SplitKit.cpp revision 8701768ae2e93e8741106acfa4a29959e1439487
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/CalcSpillWeights.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30
31using namespace llvm;
32
33static cl::opt<bool>
34AllowSplit("spiller-splits-edges",
35           cl::desc("Allow critical edge splitting during spilling"));
36
37STATISTIC(NumFinished, "Number of splits finished");
38STATISTIC(NumSimple,   "Number of splits that were simple");
39
40//===----------------------------------------------------------------------===//
41//                                 Split Analysis
42//===----------------------------------------------------------------------===//
43
44SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
45                             const LiveIntervals &lis,
46                             const MachineLoopInfo &mli)
47  : MF(vrm.getMachineFunction()),
48    VRM(vrm),
49    LIS(lis),
50    Loops(mli),
51    TII(*MF.getTarget().getInstrInfo()),
52    CurLI(0) {}
53
54void SplitAnalysis::clear() {
55  UseSlots.clear();
56  UsingInstrs.clear();
57  UsingBlocks.clear();
58  LiveBlocks.clear();
59  CurLI = 0;
60}
61
62bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
63  MachineBasicBlock *T, *F;
64  SmallVector<MachineOperand, 4> Cond;
65  return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
66}
67
68/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
69void SplitAnalysis::analyzeUses() {
70  const MachineRegisterInfo &MRI = MF.getRegInfo();
71  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg),
72       E = MRI.reg_end(); I != E; ++I) {
73    MachineOperand &MO = I.getOperand();
74    if (MO.isUse() && MO.isUndef())
75      continue;
76    MachineInstr *MI = MO.getParent();
77    if (MI->isDebugValue() || !UsingInstrs.insert(MI))
78      continue;
79    UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
80    MachineBasicBlock *MBB = MI->getParent();
81    UsingBlocks[MBB]++;
82  }
83  array_pod_sort(UseSlots.begin(), UseSlots.end());
84  calcLiveBlockInfo();
85  DEBUG(dbgs() << "  counted "
86               << UsingInstrs.size() << " instrs, "
87               << UsingBlocks.size() << " blocks.\n");
88}
89
90/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
91/// where CurLI is live.
92void SplitAnalysis::calcLiveBlockInfo() {
93  if (CurLI->empty())
94    return;
95
96  LiveInterval::const_iterator LVI = CurLI->begin();
97  LiveInterval::const_iterator LVE = CurLI->end();
98
99  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
100  UseI = UseSlots.begin();
101  UseE = UseSlots.end();
102
103  // Loop over basic blocks where CurLI is live.
104  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
105  for (;;) {
106    BlockInfo BI;
107    BI.MBB = MFI;
108    SlotIndex Start, Stop;
109    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
110
111    // The last split point is the latest possible insertion point that dominates
112    // all successor blocks. If interference reaches LastSplitPoint, it is not
113    // possible to insert a split or reload that makes CurLI live in the
114    // outgoing bundle.
115    MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB);
116    if (LSP == BI.MBB->end())
117      BI.LastSplitPoint = Stop;
118    else
119      BI.LastSplitPoint = LIS.getInstructionIndex(LSP);
120
121    // LVI is the first live segment overlapping MBB.
122    BI.LiveIn = LVI->start <= Start;
123    if (!BI.LiveIn)
124      BI.Def = LVI->start;
125
126    // Find the first and last uses in the block.
127    BI.Uses = hasUses(MFI);
128    if (BI.Uses && UseI != UseE) {
129      BI.FirstUse = *UseI;
130      assert(BI.FirstUse >= Start);
131      do ++UseI;
132      while (UseI != UseE && *UseI < Stop);
133      BI.LastUse = UseI[-1];
134      assert(BI.LastUse < Stop);
135    }
136
137    // Look for gaps in the live range.
138    bool hasGap = false;
139    BI.LiveOut = true;
140    while (LVI->end < Stop) {
141      SlotIndex LastStop = LVI->end;
142      if (++LVI == LVE || LVI->start >= Stop) {
143        BI.Kill = LastStop;
144        BI.LiveOut = false;
145        break;
146      }
147      if (LastStop < LVI->start) {
148        hasGap = true;
149        BI.Kill = LastStop;
150        BI.Def = LVI->start;
151      }
152    }
153
154    // Don't set LiveThrough when the block has a gap.
155    BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
156    LiveBlocks.push_back(BI);
157
158    // LVI is now at LVE or LVI->end >= Stop.
159    if (LVI == LVE)
160      break;
161
162    // Live segment ends exactly at Stop. Move to the next segment.
163    if (LVI->end == Stop && ++LVI == LVE)
164      break;
165
166    // Pick the next basic block.
167    if (LVI->start < Stop)
168      ++MFI;
169    else
170      MFI = LIS.getMBBFromIndex(LVI->start);
171  }
172}
173
174bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
175  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
176  const LiveInterval &Orig = LIS.getInterval(OrigReg);
177  assert(!Orig.empty() && "Splitting empty interval?");
178  LiveInterval::const_iterator I = Orig.find(Idx);
179
180  // Range containing Idx should begin at Idx.
181  if (I != Orig.end() && I->start <= Idx)
182    return I->start == Idx;
183
184  // Range does not contain Idx, previous must end at Idx.
185  return I != Orig.begin() && (--I)->end == Idx;
186}
187
188void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
189  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
190    unsigned count = UsingBlocks.lookup(*I);
191    OS << " BB#" << (*I)->getNumber();
192    if (count)
193      OS << '(' << count << ')';
194  }
195}
196
197void SplitAnalysis::analyze(const LiveInterval *li) {
198  clear();
199  CurLI = li;
200  analyzeUses();
201}
202
203
204//===----------------------------------------------------------------------===//
205//                               Split Editor
206//===----------------------------------------------------------------------===//
207
208/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
209SplitEditor::SplitEditor(SplitAnalysis &sa,
210                         LiveIntervals &lis,
211                         VirtRegMap &vrm,
212                         MachineDominatorTree &mdt,
213                         LiveRangeEdit &edit)
214  : SA(sa), LIS(lis), VRM(vrm),
215    MRI(vrm.getMachineFunction().getRegInfo()),
216    MDT(mdt),
217    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
218    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
219    Edit(&edit),
220    OpenIdx(0),
221    RegAssign(Allocator)
222{
223  // We don't need an AliasAnalysis since we will only be performing
224  // cheap-as-a-copy remats anyway.
225  Edit->anyRematerializable(LIS, TII, 0);
226}
227
228void SplitEditor::dump() const {
229  if (RegAssign.empty()) {
230    dbgs() << " empty\n";
231    return;
232  }
233
234  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
235    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
236  dbgs() << '\n';
237}
238
239VNInfo *SplitEditor::defValue(unsigned RegIdx,
240                              const VNInfo *ParentVNI,
241                              SlotIndex Idx) {
242  assert(ParentVNI && "Mapping  NULL value");
243  assert(Idx.isValid() && "Invalid SlotIndex");
244  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
245  LiveInterval *LI = Edit->get(RegIdx);
246
247  // Create a new value.
248  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
249
250  // Preserve the PHIDef bit.
251  if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
252    VNI->setIsPHIDef(true);
253
254  // Use insert for lookup, so we can add missing values with a second lookup.
255  std::pair<ValueMap::iterator, bool> InsP =
256    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
257
258  // This was the first time (RegIdx, ParentVNI) was mapped.
259  // Keep it as a simple def without any liveness.
260  if (InsP.second)
261    return VNI;
262
263  // If the previous value was a simple mapping, add liveness for it now.
264  if (VNInfo *OldVNI = InsP.first->second) {
265    SlotIndex Def = OldVNI->def;
266    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
267    // No longer a simple mapping.
268    InsP.first->second = 0;
269  }
270
271  // This is a complex mapping, add liveness for VNI
272  SlotIndex Def = VNI->def;
273  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
274
275  return VNI;
276}
277
278void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
279  assert(ParentVNI && "Mapping  NULL value");
280  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
281
282  // ParentVNI was either unmapped or already complex mapped. Either way.
283  if (!VNI)
284    return;
285
286  // This was previously a single mapping. Make sure the old def is represented
287  // by a trivial live range.
288  SlotIndex Def = VNI->def;
289  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
290  VNI = 0;
291}
292
293// extendRange - Extend the live range to reach Idx.
294// Potentially create phi-def values.
295void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
296  assert(Idx.isValid() && "Invalid SlotIndex");
297  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
298  assert(IdxMBB && "No MBB at Idx");
299  LiveInterval *LI = Edit->get(RegIdx);
300
301  // Is there a def in the same MBB we can extend?
302  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
303    return;
304
305  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
306  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
307  // Perform a search for all predecessor blocks where we know the dominating
308  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
309  DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
310               << " at " << Idx << " in " << *LI << '\n');
311
312  // Blocks where LI should be live-in.
313  SmallVector<MachineDomTreeNode*, 16> LiveIn;
314  LiveIn.push_back(MDT[IdxMBB]);
315
316  // Remember if we have seen more than one value.
317  bool UniqueVNI = true;
318  VNInfo *IdxVNI = 0;
319
320  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
321  for (unsigned i = 0; i != LiveIn.size(); ++i) {
322    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
323    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
324           PE = MBB->pred_end(); PI != PE; ++PI) {
325       MachineBasicBlock *Pred = *PI;
326       // Is this a known live-out block?
327       std::pair<LiveOutMap::iterator,bool> LOIP =
328         LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
329       // Yes, we have been here before.
330       if (!LOIP.second) {
331         if (VNInfo *VNI = LOIP.first->second.first) {
332           if (IdxVNI && IdxVNI != VNI)
333             UniqueVNI = false;
334           IdxVNI = VNI;
335         }
336         continue;
337       }
338       // Does Pred provide a live-out value?
339       SlotIndex Start, Last;
340       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
341       Last = Last.getPrevSlot();
342       if (VNInfo *VNI = LI->extendInBlock(Start, Last)) {
343         MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
344         LiveOutPair &LOP = LOIP.first->second;
345         LOP.first = VNI;
346         LOP.second = MDT[DefMBB];
347         if (IdxVNI && IdxVNI != VNI)
348           UniqueVNI = false;
349         IdxVNI = VNI;
350         continue;
351       }
352       // No, we need a live-in value for Pred as well
353       if (Pred != IdxMBB)
354         LiveIn.push_back(MDT[Pred]);
355       else
356         UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help.
357    }
358  }
359
360  // We may need to add phi-def values to preserve the SSA form.
361  if (UniqueVNI) {
362    LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]);
363    // Update LiveOutCache, but skip IdxMBB at LiveIn[0].
364    for (unsigned i = 1, e = LiveIn.size(); i != e; ++i)
365      LiveOutCache[LiveIn[i]->getBlock()] = LOP;
366  } else
367    IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB);
368
369#ifndef NDEBUG
370  // Check the LiveOutCache invariants.
371  for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
372         I != E; ++I) {
373    assert(I->first && "Null MBB entry in cache");
374    assert(I->second.first && "Null VNInfo in cache");
375    assert(I->second.second && "Null DomTreeNode in cache");
376    if (I->second.second->getBlock() == I->first)
377      continue;
378    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
379           PE = I->first->pred_end(); PI != PE; ++PI)
380      assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
381  }
382#endif
383
384  // Since we went through the trouble of a full BFS visiting all reaching defs,
385  // the values in LiveIn are now accurate. No more phi-defs are needed
386  // for these blocks, so we can color the live ranges.
387  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
388    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
389    SlotIndex Start = LIS.getMBBStartIdx(MBB);
390    VNInfo *VNI = LiveOutCache.lookup(MBB).first;
391
392    // Anything in LiveIn other than IdxMBB is live-through.
393    // In IdxMBB, we should stop at Idx unless the same value is live-out.
394    if (MBB == IdxMBB && IdxVNI != VNI)
395      LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
396    else
397      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
398  }
399}
400
401VNInfo *SplitEditor::updateSSA(unsigned RegIdx,
402                               SmallVectorImpl<MachineDomTreeNode*> &LiveIn,
403                               SlotIndex Idx,
404                               const MachineBasicBlock *IdxMBB) {
405  // This is essentially the same iterative algorithm that SSAUpdater uses,
406  // except we already have a dominator tree, so we don't have to recompute it.
407  LiveInterval *LI = Edit->get(RegIdx);
408  VNInfo *IdxVNI = 0;
409  unsigned Changes;
410  do {
411    Changes = 0;
412    DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
413    // Propagate live-out values down the dominator tree, inserting phi-defs
414    // when necessary. Since LiveIn was created by a BFS, going backwards makes
415    // it more likely for us to visit immediate dominators before their
416    // children.
417    for (unsigned i = LiveIn.size(); i; --i) {
418      MachineDomTreeNode *Node = LiveIn[i-1];
419      MachineBasicBlock *MBB = Node->getBlock();
420      MachineDomTreeNode *IDom = Node->getIDom();
421      LiveOutPair IDomValue;
422      // We need a live-in value to a block with no immediate dominator?
423      // This is probably an unreachable block that has survived somehow.
424      bool needPHI = !IDom;
425
426      // Get the IDom live-out value.
427      if (!needPHI) {
428        LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
429        if (I != LiveOutCache.end())
430          IDomValue = I->second;
431        else
432          // If IDom is outside our set of live-out blocks, there must be new
433          // defs, and we need a phi-def here.
434          needPHI = true;
435      }
436
437      // IDom dominates all of our predecessors, but it may not be the immediate
438      // dominator. Check if any of them have live-out values that are properly
439      // dominated by IDom. If so, we need a phi-def here.
440      if (!needPHI) {
441        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
442               PE = MBB->pred_end(); PI != PE; ++PI) {
443          LiveOutPair Value = LiveOutCache[*PI];
444          if (!Value.first || Value.first == IDomValue.first)
445            continue;
446          // This predecessor is carrying something other than IDomValue.
447          // It could be because IDomValue hasn't propagated yet, or it could be
448          // because MBB is in the dominance frontier of that value.
449          if (MDT.dominates(IDom, Value.second)) {
450            needPHI = true;
451            break;
452          }
453        }
454      }
455
456      // Create a phi-def if required.
457      if (needPHI) {
458        ++Changes;
459        SlotIndex Start = LIS.getMBBStartIdx(MBB);
460        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
461        VNI->setIsPHIDef(true);
462        DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
463                     << " phi-def #" << VNI->id << " at " << Start << '\n');
464        // We no longer need LI to be live-in.
465        LiveIn.erase(LiveIn.begin()+(i-1));
466        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
467        if (MBB == IdxMBB)
468          IdxVNI = VNI;
469        // Check if we need to update live-out info.
470        LiveOutMap::iterator I = LiveOutCache.find(MBB);
471        if (I == LiveOutCache.end() || I->second.second == Node) {
472          // We already have a live-out defined in MBB, so this must be IdxMBB.
473          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
474          LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
475        } else {
476          // This phi-def is also live-out, so color the whole block.
477          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
478          I->second = LiveOutPair(VNI, Node);
479        }
480      } else if (IDomValue.first) {
481        // No phi-def here. Remember incoming value for IdxMBB.
482        if (MBB == IdxMBB)
483          IdxVNI = IDomValue.first;
484        // Propagate IDomValue if needed:
485        // MBB is live-out and doesn't define its own value.
486        LiveOutMap::iterator I = LiveOutCache.find(MBB);
487        if (I != LiveOutCache.end() && I->second.second != Node &&
488            I->second.first != IDomValue.first) {
489          ++Changes;
490          I->second = IDomValue;
491          DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
492                       << " idom valno #" << IDomValue.first->id
493                       << " from BB#" << IDom->getBlock()->getNumber() << '\n');
494        }
495      }
496    }
497    DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
498  } while (Changes);
499
500  assert(IdxVNI && "Didn't find value for Idx");
501  return IdxVNI;
502}
503
504VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
505                                   VNInfo *ParentVNI,
506                                   SlotIndex UseIdx,
507                                   MachineBasicBlock &MBB,
508                                   MachineBasicBlock::iterator I) {
509  MachineInstr *CopyMI = 0;
510  SlotIndex Def;
511  LiveInterval *LI = Edit->get(RegIdx);
512
513  // Attempt cheap-as-a-copy rematerialization.
514  LiveRangeEdit::Remat RM(ParentVNI);
515  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
516    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
517  } else {
518    // Can't remat, just insert a copy from parent.
519    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
520               .addReg(Edit->getReg());
521    Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
522  }
523
524  // Define the value in Reg.
525  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
526  VNI->setCopy(CopyMI);
527  return VNI;
528}
529
530/// Create a new virtual register and live interval.
531void SplitEditor::openIntv() {
532  assert(!OpenIdx && "Previous LI not closed before openIntv");
533
534  // Create the complement as index 0.
535  if (Edit->empty())
536    Edit->create(MRI, LIS, VRM);
537
538  // Create the open interval.
539  OpenIdx = Edit->size();
540  Edit->create(MRI, LIS, VRM);
541}
542
543SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
544  assert(OpenIdx && "openIntv not called before enterIntvBefore");
545  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
546  Idx = Idx.getBaseIndex();
547  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
548  if (!ParentVNI) {
549    DEBUG(dbgs() << ": not live\n");
550    return Idx;
551  }
552  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
553  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
554  assert(MI && "enterIntvBefore called with invalid index");
555
556  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
557  return VNI->def;
558}
559
560SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
561  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
562  SlotIndex End = LIS.getMBBEndIdx(&MBB);
563  SlotIndex Last = End.getPrevSlot();
564  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
565  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
566  if (!ParentVNI) {
567    DEBUG(dbgs() << ": not live\n");
568    return End;
569  }
570  DEBUG(dbgs() << ": valno " << ParentVNI->id);
571  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
572                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
573  RegAssign.insert(VNI->def, End, OpenIdx);
574  DEBUG(dump());
575  return VNI->def;
576}
577
578/// useIntv - indicate that all instructions in MBB should use OpenLI.
579void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
580  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
581}
582
583void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
584  assert(OpenIdx && "openIntv not called before useIntv");
585  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
586  RegAssign.insert(Start, End, OpenIdx);
587  DEBUG(dump());
588}
589
590SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
591  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
592  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
593
594  // The interval must be live beyond the instruction at Idx.
595  Idx = Idx.getBoundaryIndex();
596  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
597  if (!ParentVNI) {
598    DEBUG(dbgs() << ": not live\n");
599    return Idx.getNextSlot();
600  }
601  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
602
603  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
604  assert(MI && "No instruction at index");
605  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
606                              llvm::next(MachineBasicBlock::iterator(MI)));
607  return VNI->def;
608}
609
610SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
611  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
612  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
613
614  // The interval must be live into the instruction at Idx.
615  Idx = Idx.getBoundaryIndex();
616  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
617  if (!ParentVNI) {
618    DEBUG(dbgs() << ": not live\n");
619    return Idx.getNextSlot();
620  }
621  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
622
623  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
624  assert(MI && "No instruction at index");
625  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
626  return VNI->def;
627}
628
629SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
630  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
631  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
632  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
633
634  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
635  if (!ParentVNI) {
636    DEBUG(dbgs() << ": not live\n");
637    return Start;
638  }
639
640  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
641                              MBB.SkipPHIsAndLabels(MBB.begin()));
642  RegAssign.insert(Start, VNI->def, OpenIdx);
643  DEBUG(dump());
644  return VNI->def;
645}
646
647void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
648  assert(OpenIdx && "openIntv not called before overlapIntv");
649  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
650  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
651         "Parent changes value in extended range");
652  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
653         "Range cannot span basic blocks");
654
655  // The complement interval will be extended as needed by extendRange().
656  markComplexMapped(0, ParentVNI);
657  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
658  RegAssign.insert(Start, End, OpenIdx);
659  DEBUG(dump());
660}
661
662/// closeIntv - Indicate that we are done editing the currently open
663/// LiveInterval, and ranges can be trimmed.
664void SplitEditor::closeIntv() {
665  assert(OpenIdx && "openIntv not called before closeIntv");
666  OpenIdx = 0;
667}
668
669/// transferSimpleValues - Transfer all simply defined values to the new live
670/// ranges.
671/// Values that were rematerialized or that have multiple defs are left alone.
672bool SplitEditor::transferSimpleValues() {
673  bool Skipped = false;
674  RegAssignMap::const_iterator AssignI = RegAssign.begin();
675  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
676         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
677    DEBUG(dbgs() << "  blit " << *ParentI << ':');
678    VNInfo *ParentVNI = ParentI->valno;
679    // RegAssign has holes where RegIdx 0 should be used.
680    SlotIndex Start = ParentI->start;
681    AssignI.advanceTo(Start);
682    do {
683      unsigned RegIdx;
684      SlotIndex End = ParentI->end;
685      if (!AssignI.valid()) {
686        RegIdx = 0;
687      } else if (AssignI.start() <= Start) {
688        RegIdx = AssignI.value();
689        if (AssignI.stop() < End) {
690          End = AssignI.stop();
691          ++AssignI;
692        }
693      } else {
694        RegIdx = 0;
695        End = std::min(End, AssignI.start());
696      }
697      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
698      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
699        DEBUG(dbgs() << ':' << VNI->id);
700        Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI));
701      } else
702        Skipped = true;
703      Start = End;
704    } while (Start != ParentI->end);
705    DEBUG(dbgs() << '\n');
706  }
707  return Skipped;
708}
709
710void SplitEditor::extendPHIKillRanges() {
711    // Extend live ranges to be live-out for successor PHI values.
712  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
713       E = Edit->getParent().vni_end(); I != E; ++I) {
714    const VNInfo *PHIVNI = *I;
715    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
716      continue;
717    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
718    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
719    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
720         PE = MBB->pred_end(); PI != PE; ++PI) {
721      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
722      // The predecessor may not have a live-out value. That is OK, like an
723      // undef PHI operand.
724      if (Edit->getParent().liveAt(End)) {
725        assert(RegAssign.lookup(End) == RegIdx &&
726               "Different register assignment in phi predecessor");
727        extendRange(RegIdx, End);
728      }
729    }
730  }
731}
732
733/// rewriteAssigned - Rewrite all uses of Edit->getReg().
734void SplitEditor::rewriteAssigned(bool ExtendRanges) {
735  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
736       RE = MRI.reg_end(); RI != RE;) {
737    MachineOperand &MO = RI.getOperand();
738    MachineInstr *MI = MO.getParent();
739    ++RI;
740    // LiveDebugVariables should have handled all DBG_VALUE instructions.
741    if (MI->isDebugValue()) {
742      DEBUG(dbgs() << "Zapping " << *MI);
743      MO.setReg(0);
744      continue;
745    }
746
747    // <undef> operands don't really read the register, so just assign them to
748    // the complement.
749    if (MO.isUse() && MO.isUndef()) {
750      MO.setReg(Edit->get(0)->reg);
751      continue;
752    }
753
754    SlotIndex Idx = LIS.getInstructionIndex(MI);
755    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
756
757    // Rewrite to the mapped register at Idx.
758    unsigned RegIdx = RegAssign.lookup(Idx);
759    MO.setReg(Edit->get(RegIdx)->reg);
760    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
761                 << Idx << ':' << RegIdx << '\t' << *MI);
762
763    // Extend liveness to Idx.
764    if (ExtendRanges)
765      extendRange(RegIdx, Idx);
766  }
767}
768
769/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
770void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
771                                    const ConnectedVNInfoEqClasses &ConEq) {
772  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
773       RE = MRI.reg_end(); RI != RE;) {
774    MachineOperand &MO = RI.getOperand();
775    MachineInstr *MI = MO.getParent();
776    ++RI;
777    if (MO.isUse() && MO.isUndef())
778      continue;
779    // DBG_VALUE instructions should have been eliminated earlier.
780    SlotIndex Idx = LIS.getInstructionIndex(MI);
781    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
782    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
783                 << Idx << ':');
784    const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
785    assert(VNI && "Interval not live at use.");
786    MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
787    DEBUG(dbgs() << VNI->id << '\t' << *MI);
788  }
789}
790
791void SplitEditor::finish() {
792  assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
793  ++NumFinished;
794
795  // At this point, the live intervals in Edit contain VNInfos corresponding to
796  // the inserted copies.
797
798  // Add the original defs from the parent interval.
799  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
800         E = Edit->getParent().vni_end(); I != E; ++I) {
801    const VNInfo *ParentVNI = *I;
802    if (ParentVNI->isUnused())
803      continue;
804    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
805    defValue(RegIdx, ParentVNI, ParentVNI->def);
806    // Mark rematted values as complex everywhere to force liveness computation.
807    // The new live ranges may be truncated.
808    if (Edit->didRematerialize(ParentVNI))
809      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
810        markComplexMapped(i, ParentVNI);
811  }
812
813#ifndef NDEBUG
814  // Every new interval must have a def by now, otherwise the split is bogus.
815  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
816    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
817#endif
818
819  // Transfer the simply mapped values, check if any are complex.
820  bool Complex = transferSimpleValues();
821  if (Complex)
822    extendPHIKillRanges();
823  else
824    ++NumSimple;
825
826  // Rewrite virtual registers, possibly extending ranges.
827  rewriteAssigned(Complex);
828
829  // FIXME: Delete defs that were rematted everywhere.
830
831  // Get rid of unused values and set phi-kill flags.
832  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
833    (*I)->RenumberValues(LIS);
834
835  // Now check if any registers were separated into multiple components.
836  ConnectedVNInfoEqClasses ConEQ(LIS);
837  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
838    // Don't use iterators, they are invalidated by create() below.
839    LiveInterval *li = Edit->get(i);
840    unsigned NumComp = ConEQ.Classify(li);
841    if (NumComp <= 1)
842      continue;
843    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
844    SmallVector<LiveInterval*, 8> dups;
845    dups.push_back(li);
846    for (unsigned i = 1; i != NumComp; ++i)
847      dups.push_back(&Edit->create(MRI, LIS, VRM));
848    rewriteComponents(dups, ConEQ);
849    ConEQ.Distribute(&dups[0]);
850  }
851
852  // Calculate spill weight and allocation hints for new intervals.
853  VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops);
854  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
855    LiveInterval &li = **I;
856    vrai.CalculateRegClass(li.reg);
857    vrai.CalculateWeightAndHint(li);
858    DEBUG(dbgs() << "  new interval " << MRI.getRegClass(li.reg)->getName()
859                 << ":" << li << '\n');
860  }
861}
862
863
864//===----------------------------------------------------------------------===//
865//                            Single Block Splitting
866//===----------------------------------------------------------------------===//
867
868/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
869/// may be an advantage to split CurLI for the duration of the block.
870bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
871  // If CurLI is local to one block, there is no point to splitting it.
872  if (LiveBlocks.size() <= 1)
873    return false;
874  // Add blocks with multiple uses.
875  for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
876    const BlockInfo &BI = LiveBlocks[i];
877    if (!BI.Uses)
878      continue;
879    unsigned Instrs = UsingBlocks.lookup(BI.MBB);
880    if (Instrs <= 1)
881      continue;
882    if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough)
883      continue;
884    Blocks.insert(BI.MBB);
885  }
886  return !Blocks.empty();
887}
888
889/// splitSingleBlocks - Split CurLI into a separate live interval inside each
890/// basic block in Blocks.
891void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
892  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
893
894  for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) {
895    const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i];
896    if (!BI.Uses || !Blocks.count(BI.MBB))
897      continue;
898
899    openIntv();
900    SlotIndex SegStart = enterIntvBefore(BI.FirstUse);
901    if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) {
902      useIntv(SegStart, leaveIntvAfter(BI.LastUse));
903    } else {
904      // The last use is after the last valid split point.
905      SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint);
906      useIntv(SegStart, SegStop);
907      overlapIntv(SegStop, BI.LastUse);
908    }
909    closeIntv();
910  }
911  finish();
912}
913