SplitKit.cpp revision 9f4b893b84d9c2b56aa2abc3c96ce1e5ccc465e5
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28
29using namespace llvm;
30
31STATISTIC(NumFinished, "Number of splits finished");
32STATISTIC(NumSimple,   "Number of splits that were simple");
33
34//===----------------------------------------------------------------------===//
35//                                 Split Analysis
36//===----------------------------------------------------------------------===//
37
38SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
39                             const LiveIntervals &lis,
40                             const MachineLoopInfo &mli)
41  : MF(vrm.getMachineFunction()),
42    VRM(vrm),
43    LIS(lis),
44    Loops(mli),
45    TII(*MF.getTarget().getInstrInfo()),
46    CurLI(0),
47    LastSplitPoint(MF.getNumBlockIDs()) {}
48
49void SplitAnalysis::clear() {
50  UseSlots.clear();
51  UseBlocks.clear();
52  ThroughBlocks.clear();
53  CurLI = 0;
54}
55
56SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
57  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
58  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
59  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
60
61  // Compute split points on the first call. The pair is independent of the
62  // current live interval.
63  if (!LSP.first.isValid()) {
64    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
65    if (FirstTerm == MBB->end())
66      LSP.first = LIS.getMBBEndIdx(MBB);
67    else
68      LSP.first = LIS.getInstructionIndex(FirstTerm);
69
70    // If there is a landing pad successor, also find the call instruction.
71    if (!LPad)
72      return LSP.first;
73    // There may not be a call instruction (?) in which case we ignore LPad.
74    LSP.second = LSP.first;
75    for (MachineBasicBlock::const_iterator I = FirstTerm, E = MBB->begin();
76         I != E; --I)
77      if (I->getDesc().isCall()) {
78        LSP.second = LIS.getInstructionIndex(I);
79        break;
80      }
81  }
82
83  // If CurLI is live into a landing pad successor, move the last split point
84  // back to the call that may throw.
85  if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
86    return LSP.second;
87  else
88    return LSP.first;
89}
90
91/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
92void SplitAnalysis::analyzeUses() {
93  assert(UseSlots.empty() && "Call clear first");
94
95  // First get all the defs from the interval values. This provides the correct
96  // slots for early clobbers.
97  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
98       E = CurLI->vni_end(); I != E; ++I)
99    if (!(*I)->isPHIDef() && !(*I)->isUnused())
100      UseSlots.push_back((*I)->def);
101
102  // Get use slots form the use-def chain.
103  const MachineRegisterInfo &MRI = MF.getRegInfo();
104  for (MachineRegisterInfo::use_nodbg_iterator
105       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
106       ++I)
107    if (!I.getOperand().isUndef())
108      UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
109
110  array_pod_sort(UseSlots.begin(), UseSlots.end());
111
112  // Remove duplicates, keeping the smaller slot for each instruction.
113  // That is what we want for early clobbers.
114  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
115                             SlotIndex::isSameInstr),
116                 UseSlots.end());
117
118  // Compute per-live block info.
119  if (!calcLiveBlockInfo()) {
120    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
121    // I am looking at you, SimpleRegisterCoalescing!
122    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
123    const_cast<LiveIntervals&>(LIS)
124      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
125    UseBlocks.clear();
126    ThroughBlocks.clear();
127    bool fixed = calcLiveBlockInfo();
128    (void)fixed;
129    assert(fixed && "Couldn't fix broken live interval");
130  }
131
132  DEBUG(dbgs() << "Analyze counted "
133               << UseSlots.size() << " instrs in "
134               << UseBlocks.size() << " blocks, through "
135               << NumThroughBlocks << " blocks.\n");
136}
137
138/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
139/// where CurLI is live.
140bool SplitAnalysis::calcLiveBlockInfo() {
141  ThroughBlocks.resize(MF.getNumBlockIDs());
142  NumThroughBlocks = 0;
143  if (CurLI->empty())
144    return true;
145
146  LiveInterval::const_iterator LVI = CurLI->begin();
147  LiveInterval::const_iterator LVE = CurLI->end();
148
149  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
150  UseI = UseSlots.begin();
151  UseE = UseSlots.end();
152
153  // Loop over basic blocks where CurLI is live.
154  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
155  for (;;) {
156    BlockInfo BI;
157    BI.MBB = MFI;
158    SlotIndex Start, Stop;
159    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
160
161    // LVI is the first live segment overlapping MBB.
162    BI.LiveIn = LVI->start <= Start;
163    if (!BI.LiveIn)
164      BI.Def = LVI->start;
165
166    // Find the first and last uses in the block.
167    bool Uses = UseI != UseE && *UseI < Stop;
168    if (Uses) {
169      BI.FirstUse = *UseI;
170      assert(BI.FirstUse >= Start);
171      do ++UseI;
172      while (UseI != UseE && *UseI < Stop);
173      BI.LastUse = UseI[-1];
174      assert(BI.LastUse < Stop);
175    }
176
177    // Look for gaps in the live range.
178    bool hasGap = false;
179    BI.LiveOut = true;
180    while (LVI->end < Stop) {
181      SlotIndex LastStop = LVI->end;
182      if (++LVI == LVE || LVI->start >= Stop) {
183        BI.Kill = LastStop;
184        BI.LiveOut = false;
185        break;
186      }
187      if (LastStop < LVI->start) {
188        hasGap = true;
189        BI.Kill = LastStop;
190        BI.Def = LVI->start;
191      }
192    }
193
194    // Don't set LiveThrough when the block has a gap.
195    BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
196    if (Uses)
197      UseBlocks.push_back(BI);
198    else {
199      ++NumThroughBlocks;
200      ThroughBlocks.set(BI.MBB->getNumber());
201    }
202    // FIXME: This should never happen. The live range stops or starts without a
203    // corresponding use. An earlier pass did something wrong.
204    if (!BI.LiveThrough && !Uses)
205      return false;
206
207    // LVI is now at LVE or LVI->end >= Stop.
208    if (LVI == LVE)
209      break;
210
211    // Live segment ends exactly at Stop. Move to the next segment.
212    if (LVI->end == Stop && ++LVI == LVE)
213      break;
214
215    // Pick the next basic block.
216    if (LVI->start < Stop)
217      ++MFI;
218    else
219      MFI = LIS.getMBBFromIndex(LVI->start);
220  }
221  return true;
222}
223
224unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
225  if (cli->empty())
226    return 0;
227  LiveInterval *li = const_cast<LiveInterval*>(cli);
228  LiveInterval::iterator LVI = li->begin();
229  LiveInterval::iterator LVE = li->end();
230  unsigned Count = 0;
231
232  // Loop over basic blocks where li is live.
233  MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
234  SlotIndex Stop = LIS.getMBBEndIdx(MFI);
235  for (;;) {
236    ++Count;
237    LVI = li->advanceTo(LVI, Stop);
238    if (LVI == LVE)
239      return Count;
240    do {
241      ++MFI;
242      Stop = LIS.getMBBEndIdx(MFI);
243    } while (Stop <= LVI->start);
244  }
245}
246
247bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
248  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
249  const LiveInterval &Orig = LIS.getInterval(OrigReg);
250  assert(!Orig.empty() && "Splitting empty interval?");
251  LiveInterval::const_iterator I = Orig.find(Idx);
252
253  // Range containing Idx should begin at Idx.
254  if (I != Orig.end() && I->start <= Idx)
255    return I->start == Idx;
256
257  // Range does not contain Idx, previous must end at Idx.
258  return I != Orig.begin() && (--I)->end == Idx;
259}
260
261void SplitAnalysis::analyze(const LiveInterval *li) {
262  clear();
263  CurLI = li;
264  analyzeUses();
265}
266
267
268//===----------------------------------------------------------------------===//
269//                               Split Editor
270//===----------------------------------------------------------------------===//
271
272/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
273SplitEditor::SplitEditor(SplitAnalysis &sa,
274                         LiveIntervals &lis,
275                         VirtRegMap &vrm,
276                         MachineDominatorTree &mdt)
277  : SA(sa), LIS(lis), VRM(vrm),
278    MRI(vrm.getMachineFunction().getRegInfo()),
279    MDT(mdt),
280    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
281    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
282    Edit(0),
283    OpenIdx(0),
284    RegAssign(Allocator)
285{}
286
287void SplitEditor::reset(LiveRangeEdit &lre) {
288  Edit = &lre;
289  OpenIdx = 0;
290  RegAssign.clear();
291  Values.clear();
292
293  // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
294  LiveOutSeen.clear();
295
296  // We don't need an AliasAnalysis since we will only be performing
297  // cheap-as-a-copy remats anyway.
298  Edit->anyRematerializable(LIS, TII, 0);
299}
300
301void SplitEditor::dump() const {
302  if (RegAssign.empty()) {
303    dbgs() << " empty\n";
304    return;
305  }
306
307  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
308    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
309  dbgs() << '\n';
310}
311
312VNInfo *SplitEditor::defValue(unsigned RegIdx,
313                              const VNInfo *ParentVNI,
314                              SlotIndex Idx) {
315  assert(ParentVNI && "Mapping  NULL value");
316  assert(Idx.isValid() && "Invalid SlotIndex");
317  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
318  LiveInterval *LI = Edit->get(RegIdx);
319
320  // Create a new value.
321  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
322
323  // Use insert for lookup, so we can add missing values with a second lookup.
324  std::pair<ValueMap::iterator, bool> InsP =
325    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
326
327  // This was the first time (RegIdx, ParentVNI) was mapped.
328  // Keep it as a simple def without any liveness.
329  if (InsP.second)
330    return VNI;
331
332  // If the previous value was a simple mapping, add liveness for it now.
333  if (VNInfo *OldVNI = InsP.first->second) {
334    SlotIndex Def = OldVNI->def;
335    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
336    // No longer a simple mapping.
337    InsP.first->second = 0;
338  }
339
340  // This is a complex mapping, add liveness for VNI
341  SlotIndex Def = VNI->def;
342  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
343
344  return VNI;
345}
346
347void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
348  assert(ParentVNI && "Mapping  NULL value");
349  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
350
351  // ParentVNI was either unmapped or already complex mapped. Either way.
352  if (!VNI)
353    return;
354
355  // This was previously a single mapping. Make sure the old def is represented
356  // by a trivial live range.
357  SlotIndex Def = VNI->def;
358  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
359  VNI = 0;
360}
361
362// extendRange - Extend the live range to reach Idx.
363// Potentially create phi-def values.
364void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
365  assert(Idx.isValid() && "Invalid SlotIndex");
366  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
367  assert(IdxMBB && "No MBB at Idx");
368  LiveInterval *LI = Edit->get(RegIdx);
369
370  // Is there a def in the same MBB we can extend?
371  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
372    return;
373
374  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
375  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
376  // Perform a search for all predecessor blocks where we know the dominating
377  // VNInfo.
378  VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
379
380  // When there were multiple different values, we may need new PHIs.
381  if (!VNI)
382    return updateSSA();
383
384  // Poor man's SSA update for the single-value case.
385  LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
386  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
387         E = LiveInBlocks.end(); I != E; ++I) {
388    MachineBasicBlock *MBB = I->DomNode->getBlock();
389    SlotIndex Start = LIS.getMBBStartIdx(MBB);
390    if (I->Kill.isValid())
391      LI->addRange(LiveRange(Start, I->Kill, VNI));
392    else {
393      LiveOutCache[MBB] = LOP;
394      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
395    }
396  }
397}
398
399/// findReachingDefs - Search the CFG for known live-out values.
400/// Add required live-in blocks to LiveInBlocks.
401VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
402                                      MachineBasicBlock *KillMBB,
403                                      SlotIndex Kill) {
404  // Initialize the live-out cache the first time it is needed.
405  if (LiveOutSeen.empty()) {
406    unsigned N = VRM.getMachineFunction().getNumBlockIDs();
407    LiveOutSeen.resize(N);
408    LiveOutCache.resize(N);
409  }
410
411  // Blocks where LI should be live-in.
412  SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
413
414  // Remember if we have seen more than one value.
415  bool UniqueVNI = true;
416  VNInfo *TheVNI = 0;
417
418  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
419  for (unsigned i = 0; i != WorkList.size(); ++i) {
420    MachineBasicBlock *MBB = WorkList[i];
421    assert(!MBB->pred_empty() && "Value live-in to entry block?");
422    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
423           PE = MBB->pred_end(); PI != PE; ++PI) {
424       MachineBasicBlock *Pred = *PI;
425       LiveOutPair &LOP = LiveOutCache[Pred];
426
427       // Is this a known live-out block?
428       if (LiveOutSeen.test(Pred->getNumber())) {
429         if (VNInfo *VNI = LOP.first) {
430           if (TheVNI && TheVNI != VNI)
431             UniqueVNI = false;
432           TheVNI = VNI;
433         }
434         continue;
435       }
436
437       // First time. LOP is garbage and must be cleared below.
438       LiveOutSeen.set(Pred->getNumber());
439
440       // Does Pred provide a live-out value?
441       SlotIndex Start, Last;
442       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
443       Last = Last.getPrevSlot();
444       VNInfo *VNI = LI->extendInBlock(Start, Last);
445       LOP.first = VNI;
446       if (VNI) {
447         LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
448         if (TheVNI && TheVNI != VNI)
449           UniqueVNI = false;
450         TheVNI = VNI;
451         continue;
452       }
453       LOP.second = 0;
454
455       // No, we need a live-in value for Pred as well
456       if (Pred != KillMBB)
457          WorkList.push_back(Pred);
458       else
459          // Loopback to KillMBB, so value is really live through.
460         Kill = SlotIndex();
461    }
462  }
463
464  // Transfer WorkList to LiveInBlocks in reverse order.
465  // This ordering works best with updateSSA().
466  LiveInBlocks.clear();
467  LiveInBlocks.reserve(WorkList.size());
468  while(!WorkList.empty())
469    LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
470
471  // The kill block may not be live-through.
472  assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
473  LiveInBlocks.back().Kill = Kill;
474
475  return UniqueVNI ? TheVNI : 0;
476}
477
478void SplitEditor::updateSSA() {
479  // This is essentially the same iterative algorithm that SSAUpdater uses,
480  // except we already have a dominator tree, so we don't have to recompute it.
481  unsigned Changes;
482  do {
483    Changes = 0;
484    // Propagate live-out values down the dominator tree, inserting phi-defs
485    // when necessary.
486    for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
487           E = LiveInBlocks.end(); I != E; ++I) {
488      MachineDomTreeNode *Node = I->DomNode;
489      // Skip block if the live-in value has already been determined.
490      if (!Node)
491        continue;
492      MachineBasicBlock *MBB = Node->getBlock();
493      MachineDomTreeNode *IDom = Node->getIDom();
494      LiveOutPair IDomValue;
495
496      // We need a live-in value to a block with no immediate dominator?
497      // This is probably an unreachable block that has survived somehow.
498      bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
499
500      // IDom dominates all of our predecessors, but it may not be their
501      // immediate dominator. Check if any of them have live-out values that are
502      // properly dominated by IDom. If so, we need a phi-def here.
503      if (!needPHI) {
504        IDomValue = LiveOutCache[IDom->getBlock()];
505        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
506               PE = MBB->pred_end(); PI != PE; ++PI) {
507          LiveOutPair Value = LiveOutCache[*PI];
508          if (!Value.first || Value.first == IDomValue.first)
509            continue;
510          // This predecessor is carrying something other than IDomValue.
511          // It could be because IDomValue hasn't propagated yet, or it could be
512          // because MBB is in the dominance frontier of that value.
513          if (MDT.dominates(IDom, Value.second)) {
514            needPHI = true;
515            break;
516          }
517        }
518      }
519
520      // The value may be live-through even if Kill is set, as can happen when
521      // we are called from extendRange. In that case LiveOutSeen is true, and
522      // LiveOutCache indicates a foreign or missing value.
523      LiveOutPair &LOP = LiveOutCache[MBB];
524
525      // Create a phi-def if required.
526      if (needPHI) {
527        ++Changes;
528        SlotIndex Start = LIS.getMBBStartIdx(MBB);
529        unsigned RegIdx = RegAssign.lookup(Start);
530        LiveInterval *LI = Edit->get(RegIdx);
531        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
532        VNI->setIsPHIDef(true);
533        I->Value = VNI;
534        // This block is done, we know the final value.
535        I->DomNode = 0;
536        if (I->Kill.isValid())
537          LI->addRange(LiveRange(Start, I->Kill, VNI));
538        else {
539          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
540          LOP = LiveOutPair(VNI, Node);
541        }
542      } else if (IDomValue.first) {
543        // No phi-def here. Remember incoming value.
544        I->Value = IDomValue.first;
545        if (I->Kill.isValid())
546          continue;
547        // Propagate IDomValue if needed:
548        // MBB is live-out and doesn't define its own value.
549        if (LOP.second != Node && LOP.first != IDomValue.first) {
550          ++Changes;
551          LOP = IDomValue;
552        }
553      }
554    }
555  } while (Changes);
556
557  // The values in LiveInBlocks are now accurate. No more phi-defs are needed
558  // for these blocks, so we can color the live ranges.
559  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
560         E = LiveInBlocks.end(); I != E; ++I) {
561    if (!I->DomNode)
562      continue;
563    assert(I->Value && "No live-in value found");
564    MachineBasicBlock *MBB = I->DomNode->getBlock();
565    SlotIndex Start = LIS.getMBBStartIdx(MBB);
566    unsigned RegIdx = RegAssign.lookup(Start);
567    LiveInterval *LI = Edit->get(RegIdx);
568    LI->addRange(LiveRange(Start, I->Kill.isValid() ?
569                                  I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
570  }
571}
572
573VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
574                                   VNInfo *ParentVNI,
575                                   SlotIndex UseIdx,
576                                   MachineBasicBlock &MBB,
577                                   MachineBasicBlock::iterator I) {
578  MachineInstr *CopyMI = 0;
579  SlotIndex Def;
580  LiveInterval *LI = Edit->get(RegIdx);
581
582  // Attempt cheap-as-a-copy rematerialization.
583  LiveRangeEdit::Remat RM(ParentVNI);
584  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
585    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
586  } else {
587    // Can't remat, just insert a copy from parent.
588    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
589               .addReg(Edit->getReg());
590    Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
591  }
592
593  // Define the value in Reg.
594  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
595  VNI->setCopy(CopyMI);
596  return VNI;
597}
598
599/// Create a new virtual register and live interval.
600unsigned SplitEditor::openIntv() {
601  // Create the complement as index 0.
602  if (Edit->empty())
603    Edit->create(LIS, VRM);
604
605  // Create the open interval.
606  OpenIdx = Edit->size();
607  Edit->create(LIS, VRM);
608  return OpenIdx;
609}
610
611void SplitEditor::selectIntv(unsigned Idx) {
612  assert(Idx != 0 && "Cannot select the complement interval");
613  assert(Idx < Edit->size() && "Can only select previously opened interval");
614  OpenIdx = Idx;
615}
616
617SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
618  assert(OpenIdx && "openIntv not called before enterIntvBefore");
619  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
620  Idx = Idx.getBaseIndex();
621  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
622  if (!ParentVNI) {
623    DEBUG(dbgs() << ": not live\n");
624    return Idx;
625  }
626  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
627  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
628  assert(MI && "enterIntvBefore called with invalid index");
629
630  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
631  return VNI->def;
632}
633
634SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
635  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
636  SlotIndex End = LIS.getMBBEndIdx(&MBB);
637  SlotIndex Last = End.getPrevSlot();
638  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
639  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
640  if (!ParentVNI) {
641    DEBUG(dbgs() << ": not live\n");
642    return End;
643  }
644  DEBUG(dbgs() << ": valno " << ParentVNI->id);
645  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
646                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
647  RegAssign.insert(VNI->def, End, OpenIdx);
648  DEBUG(dump());
649  return VNI->def;
650}
651
652/// useIntv - indicate that all instructions in MBB should use OpenLI.
653void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
654  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
655}
656
657void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
658  assert(OpenIdx && "openIntv not called before useIntv");
659  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
660  RegAssign.insert(Start, End, OpenIdx);
661  DEBUG(dump());
662}
663
664SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
665  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
666  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
667
668  // The interval must be live beyond the instruction at Idx.
669  Idx = Idx.getBoundaryIndex();
670  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
671  if (!ParentVNI) {
672    DEBUG(dbgs() << ": not live\n");
673    return Idx.getNextSlot();
674  }
675  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
676
677  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
678  assert(MI && "No instruction at index");
679  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
680                              llvm::next(MachineBasicBlock::iterator(MI)));
681  return VNI->def;
682}
683
684SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
685  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
686  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
687
688  // The interval must be live into the instruction at Idx.
689  Idx = Idx.getBoundaryIndex();
690  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
691  if (!ParentVNI) {
692    DEBUG(dbgs() << ": not live\n");
693    return Idx.getNextSlot();
694  }
695  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
696
697  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
698  assert(MI && "No instruction at index");
699  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
700  return VNI->def;
701}
702
703SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
704  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
705  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
706  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
707
708  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
709  if (!ParentVNI) {
710    DEBUG(dbgs() << ": not live\n");
711    return Start;
712  }
713
714  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
715                              MBB.SkipPHIsAndLabels(MBB.begin()));
716  RegAssign.insert(Start, VNI->def, OpenIdx);
717  DEBUG(dump());
718  return VNI->def;
719}
720
721void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
722  assert(OpenIdx && "openIntv not called before overlapIntv");
723  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
724  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
725         "Parent changes value in extended range");
726  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
727         "Range cannot span basic blocks");
728
729  // The complement interval will be extended as needed by extendRange().
730  if (ParentVNI)
731    markComplexMapped(0, ParentVNI);
732  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
733  RegAssign.insert(Start, End, OpenIdx);
734  DEBUG(dump());
735}
736
737/// transferValues - Transfer all possible values to the new live ranges.
738/// Values that were rematerialized are left alone, they need extendRange().
739bool SplitEditor::transferValues() {
740  bool Skipped = false;
741  LiveInBlocks.clear();
742  RegAssignMap::const_iterator AssignI = RegAssign.begin();
743  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
744         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
745    DEBUG(dbgs() << "  blit " << *ParentI << ':');
746    VNInfo *ParentVNI = ParentI->valno;
747    // RegAssign has holes where RegIdx 0 should be used.
748    SlotIndex Start = ParentI->start;
749    AssignI.advanceTo(Start);
750    do {
751      unsigned RegIdx;
752      SlotIndex End = ParentI->end;
753      if (!AssignI.valid()) {
754        RegIdx = 0;
755      } else if (AssignI.start() <= Start) {
756        RegIdx = AssignI.value();
757        if (AssignI.stop() < End) {
758          End = AssignI.stop();
759          ++AssignI;
760        }
761      } else {
762        RegIdx = 0;
763        End = std::min(End, AssignI.start());
764      }
765
766      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
767      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
768      LiveInterval *LI = Edit->get(RegIdx);
769
770      // Check for a simply defined value that can be blitted directly.
771      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
772        DEBUG(dbgs() << ':' << VNI->id);
773        LI->addRange(LiveRange(Start, End, VNI));
774        Start = End;
775        continue;
776      }
777
778      // Skip rematerialized values, we need to use extendRange() and
779      // extendPHIKillRanges() to completely recompute the live ranges.
780      if (Edit->didRematerialize(ParentVNI)) {
781        DEBUG(dbgs() << "(remat)");
782        Skipped = true;
783        Start = End;
784        continue;
785      }
786
787      // Initialize the live-out cache the first time it is needed.
788      if (LiveOutSeen.empty()) {
789        unsigned N = VRM.getMachineFunction().getNumBlockIDs();
790        LiveOutSeen.resize(N);
791        LiveOutCache.resize(N);
792      }
793
794      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
795      // so the live range is accurate. Add live-in blocks in [Start;End) to the
796      // LiveInBlocks.
797      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
798      SlotIndex BlockStart, BlockEnd;
799      tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
800
801      // The first block may be live-in, or it may have its own def.
802      if (Start != BlockStart) {
803        VNInfo *VNI = LI->extendInBlock(BlockStart,
804                                        std::min(BlockEnd, End).getPrevSlot());
805        assert(VNI && "Missing def for complex mapped value");
806        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
807        // MBB has its own def. Is it also live-out?
808        if (BlockEnd <= End) {
809          LiveOutSeen.set(MBB->getNumber());
810          LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
811        }
812        // Skip to the next block for live-in.
813        ++MBB;
814        BlockStart = BlockEnd;
815      }
816
817      // Handle the live-in blocks covered by [Start;End).
818      assert(Start <= BlockStart && "Expected live-in block");
819      while (BlockStart < End) {
820        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
821        BlockEnd = LIS.getMBBEndIdx(MBB);
822        if (BlockStart == ParentVNI->def) {
823          // This block has the def of a parent PHI, so it isn't live-in.
824          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
825          VNInfo *VNI = LI->extendInBlock(BlockStart,
826                                         std::min(BlockEnd, End).getPrevSlot());
827          assert(VNI && "Missing def for complex mapped parent PHI");
828          if (End >= BlockEnd) {
829            // Live-out as well.
830            LiveOutSeen.set(MBB->getNumber());
831            LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
832          }
833        } else {
834          // This block needs a live-in value.
835          LiveInBlocks.push_back(MDT[MBB]);
836          // The last block covered may not be live-out.
837          if (End < BlockEnd)
838            LiveInBlocks.back().Kill = End;
839          else {
840            // Live-out, but we need updateSSA to tell us the value.
841            LiveOutSeen.set(MBB->getNumber());
842            LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
843                                            (MachineDomTreeNode*)0);
844          }
845        }
846        BlockStart = BlockEnd;
847        ++MBB;
848      }
849      Start = End;
850    } while (Start != ParentI->end);
851    DEBUG(dbgs() << '\n');
852  }
853
854  if (!LiveInBlocks.empty())
855    updateSSA();
856
857  return Skipped;
858}
859
860void SplitEditor::extendPHIKillRanges() {
861    // Extend live ranges to be live-out for successor PHI values.
862  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
863       E = Edit->getParent().vni_end(); I != E; ++I) {
864    const VNInfo *PHIVNI = *I;
865    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
866      continue;
867    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
868    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
869    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
870         PE = MBB->pred_end(); PI != PE; ++PI) {
871      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
872      // The predecessor may not have a live-out value. That is OK, like an
873      // undef PHI operand.
874      if (Edit->getParent().liveAt(End)) {
875        assert(RegAssign.lookup(End) == RegIdx &&
876               "Different register assignment in phi predecessor");
877        extendRange(RegIdx, End);
878      }
879    }
880  }
881}
882
883/// rewriteAssigned - Rewrite all uses of Edit->getReg().
884void SplitEditor::rewriteAssigned(bool ExtendRanges) {
885  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
886       RE = MRI.reg_end(); RI != RE;) {
887    MachineOperand &MO = RI.getOperand();
888    MachineInstr *MI = MO.getParent();
889    ++RI;
890    // LiveDebugVariables should have handled all DBG_VALUE instructions.
891    if (MI->isDebugValue()) {
892      DEBUG(dbgs() << "Zapping " << *MI);
893      MO.setReg(0);
894      continue;
895    }
896
897    // <undef> operands don't really read the register, so just assign them to
898    // the complement.
899    if (MO.isUse() && MO.isUndef()) {
900      MO.setReg(Edit->get(0)->reg);
901      continue;
902    }
903
904    SlotIndex Idx = LIS.getInstructionIndex(MI);
905    if (MO.isDef())
906      Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
907
908    // Rewrite to the mapped register at Idx.
909    unsigned RegIdx = RegAssign.lookup(Idx);
910    MO.setReg(Edit->get(RegIdx)->reg);
911    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
912                 << Idx << ':' << RegIdx << '\t' << *MI);
913
914    // Extend liveness to Idx if the instruction reads reg.
915    if (!ExtendRanges)
916      continue;
917
918    // Skip instructions that don't read Reg.
919    if (MO.isDef()) {
920      if (!MO.getSubReg() && !MO.isEarlyClobber())
921        continue;
922      // We may wan't to extend a live range for a partial redef, or for a use
923      // tied to an early clobber.
924      Idx = Idx.getPrevSlot();
925      if (!Edit->getParent().liveAt(Idx))
926        continue;
927    } else
928      Idx = Idx.getUseIndex();
929
930    extendRange(RegIdx, Idx);
931  }
932}
933
934void SplitEditor::deleteRematVictims() {
935  SmallVector<MachineInstr*, 8> Dead;
936  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
937    LiveInterval *LI = *I;
938    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
939           LII != LIE; ++LII) {
940      // Dead defs end at the store slot.
941      if (LII->end != LII->valno->def.getNextSlot())
942        continue;
943      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
944      assert(MI && "Missing instruction for dead def");
945      MI->addRegisterDead(LI->reg, &TRI);
946
947      if (!MI->allDefsAreDead())
948        continue;
949
950      DEBUG(dbgs() << "All defs dead: " << *MI);
951      Dead.push_back(MI);
952    }
953  }
954
955  if (Dead.empty())
956    return;
957
958  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
959}
960
961void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
962  ++NumFinished;
963
964  // At this point, the live intervals in Edit contain VNInfos corresponding to
965  // the inserted copies.
966
967  // Add the original defs from the parent interval.
968  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
969         E = Edit->getParent().vni_end(); I != E; ++I) {
970    const VNInfo *ParentVNI = *I;
971    if (ParentVNI->isUnused())
972      continue;
973    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
974    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
975    VNI->setIsPHIDef(ParentVNI->isPHIDef());
976    VNI->setCopy(ParentVNI->getCopy());
977
978    // Mark rematted values as complex everywhere to force liveness computation.
979    // The new live ranges may be truncated.
980    if (Edit->didRematerialize(ParentVNI))
981      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
982        markComplexMapped(i, ParentVNI);
983  }
984
985#ifndef NDEBUG
986  // Every new interval must have a def by now, otherwise the split is bogus.
987  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
988    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
989#endif
990
991  // Transfer the simply mapped values, check if any are skipped.
992  bool Skipped = transferValues();
993  if (Skipped)
994    extendPHIKillRanges();
995  else
996    ++NumSimple;
997
998  // Rewrite virtual registers, possibly extending ranges.
999  rewriteAssigned(Skipped);
1000
1001  // Delete defs that were rematted everywhere.
1002  if (Skipped)
1003    deleteRematVictims();
1004
1005  // Get rid of unused values and set phi-kill flags.
1006  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1007    (*I)->RenumberValues(LIS);
1008
1009  // Provide a reverse mapping from original indices to Edit ranges.
1010  if (LRMap) {
1011    LRMap->clear();
1012    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1013      LRMap->push_back(i);
1014  }
1015
1016  // Now check if any registers were separated into multiple components.
1017  ConnectedVNInfoEqClasses ConEQ(LIS);
1018  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1019    // Don't use iterators, they are invalidated by create() below.
1020    LiveInterval *li = Edit->get(i);
1021    unsigned NumComp = ConEQ.Classify(li);
1022    if (NumComp <= 1)
1023      continue;
1024    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1025    SmallVector<LiveInterval*, 8> dups;
1026    dups.push_back(li);
1027    for (unsigned j = 1; j != NumComp; ++j)
1028      dups.push_back(&Edit->create(LIS, VRM));
1029    ConEQ.Distribute(&dups[0], MRI);
1030    // The new intervals all map back to i.
1031    if (LRMap)
1032      LRMap->resize(Edit->size(), i);
1033  }
1034
1035  // Calculate spill weight and allocation hints for new intervals.
1036  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
1037
1038  assert(!LRMap || LRMap->size() == Edit->size());
1039}
1040
1041
1042//===----------------------------------------------------------------------===//
1043//                            Single Block Splitting
1044//===----------------------------------------------------------------------===//
1045
1046/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
1047/// may be an advantage to split CurLI for the duration of the block.
1048bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
1049  // If CurLI is local to one block, there is no point to splitting it.
1050  if (UseBlocks.size() <= 1)
1051    return false;
1052  // Add blocks with multiple uses.
1053  for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) {
1054    const BlockInfo &BI = UseBlocks[i];
1055    if (BI.FirstUse == BI.LastUse)
1056      continue;
1057    Blocks.insert(BI.MBB);
1058  }
1059  return !Blocks.empty();
1060}
1061
1062void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1063  openIntv();
1064  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1065  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
1066    LastSplitPoint));
1067  if (!BI.LiveOut || BI.LastUse < LastSplitPoint) {
1068    useIntv(SegStart, leaveIntvAfter(BI.LastUse));
1069  } else {
1070      // The last use is after the last valid split point.
1071    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1072    useIntv(SegStart, SegStop);
1073    overlapIntv(SegStop, BI.LastUse);
1074  }
1075}
1076
1077/// splitSingleBlocks - Split CurLI into a separate live interval inside each
1078/// basic block in Blocks.
1079void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
1080  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
1081  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks();
1082  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1083    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1084    if (Blocks.count(BI.MBB))
1085      splitSingleBlock(BI);
1086  }
1087  finish();
1088}
1089