          // This block needs a live-in value.
889          LiveInBlocks.push_back(MDT[MBB]);
890          // The last block covered may not be live-out.
891          if (End < BlockEnd)
892            LiveInBlocks.back().Kill = End;
893          else {
894            // Live-out, but we need updateSSA to tell us the value.
895            LiveOutSeen.set(MBB->getNumber());
896            LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
897                                            (MachineDomTreeNode*)0);
898          }
899        }
900        BlockStart = BlockEnd;
901        ++MBB;
902      }
903      Start = End;
904    } while (Start != ParentI->end);
905    DEBUG(dbgs() << '\n');
906  }
907
908  if (!LiveInBlocks.empty())
909    updateSSA();
910
911  return Skipped;
912}
913
914void SplitEditor::extendPHIKillRanges() {
915    // Extend live ranges to be live-out for successor PHI values.
916  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
917       E = Edit->getParent().vni_end(); I != E; ++I) {
918    const VNInfo *PHIVNI = *I;
919    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
920      continue;
921    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
922    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
923    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
924         PE = MBB->pred_end(); PI != PE; ++PI) {
925      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
926      // The predecessor may not have a live-out value. That is OK, like an
927      // undef PHI operand.
928      if (Edit->getParent().liveAt(End)) {
929        assert(RegAssign.lookup(End) == RegIdx &&
930               "Different register assignment in phi predecessor");
931        extendRange(RegIdx, End);
932      }
933    }
934  }
935}
936
937/// rewriteAssigned - Rewrite all uses of Edit->getReg().
938void SplitEditor::rewriteAssigned(bool ExtendRanges) {
939  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
940       RE = MRI.reg_end(); RI != RE;) {
941    MachineOperand &MO = RI.getOperand();
942    MachineInstr *MI = MO.getParent();
943    ++RI;
944    // LiveDebugVariables should have handled all DBG_VALUE instructions.
945    if (MI->isDebugValue()) {
946      DEBUG(dbgs() << "Zapping " << *MI);
947      MO.setReg(0);
948      continue;
949    }
950
951    // <undef> operands don't really read the register, so it doesn't matter
952    // which register we choose.  When the use operand is tied to a def, we must
953    // use the same register as the def, so just do that always.
954    SlotIndex Idx = LIS.getInstructionIndex(MI);
955    if (MO.isDef() || MO.isUndef())
956      Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
957
958    // Rewrite to the mapped register at Idx.
959    unsigned RegIdx = RegAssign.lookup(Idx);
960    MO.setReg(Edit->get(RegIdx)->reg);
961    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
962                 << Idx << ':' << RegIdx << '\t' << *MI);
963
964    // Extend liveness to Idx if the instruction reads reg.
965    if (!ExtendRanges || MO.isUndef())
966      continue;
967
968    // Skip instructions that don't read Reg.
969    if (MO.isDef()) {
970      if (!MO.getSubReg() && !MO.isEarlyClobber())
971        continue;
972      // We may wan't to extend a live range for a partial redef, or for a use
973      // tied to an early clobber.
974      Idx = Idx.getPrevSlot();
975      if (!Edit->getParent().liveAt(Idx))
976        continue;
977    } else
978      Idx = Idx.getUseIndex();
979
980    extendRange(RegIdx, Idx);
981  }
982}
983
984void SplitEditor::deleteRematVictims() {
985  SmallVector<MachineInstr*, 8> Dead;
986  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
987    LiveInterval *LI = *I;
988    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
989           LII != LIE; ++LII) {
990      // Dead defs end at the store slot.
991      if (LII->end != LII->valno->def.getNextSlot())
992        continue;
993      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
994      assert(MI && "Missing instruction for dead def");
995      MI->addRegisterDead(LI->reg, &TRI);
996
997      if (!MI->allDefsAreDead())
998        continue;
999
1000      DEBUG(dbgs() << "All defs dead: " << *MI);
1001      Dead.push_back(MI);
1002    }
1003  }
1004
1005  if (Dead.empty())
1006    return;
1007
1008  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
1009}
1010
1011void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1012  ++NumFinished;
1013
1014  // At this point, the live intervals in Edit contain VNInfos corresponding to
1015  // the inserted copies.
1016
1017  // Add the original defs from the parent interval.
1018  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1019         E = Edit->getParent().vni_end(); I != E; ++I) {
1020    const VNInfo *ParentVNI = *I;
1021    if (ParentVNI->isUnused())
1022      continue;
1023    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1024    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
1025    VNI->setIsPHIDef(ParentVNI->isPHIDef());
1026    VNI->setCopy(ParentVNI->getCopy());
1027
1028    // Mark rematted values as complex everywhere to force liveness computation.
1029    // The new live ranges may be truncated.
1030    if (Edit->didRematerialize(ParentVNI))
1031      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1032        markComplexMapped(i, ParentVNI);
1033  }
1034
1035  // Transfer the simply mapped values, check if any are skipped.
1036  bool Skipped = transferValues();
1037  if (Skipped)
1038    extendPHIKillRanges();
1039  else
1040    ++NumSimple;
1041
1042  // Rewrite virtual registers, possibly extending ranges.
1043  rewriteAssigned(Skipped);
1044
1045  // Delete defs that were rematted everywhere.
1046  if (Skipped)
1047    deleteRematVictims();
1048
1049  // Get rid of unused values and set phi-kill flags.
1050  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1051    (*I)->RenumberValues(LIS);
1052
1053  // Provide a reverse mapping from original indices to Edit ranges.
1054  if (LRMap) {
1055    LRMap->clear();
1056    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1057      LRMap->push_back(i);
1058  }
1059
1060  // Now check if any registers were separated into multiple components.
1061  ConnectedVNInfoEqClasses ConEQ(LIS);
1062  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1063    // Don't use iterators, they are invalidated by create() below.
1064    LiveInterval *li = Edit->get(i);
1065    unsigned NumComp = ConEQ.Classify(li);
1066    if (NumComp <= 1)
1067      continue;
1068    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1069    SmallVector<LiveInterval*, 8> dups;
1070    dups.push_back(li);
1071    for (unsigned j = 1; j != NumComp; ++j)
1072      dups.push_back(&Edit->create(LIS, VRM));
1073    ConEQ.Distribute(&dups[0], MRI);
1074    // The new intervals all map back to i.
1075    if (LRMap)
1076      LRMap->resize(Edit->size(), i);
1077  }
1078
1079  // Calculate spill weight and allocation hints for new intervals.
1080  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
1081
1082  assert(!LRMap || LRMap->size() == Edit->size());
1083}
1084
1085
1086//===----------------------------------------------------------------------===//
1087//                            Single Block Splitting
1088//===----------------------------------------------------------------------===//
1089
1090/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
1091/// may be an advantage to split CurLI for the duration of the block.
1092bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
1093  // If CurLI is local to one block, there is no point to splitting it.
1094  if (UseBlocks.size() <= 1)
1095    return false;
1096  // Add blocks with multiple uses.
1097  for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) {
1098    const BlockInfo &BI = UseBlocks[i];
1099    if (BI.FirstUse == BI.LastUse)
1100      continue;
1101    Blocks.insert(BI.MBB);
1102  }
1103  return !Blocks.empty();
1104}
1105
1106void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1107  openIntv();
1108  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1109  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
1110    LastSplitPoint));
1111  if (!BI.LiveOut || BI.LastUse < LastSplitPoint) {
1112    useIntv(SegStart, leaveIntvAfter(BI.LastUse));
1113  } else {
1114      // The last use is after the last valid split point.
1115    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1116    useIntv(SegStart, SegStop);
1117    overlapIntv(SegStop, BI.LastUse);
1118  }
1119}
1120
1121/// splitSingleBlocks - Split CurLI into a separate live interval inside each
1122/// basic block in Blocks.
1123void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
1124  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
1125  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks();
1126  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1127    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1128    if (Blocks.count(BI.MBB))
1129      splitSingleBlock(BI);
1130  }
1131  finish();
1132}
1133
1134
1135//===----------------------------------------------------------------------===//
1136//                    Global Live Range Splitting Support
1137//===----------------------------------------------------------------------===//
1138
1139// These methods support a method of global live range splitting that uses a
1140// global algorithm to decide intervals for CFG edges. They will insert split
1141// points and color intervals in basic blocks while avoiding interference.
1142//
1143// Note that splitSingleBlock is also useful for blocks where both CFG edges
1144// are on the stack.
1145
1146void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1147                                        unsigned IntvIn, SlotIndex LeaveBefore,
1148                                        unsigned IntvOut, SlotIndex EnterAfter){
1149  SlotIndex Start, Stop;
1150  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1151
1152  DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1153               << ") intf " << LeaveBefore << '-' << EnterAfter
1154               << ", live-through " << IntvIn << " -> " << IntvOut);
1155
1156  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1157
1158  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1159  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1160  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1161
1162  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1163
1164  if (!IntvOut) {
1165    DEBUG(dbgs() << ", spill on entry.\n");
1166    //
1167    //        <<<<<<<<<    Possible LeaveBefore interference.
1168    //    |-----------|    Live through.
1169    //    -____________    Spill on entry.
1170    //
1171    selectIntv(IntvIn);
1172    SlotIndex Idx = leaveIntvAtTop(*MBB);
1173    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1174    (void)Idx;
1175    return;
1176  }
1177
1178  if (!IntvIn) {
1179    DEBUG(dbgs() << ", reload on exit.\n");
1180    //
1181    //    >>>>>>>          Possible EnterAfter interference.
1182    //    |-----------|    Live through.
1183    //    ___________--    Reload on exit.
1184    //
1185    selectIntv(IntvOut);
1186    SlotIndex Idx = enterIntvAtEnd(*MBB);
1187    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1188    (void)Idx;
1189    return;
1190  }
1191
1192  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1193    DEBUG(dbgs() << ", straight through.\n");
1194    //
1195    //    |-----------|    Live through.
1196    //    -------------    Straight through, same intv, no interference.
1197    //
1198    selectIntv(IntvOut);
1199    useIntv(Start, Stop);
1200    return;
1201  }
1202
1203  // We cannot legally insert splits after LSP.
1204  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1205  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1206
1207  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1208                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1209    DEBUG(dbgs() << ", switch avoiding interference.\n");
1210    //
1211    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1212    //    |-----------|    Live through.
1213    //    ------=======    Switch intervals between interference.
1214    //
1215    selectIntv(IntvOut);
1216    SlotIndex Idx;
1217    if (LeaveBefore && LeaveBefore < LSP) {
1218      Idx = enterIntvBefore(LeaveBefore);
1219      useIntv(Idx, Stop);
1220    } else {
1221      Idx = enterIntvAtEnd(*MBB);
1222    }
1223    selectIntv(IntvIn);
1224    useIntv(Start, Idx);
1225    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1226    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1227    return;
1228  }
1229
1230  DEBUG(dbgs() << ", create local intv for interference.\n");
1231  //
1232  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1233  //    |-----------|    Live through.
1234  //    ==---------==    Switch intervals before/after interference.
1235  //
1236  assert(LeaveBefore <= EnterAfter && "Missed case");
1237
1238  selectIntv(IntvOut);
1239  SlotIndex Idx = enterIntvAfter(EnterAfter);
1240  useIntv(Idx, Stop);
1241  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1242
1243  selectIntv(IntvIn);
1244  Idx = leaveIntvBefore(LeaveBefore);
1245  useIntv(Start, Idx);
1246  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1247}
1248
1249
1250void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1251                                  unsigned IntvIn, SlotIndex LeaveBefore) {
1252  SlotIndex Start, Stop;
1253  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1254
1255  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1256               << "), uses " << BI.FirstUse << '-' << BI.LastUse
1257               << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1258               << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1259
1260  assert(IntvIn && "Must have register in");
1261  assert(BI.LiveIn && "Must be live-in");
1262  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1263
1264  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastUse)) {
1265    DEBUG(dbgs() << " before interference.\n");
1266    //
1267    //               <<<    Interference after kill.
1268    //     |---o---x   |    Killed in block.
1269    //     =========        Use IntvIn everywhere.
1270    //
1271    selectIntv(IntvIn);
1272    useIntv(Start, BI.LastUse);
1273    return;
1274  }
1275
1276  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1277
1278  if (!LeaveBefore || LeaveBefore > BI.LastUse.getBoundaryIndex()) {
1279    //
1280    //               <<<    Possible interference after last use.
1281    //     |---o---o---|    Live-out on stack.
1282    //     =========____    Leave IntvIn after last use.
1283    //
1284    //                 <    Interference after last use.
1285    //     |---o---o--o|    Live-out on stack, late last use.
1286    //     ============     Copy to stack after LSP, overlap IntvIn.
1287    //            \_____    Stack interval is live-out.
1288    //
1289    if (BI.LastUse < LSP) {
1290      DEBUG(dbgs() << ", spill after last use before interference.\n");
1291      selectIntv(IntvIn);
1292      SlotIndex Idx = leaveIntvAfter(BI.LastUse);
1293      useIntv(Start, Idx);
1294      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1295    } else {
1296      DEBUG(dbgs() << ", spill before last split point.\n");
1297      selectIntv(IntvIn);
1298      SlotIndex Idx = leaveIntvBefore(LSP);
1299      overlapIntv(Idx, BI.LastUse);
1300      useIntv(Start, Idx);
1301      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1302    }
1303    return;
1304  }
1305
1306  // The interference is overlapping somewhere we wanted to use IntvIn. That
1307  // means we need to create a local interval that can be allocated a
1308  // different register.
1309  unsigned LocalIntv = openIntv();
1310  (void)LocalIntv;
1311  DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1312
1313  if (!BI.LiveOut || BI.LastUse < LSP) {
1314    //
1315    //           <<<<<<<    Interference overlapping uses.
1316    //     |---o---o---|    Live-out on stack.
1317    //     =====----____    Leave IntvIn before interference, then spill.
1318    //
1319    SlotIndex To = leaveIntvAfter(BI.LastUse);
1320    SlotIndex From = enterIntvBefore(LeaveBefore);
1321    useIntv(From, To);
1322    selectIntv(IntvIn);
1323    useIntv(Start, From);
1324    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1325    return;
1326  }
1327
1328  //           <<<<<<<    Interference overlapping uses.
1329  //     |---o---o--o|    Live-out on stack, late last use.
1330  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1331  //            \_____    Stack interval is live-out.
1332  //
1333  SlotIndex To = leaveIntvBefore(LSP);
1334  overlapIntv(To, BI.LastUse);
1335  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1336  useIntv(From, To);
1337  selectIntv(IntvIn);
1338  useIntv(Start, From);
1339  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1340}
1341
1342void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1343                                   unsigned IntvOut, SlotIndex EnterAfter) {
1344  SlotIndex Start, Stop;
1345  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1346
1347  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1348               << "), uses " << BI.FirstUse << '-' << BI.LastUse
1349               << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1350               << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1351
1352  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1353
1354  assert(IntvOut && "Must have register out");
1355  assert(BI.LiveOut && "Must be live-out");
1356  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1357
1358  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstUse)) {
1359    DEBUG(dbgs() << " after interference.\n");
1360    //
1361    //    >>>>             Interference before def.
1362    //    |   o---o---|    Defined in block.
1363    //        =========    Use IntvOut everywhere.
1364    //
1365    selectIntv(IntvOut);
1366    useIntv(BI.FirstUse, Stop);
1367    return;
1368  }
1369
1370  if (!EnterAfter || EnterAfter < BI.FirstUse.getBaseIndex()) {
1371    DEBUG(dbgs() << ", reload after interference.\n");
1372    //
1373    //    >>>>             Interference before def.
1374    //    |---o---o---|    Live-through, stack-in.
1375    //    ____=========    Enter IntvOut before first use.
1376    //
1377    selectIntv(IntvOut);
1378    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstUse));
1379    useIntv(Idx, Stop);
1380    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1381    return;
1382  }
1383
1384  // The interference is overlapping somewhere we wanted to use IntvOut. That
1385  // means we need to create a local interval that can be allocated a
1386  // different register.
1387  DEBUG(dbgs() << ", interference overlaps uses.\n");
1388  //
1389  //    >>>>>>>          Interference overlapping uses.
1390  //    |---o---o---|    Live-through, stack-in.
1391  //    ____---======    Create local interval for interference range.
1392  //
1393  selectIntv(IntvOut);
1394  SlotIndex Idx = enterIntvAfter(EnterAfter);
1395  useIntv(Idx, Stop);
1396  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1397
1398  openIntv();
1399  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstUse));
1400  useIntv(From, Idx);
1401}
1402