SplitKit.cpp revision a9a3192baef28d49cc2cb1805048c11626ab3f21
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "splitter"
16#include "SplitKit.h"
17#include "VirtRegMap.h"
18#include "llvm/CodeGen/CalcSpillWeights.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineLoopInfo.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29
30using namespace llvm;
31
32static cl::opt<bool>
33AllowSplit("spiller-splits-edges",
34           cl::desc("Allow critical edge splitting during spilling"));
35
36//===----------------------------------------------------------------------===//
37//                                 Split Analysis
38//===----------------------------------------------------------------------===//
39
40SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
41                             const LiveIntervals &lis,
42                             const MachineLoopInfo &mli)
43  : mf_(mf),
44    lis_(lis),
45    loops_(mli),
46    tii_(*mf.getTarget().getInstrInfo()),
47    curli_(0) {}
48
49void SplitAnalysis::clear() {
50  usingInstrs_.clear();
51  usingBlocks_.clear();
52  usingLoops_.clear();
53  curli_ = 0;
54}
55
56bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
57  MachineBasicBlock *T, *F;
58  SmallVector<MachineOperand, 4> Cond;
59  return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
60}
61
62/// analyzeUses - Count instructions, basic blocks, and loops using curli.
63void SplitAnalysis::analyzeUses() {
64  const MachineRegisterInfo &MRI = mf_.getRegInfo();
65  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
66       MachineInstr *MI = I.skipInstruction();) {
67    if (MI->isDebugValue() || !usingInstrs_.insert(MI))
68      continue;
69    MachineBasicBlock *MBB = MI->getParent();
70    if (usingBlocks_[MBB]++)
71      continue;
72    if (MachineLoop *Loop = loops_.getLoopFor(MBB))
73      usingLoops_[Loop]++;
74  }
75  DEBUG(dbgs() << "  counted "
76               << usingInstrs_.size() << " instrs, "
77               << usingBlocks_.size() << " blocks, "
78               << usingLoops_.size()  << " loops.\n");
79}
80
81/// removeUse - Update statistics by noting that MI no longer uses curli.
82void SplitAnalysis::removeUse(const MachineInstr *MI) {
83  if (!usingInstrs_.erase(MI))
84    return;
85
86  // Decrement MBB count.
87  const MachineBasicBlock *MBB = MI->getParent();
88  BlockCountMap::iterator bi = usingBlocks_.find(MBB);
89  assert(bi != usingBlocks_.end() && "MBB missing");
90  assert(bi->second && "0 count in map");
91  if (--bi->second)
92    return;
93  // No more uses in MBB.
94  usingBlocks_.erase(bi);
95
96  // Decrement loop count.
97  MachineLoop *Loop = loops_.getLoopFor(MBB);
98  if (!Loop)
99    return;
100  LoopCountMap::iterator li = usingLoops_.find(Loop);
101  assert(li != usingLoops_.end() && "Loop missing");
102  assert(li->second && "0 count in map");
103  if (--li->second)
104    return;
105  // No more blocks in Loop.
106  usingLoops_.erase(li);
107}
108
109// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
110// predecessor blocks, and exit blocks.
111void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
112  Blocks.clear();
113
114  // Blocks in the loop.
115  Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
116
117  // Predecessor blocks.
118  const MachineBasicBlock *Header = Loop->getHeader();
119  for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
120       E = Header->pred_end(); I != E; ++I)
121    if (!Blocks.Loop.count(*I))
122      Blocks.Preds.insert(*I);
123
124  // Exit blocks.
125  for (MachineLoop::block_iterator I = Loop->block_begin(),
126       E = Loop->block_end(); I != E; ++I) {
127    const MachineBasicBlock *MBB = *I;
128    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
129       SE = MBB->succ_end(); SI != SE; ++SI)
130      if (!Blocks.Loop.count(*SI))
131        Blocks.Exits.insert(*SI);
132  }
133}
134
135/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
136/// and around the Loop.
137SplitAnalysis::LoopPeripheralUse SplitAnalysis::
138analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
139  LoopPeripheralUse use = ContainedInLoop;
140  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
141       I != E; ++I) {
142    const MachineBasicBlock *MBB = I->first;
143    // Is this a peripheral block?
144    if (use < MultiPeripheral &&
145        (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
146      if (I->second > 1) use = MultiPeripheral;
147      else               use = SinglePeripheral;
148      continue;
149    }
150    // Is it a loop block?
151    if (Blocks.Loop.count(MBB))
152      continue;
153    // It must be an unrelated block.
154    return OutsideLoop;
155  }
156  return use;
157}
158
159/// getCriticalExits - It may be necessary to partially break critical edges
160/// leaving the loop if an exit block has phi uses of curli. Collect the exit
161/// blocks that need special treatment into CriticalExits.
162void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
163                                     BlockPtrSet &CriticalExits) {
164  CriticalExits.clear();
165
166  // A critical exit block contains a phi def of curli, and has a predecessor
167  // that is not in the loop nor a loop predecessor.
168  // For such an exit block, the edges carrying the new variable must be moved
169  // to a new pre-exit block.
170  for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
171       I != E; ++I) {
172    const MachineBasicBlock *Succ = *I;
173    SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ);
174    VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx);
175    // This exit may not have curli live in at all. No need to split.
176    if (!SuccVNI)
177      continue;
178    // If this is not a PHI def, it is either using a value from before the
179    // loop, or a value defined inside the loop. Both are safe.
180    if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx)
181      continue;
182    // This exit block does have a PHI. Does it also have a predecessor that is
183    // not a loop block or loop predecessor?
184    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
185         PE = Succ->pred_end(); PI != PE; ++PI) {
186      const MachineBasicBlock *Pred = *PI;
187      if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
188        continue;
189      // This is a critical exit block, and we need to split the exit edge.
190      CriticalExits.insert(Succ);
191      break;
192    }
193  }
194}
195
196/// canSplitCriticalExits - Return true if it is possible to insert new exit
197/// blocks before the blocks in CriticalExits.
198bool
199SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
200                                     BlockPtrSet &CriticalExits) {
201  // If we don't allow critical edge splitting, require no critical exits.
202  if (!AllowSplit)
203    return CriticalExits.empty();
204
205  for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
206       I != E; ++I) {
207    const MachineBasicBlock *Succ = *I;
208    // We want to insert a new pre-exit MBB before Succ, and change all the
209    // in-loop blocks to branch to the pre-exit instead of Succ.
210    // Check that all the in-loop predecessors can be changed.
211    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
212         PE = Succ->pred_end(); PI != PE; ++PI) {
213      const MachineBasicBlock *Pred = *PI;
214      // The external predecessors won't be altered.
215      if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
216        continue;
217      if (!canAnalyzeBranch(Pred))
218        return false;
219    }
220
221    // If Succ's layout predecessor falls through, that too must be analyzable.
222    // We need to insert the pre-exit block in the gap.
223    MachineFunction::const_iterator MFI = Succ;
224    if (MFI == mf_.begin())
225      continue;
226    if (!canAnalyzeBranch(--MFI))
227      return false;
228  }
229  // No problems found.
230  return true;
231}
232
233void SplitAnalysis::analyze(const LiveInterval *li) {
234  clear();
235  curli_ = li;
236  analyzeUses();
237}
238
239const MachineLoop *SplitAnalysis::getBestSplitLoop() {
240  assert(curli_ && "Call analyze() before getBestSplitLoop");
241  if (usingLoops_.empty())
242    return 0;
243
244  LoopPtrSet Loops, SecondLoops;
245  LoopBlocks Blocks;
246  BlockPtrSet CriticalExits;
247
248  // Find first-class and second class candidate loops.
249  // We prefer to split around loops where curli is used outside the periphery.
250  for (LoopCountMap::const_iterator I = usingLoops_.begin(),
251       E = usingLoops_.end(); I != E; ++I) {
252    const MachineLoop *Loop = I->first;
253    getLoopBlocks(Loop, Blocks);
254
255    // FIXME: We need an SSA updater to properly handle multiple exit blocks.
256    if (Blocks.Exits.size() > 1) {
257      DEBUG(dbgs() << "  multiple exits from " << *Loop);
258      continue;
259    }
260
261    LoopPtrSet *LPS = 0;
262    switch(analyzeLoopPeripheralUse(Blocks)) {
263    case OutsideLoop:
264      LPS = &Loops;
265      break;
266    case MultiPeripheral:
267      LPS = &SecondLoops;
268      break;
269    case ContainedInLoop:
270      DEBUG(dbgs() << "  contained in " << *Loop);
271      continue;
272    case SinglePeripheral:
273      DEBUG(dbgs() << "  single peripheral use in " << *Loop);
274      continue;
275    }
276    // Will it be possible to split around this loop?
277    getCriticalExits(Blocks, CriticalExits);
278    DEBUG(dbgs() << "  " << CriticalExits.size() << " critical exits from "
279                 << *Loop);
280    if (!canSplitCriticalExits(Blocks, CriticalExits))
281      continue;
282    // This is a possible split.
283    assert(LPS);
284    LPS->insert(Loop);
285  }
286
287  DEBUG(dbgs() << "  getBestSplitLoop found " << Loops.size() << " + "
288               << SecondLoops.size() << " candidate loops.\n");
289
290  // If there are no first class loops available, look at second class loops.
291  if (Loops.empty())
292    Loops = SecondLoops;
293
294  if (Loops.empty())
295    return 0;
296
297  // Pick the earliest loop.
298  // FIXME: Are there other heuristics to consider?
299  const MachineLoop *Best = 0;
300  SlotIndex BestIdx;
301  for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
302       ++I) {
303    SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
304    if (!Best || Idx < BestIdx)
305      Best = *I, BestIdx = Idx;
306  }
307  DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
308  return Best;
309}
310
311/// getMultiUseBlocks - if curli has more than one use in a basic block, it
312/// may be an advantage to split curli for the duration of the block.
313bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
314  // If curli is local to one block, there is no point to splitting it.
315  if (usingBlocks_.size() <= 1)
316    return false;
317  // Add blocks with multiple uses.
318  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
319       I != E; ++I)
320    switch (I->second) {
321    case 0:
322    case 1:
323      continue;
324    case 2: {
325      // It doesn't pay to split a 2-instr block if it redefines curli.
326      VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first));
327      VNInfo *VN2 =
328        curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex());
329      // live-in and live-out with a different value.
330      if (VN1 && VN2 && VN1 != VN2)
331        continue;
332    } // Fall through.
333    default:
334      Blocks.insert(I->first);
335    }
336  return !Blocks.empty();
337}
338
339//===----------------------------------------------------------------------===//
340//                               LiveIntervalMap
341//===----------------------------------------------------------------------===//
342
343// defValue - Introduce a li_ def for ParentVNI that could be later than
344// ParentVNI->def.
345VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
346  assert(ParentVNI && "Mapping  NULL value");
347  assert(Idx.isValid() && "Invalid SlotIndex");
348  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
349
350  // Is this a simple 1-1 mapping? Not likely.
351  if (Idx == ParentVNI->def)
352    return mapValue(ParentVNI, Idx);
353
354  // This is a complex def. Mark with a NULL in valueMap.
355  VNInfo *OldVNI =
356    valueMap_.insert(ValueMap::value_type(ParentVNI, 0)).first->second;
357  (void)OldVNI;
358  assert(OldVNI == 0 && "Simple/Complex values mixed");
359
360  // Should we insert a minimal snippet of VNI LiveRange, or can we count on
361  // callers to do that? We need it for lookups of complex values.
362  VNInfo *VNI = li_.getNextValue(Idx, 0, true, lis_.getVNInfoAllocator());
363  return VNI;
364}
365
366// mapValue - Find the mapped value for ParentVNI at Idx.
367// Potentially create phi-def values.
368VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx) {
369  assert(ParentVNI && "Mapping  NULL value");
370  assert(Idx.isValid() && "Invalid SlotIndex");
371  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
372
373  // Use insert for lookup, so we can add missing values with a second lookup.
374  std::pair<ValueMap::iterator,bool> InsP =
375    valueMap_.insert(ValueMap::value_type(ParentVNI, 0));
376
377  // This was an unknown value. Create a simple mapping.
378  if (InsP.second)
379    return InsP.first->second = li_.createValueCopy(ParentVNI,
380                                                    lis_.getVNInfoAllocator());
381  // This was a simple mapped value.
382  if (InsP.first->second)
383    return InsP.first->second;
384
385  // This is a complex mapped value. There may be multiple defs, and we may need
386  // to create phi-defs.
387  MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
388  assert(IdxMBB && "No MBB at Idx");
389
390  // Is there a def in the same MBB we can extend?
391  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
392    return VNI;
393
394  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
395  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
396  // Perform a depth-first search for predecessor blocks where we know the
397  // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
398
399  // Track MBBs where we have created or learned the dominating value.
400  // This may change during the DFS as we create new phi-defs.
401  typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
402  MBBValueMap DomValue;
403
404  for (idf_iterator<MachineBasicBlock*>
405         IDFI = idf_begin(IdxMBB),
406         IDFE = idf_end(IdxMBB); IDFI != IDFE;) {
407    MachineBasicBlock *MBB = *IDFI;
408    SlotIndex End = lis_.getMBBEndIdx(MBB);
409
410    // We are operating on the restricted CFG where ParentVNI is live.
411    if (parentli_.getVNInfoAt(End.getPrevSlot()) != ParentVNI) {
412      IDFI.skipChildren();
413      continue;
414    }
415
416    // Do we have a dominating value in this block?
417    VNInfo *VNI = extendTo(MBB, End);
418    if (!VNI) {
419      ++IDFI;
420      continue;
421    }
422
423    // Yes, VNI dominates MBB. Track the path back to IdxMBB, creating phi-defs
424    // as needed along the way.
425    for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
426      // Start from MBB's immediate successor.
427      MachineBasicBlock *Succ = IDFI.getPath(PI-1);
428      std::pair<MBBValueMap::iterator, bool> InsP =
429        DomValue.insert(MBBValueMap::value_type(Succ, VNI));
430      SlotIndex Start = lis_.getMBBStartIdx(Succ);
431      if (InsP.second) {
432        // This is the first time we backtrack to Succ. Verify dominance.
433        if (Succ->pred_size() == 1 || dt_.dominates(MBB, Succ))
434          continue;
435      } else if (InsP.first->second == VNI ||
436                 InsP.first->second->def == Start) {
437        // We have previously backtracked VNI to Succ, or Succ already has a
438        // phi-def. No need to backtrack further.
439        break;
440      }
441      // VNI does not dominate Succ, we need a new phi-def.
442      VNI = li_.getNextValue(Start, 0, true, lis_.getVNInfoAllocator());
443      VNI->setIsPHIDef(true);
444      InsP.first->second = VNI;
445      MBB = Succ;
446    }
447
448    // No need to search the children, we found a dominating value.
449    // MBB is either the found dominating value, or the last phi-def we created.
450    // Either way, the children of MBB would be shadowed, so don't search them.
451    IDFI.skipChildren(MBB);
452  }
453
454  // The search should at least find a dominating value for IdxMBB.
455  assert(!DomValue.empty() && "Couldn't find a reaching definition");
456
457  // Since we went through the trouble of a full DFS visiting all reaching defs,
458  // the values in DomValue are now accurate. No more phi-defs are needed for
459  // these blocks, so we can color the live ranges.
460  // This makes the next mapValue call much faster.
461  VNInfo *IdxVNI = 0;
462  for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
463       ++I) {
464     MachineBasicBlock *MBB = I->first;
465     VNInfo *VNI = I->second;
466     SlotIndex Start = lis_.getMBBStartIdx(MBB);
467     if (MBB == IdxMBB) {
468       // Don't add full liveness to IdxMBB, stop at Idx.
469       if (Start != Idx)
470         li_.addRange(LiveRange(Start, Idx, VNI));
471       IdxVNI = VNI;
472     } else
473      li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
474  }
475
476  assert(IdxVNI && "Didn't find value for Idx");
477  return IdxVNI;
478}
479
480// extendTo - Find the last li_ value defined in MBB at or before Idx. The
481// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
482// Return the found VNInfo, or NULL.
483VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) {
484  LiveInterval::iterator I = std::upper_bound(li_.begin(), li_.end(), Idx);
485  if (I == li_.begin())
486    return 0;
487  --I;
488  if (I->start < lis_.getMBBStartIdx(MBB))
489    return 0;
490  if (I->end < Idx)
491    I->end = Idx;
492  return I->valno;
493}
494
495// addSimpleRange - Add a simple range from parentli_ to li_.
496// ParentVNI must be live in the [Start;End) interval.
497void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
498                                     const VNInfo *ParentVNI) {
499  VNInfo *VNI = mapValue(ParentVNI, Start);
500  // A simple mappoing is easy.
501  if (VNI->def == ParentVNI->def) {
502    li_.addRange(LiveRange(Start, End, VNI));
503    return;
504  }
505
506  // ParentVNI is a complex value. We must map per MBB.
507  MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
508  MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End);
509
510  if (MBB == MBBE) {
511    li_.addRange(LiveRange(Start, End, VNI));
512    return;
513  }
514
515  // First block.
516  li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
517
518  // Run sequence of full blocks.
519  for (++MBB; MBB != MBBE; ++MBB) {
520    Start = lis_.getMBBStartIdx(MBB);
521    li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
522                           mapValue(ParentVNI, Start)));
523  }
524
525  // Final block.
526  Start = lis_.getMBBStartIdx(MBB);
527  if (Start != End)
528    li_.addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
529}
530
531/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
532/// All needed values whose def is not inside [Start;End) must be defined
533/// beforehand so mapValue will work.
534void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
535  LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
536  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
537
538  // Check if --I begins before Start and overlaps.
539  if (I != B) {
540    --I;
541    if (I->end > Start)
542      addSimpleRange(Start, std::min(End, I->end), I->valno);
543    ++I;
544  }
545
546  // The remaining ranges begin after Start.
547  for (;I != E && I->start < End; ++I)
548    addSimpleRange(I->start, std::min(End, I->end), I->valno);
549}
550
551//===----------------------------------------------------------------------===//
552//                               Split Editor
553//===----------------------------------------------------------------------===//
554
555/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
556SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
557                         SmallVectorImpl<LiveInterval*> &intervals)
558  : sa_(sa), lis_(lis), vrm_(vrm),
559    mri_(vrm.getMachineFunction().getRegInfo()),
560    tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
561    curli_(sa_.getCurLI()),
562    dupli_(0), openli_(0),
563    intervals_(intervals),
564    firstInterval(intervals_.size())
565{
566  assert(curli_ && "SplitEditor created from empty SplitAnalysis");
567
568  // Make sure curli_ is assigned a stack slot, so all our intervals get the
569  // same slot as curli_.
570  if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT)
571    vrm_.assignVirt2StackSlot(curli_->reg);
572
573}
574
575LiveInterval *SplitEditor::createInterval() {
576  unsigned curli = sa_.getCurLI()->reg;
577  unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli));
578  LiveInterval &Intv = lis_.getOrCreateInterval(Reg);
579  vrm_.grow();
580  vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli));
581  return &Intv;
582}
583
584LiveInterval *SplitEditor::getDupLI() {
585  if (!dupli_) {
586    // Create an interval for dupli that is a copy of curli.
587    dupli_ = createInterval();
588    dupli_->Copy(*curli_, &mri_, lis_.getVNInfoAllocator());
589  }
590  return dupli_;
591}
592
593VNInfo *SplitEditor::mapValue(const VNInfo *curliVNI) {
594  VNInfo *&VNI = valueMap_[curliVNI];
595  if (!VNI)
596    VNI = openli_->createValueCopy(curliVNI, lis_.getVNInfoAllocator());
597  return VNI;
598}
599
600/// Insert a COPY instruction curli -> li. Allocate a new value from li
601/// defined by the COPY. Note that rewrite() will deal with the curli
602/// register, so this function can be used to copy from any interval - openli,
603/// curli, or dupli.
604VNInfo *SplitEditor::insertCopy(LiveInterval &LI,
605                                MachineBasicBlock &MBB,
606                                MachineBasicBlock::iterator I) {
607  MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY),
608                             LI.reg).addReg(curli_->reg);
609  SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
610  return LI.getNextValue(DefIdx, MI, true, lis_.getVNInfoAllocator());
611}
612
613/// Create a new virtual register and live interval.
614void SplitEditor::openIntv() {
615  assert(!openli_ && "Previous LI not closed before openIntv");
616  openli_ = createInterval();
617  intervals_.push_back(openli_);
618  liveThrough_ = false;
619}
620
621/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
622/// not live before Idx, a COPY is not inserted.
623void SplitEditor::enterIntvBefore(SlotIndex Idx) {
624  assert(openli_ && "openIntv not called before enterIntvBefore");
625
626  // Copy from curli_ if it is live.
627  if (VNInfo *CurVNI = curli_->getVNInfoAt(Idx.getUseIndex())) {
628    MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
629    assert(MI && "enterIntvBefore called with invalid index");
630    VNInfo *VNI = insertCopy(*openli_, *MI->getParent(), MI);
631    openli_->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
632
633    // Make sure CurVNI is properly mapped.
634    VNInfo *&mapVNI = valueMap_[CurVNI];
635    // We dont have SSA update yet, so only one entry per value is allowed.
636    assert(!mapVNI && "enterIntvBefore called more than once for the same value");
637    mapVNI = VNI;
638  }
639  DEBUG(dbgs() << "    enterIntvBefore " << Idx << ": " << *openli_ << '\n');
640}
641
642/// enterIntvAtEnd - Enter openli at the end of MBB.
643/// PhiMBB is a successor inside openli where a PHI value is created.
644/// Currently, all entries must share the same PhiMBB.
645void SplitEditor::enterIntvAtEnd(MachineBasicBlock &A, MachineBasicBlock &B) {
646  assert(openli_ && "openIntv not called before enterIntvAtEnd");
647
648  SlotIndex EndA = lis_.getMBBEndIdx(&A);
649  VNInfo *CurVNIA = curli_->getVNInfoAt(EndA.getPrevIndex());
650  if (!CurVNIA) {
651    DEBUG(dbgs() << "    enterIntvAtEnd, curli not live out of BB#"
652                 << A.getNumber() << ".\n");
653    return;
654  }
655
656  // Add a phi kill value and live range out of A.
657  VNInfo *VNIA = insertCopy(*openli_, A, A.getFirstTerminator());
658  openli_->addRange(LiveRange(VNIA->def, EndA, VNIA));
659
660  // FIXME: If this is the only entry edge, we don't need the extra PHI value.
661  // FIXME: If there are multiple entry blocks (so not a loop), we need proper
662  // SSA update.
663
664  // Now look at the start of B.
665  SlotIndex StartB = lis_.getMBBStartIdx(&B);
666  SlotIndex EndB = lis_.getMBBEndIdx(&B);
667  const LiveRange *CurB = curli_->getLiveRangeContaining(StartB);
668  if (!CurB) {
669    DEBUG(dbgs() << "    enterIntvAtEnd: curli not live in to BB#"
670                 << B.getNumber() << ".\n");
671    return;
672  }
673
674  VNInfo *VNIB = openli_->getVNInfoAt(StartB);
675  if (!VNIB) {
676    // Create a phi value.
677    VNIB = openli_->getNextValue(SlotIndex(StartB, true), 0, false,
678                                 lis_.getVNInfoAllocator());
679    VNIB->setIsPHIDef(true);
680    VNInfo *&mapVNI = valueMap_[CurB->valno];
681    if (mapVNI) {
682      // Multiple copies - must create PHI value.
683      abort();
684    } else {
685      // This is the first copy of dupLR. Mark the mapping.
686      mapVNI = VNIB;
687    }
688
689  }
690
691  DEBUG(dbgs() << "    enterIntvAtEnd: " << *openli_ << '\n');
692}
693
694/// useIntv - indicate that all instructions in MBB should use openli.
695void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
696  useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
697}
698
699void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
700  assert(openli_ && "openIntv not called before useIntv");
701
702  // Map the curli values from the interval into openli_
703  LiveInterval::const_iterator B = curli_->begin(), E = curli_->end();
704  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
705
706  if (I != B) {
707    --I;
708    // I begins before Start, but overlaps.
709    if (I->end > Start)
710      openli_->addRange(LiveRange(Start, std::min(End, I->end),
711                        mapValue(I->valno)));
712    ++I;
713  }
714
715  // The remaining ranges begin after Start.
716  for (;I != E && I->start < End; ++I)
717    openli_->addRange(LiveRange(I->start, std::min(End, I->end),
718                                mapValue(I->valno)));
719  DEBUG(dbgs() << "    use [" << Start << ';' << End << "): " << *openli_
720               << '\n');
721}
722
723/// leaveIntvAfter - Leave openli after the instruction at Idx.
724void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
725  assert(openli_ && "openIntv not called before leaveIntvAfter");
726
727  const LiveRange *CurLR = curli_->getLiveRangeContaining(Idx.getDefIndex());
728  if (!CurLR || CurLR->end <= Idx.getBoundaryIndex()) {
729    DEBUG(dbgs() << "    leaveIntvAfter " << Idx << ": not live\n");
730    return;
731  }
732
733  // Was this value of curli live through openli?
734  if (!openli_->liveAt(CurLR->valno->def)) {
735    DEBUG(dbgs() << "    leaveIntvAfter " << Idx << ": using external value\n");
736    liveThrough_ = true;
737    return;
738  }
739
740  // We are going to insert a back copy, so we must have a dupli_.
741  LiveRange *DupLR = getDupLI()->getLiveRangeContaining(Idx.getDefIndex());
742  assert(DupLR && "dupli not live into black, but curli is?");
743
744  // Insert the COPY instruction.
745  MachineBasicBlock::iterator I = lis_.getInstructionFromIndex(Idx);
746  MachineInstr *MI = BuildMI(*I->getParent(), llvm::next(I), I->getDebugLoc(),
747                             tii_.get(TargetOpcode::COPY), dupli_->reg)
748                       .addReg(openli_->reg);
749  SlotIndex CopyIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
750  openli_->addRange(LiveRange(Idx.getDefIndex(), CopyIdx,
751                    mapValue(CurLR->valno)));
752  DupLR->valno->def = CopyIdx;
753  DEBUG(dbgs() << "    leaveIntvAfter " << Idx << ": " << *openli_ << '\n');
754}
755
756/// leaveIntvAtTop - Leave the interval at the top of MBB.
757/// Currently, only one value can leave the interval.
758void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
759  assert(openli_ && "openIntv not called before leaveIntvAtTop");
760
761  SlotIndex Start = lis_.getMBBStartIdx(&MBB);
762  const LiveRange *CurLR = curli_->getLiveRangeContaining(Start);
763
764  // Is curli even live-in to MBB?
765  if (!CurLR) {
766    DEBUG(dbgs() << "    leaveIntvAtTop at " << Start << ": not live\n");
767    return;
768  }
769
770  // Is curli defined by PHI at the beginning of MBB?
771  bool isPHIDef = CurLR->valno->isPHIDef() &&
772                  CurLR->valno->def.getBaseIndex() == Start;
773
774  // If MBB is using a value of curli that was defined outside the openli range,
775  // we don't want to copy it back here.
776  if (!isPHIDef && !openli_->liveAt(CurLR->valno->def)) {
777    DEBUG(dbgs() << "    leaveIntvAtTop at " << Start
778                 << ": using external value\n");
779    liveThrough_ = true;
780    return;
781  }
782
783  // We are going to insert a back copy, so we must have a dupli_.
784  LiveRange *DupLR = getDupLI()->getLiveRangeContaining(Start);
785  assert(DupLR && "dupli not live into black, but curli is?");
786
787  // Insert the COPY instruction.
788  MachineInstr *MI = BuildMI(MBB, MBB.begin(), DebugLoc(),
789                             tii_.get(TargetOpcode::COPY), dupli_->reg)
790                       .addReg(openli_->reg);
791  SlotIndex Idx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
792
793  // Adjust dupli and openli values.
794  if (isPHIDef) {
795    // dupli was already a PHI on entry to MBB. Simply insert an openli PHI,
796    // and shift the dupli def down to the COPY.
797    VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false,
798                                        lis_.getVNInfoAllocator());
799    VNI->setIsPHIDef(true);
800    openli_->addRange(LiveRange(VNI->def, Idx, VNI));
801
802    dupli_->removeRange(Start, Idx);
803    DupLR->valno->def = Idx;
804    DupLR->valno->setIsPHIDef(false);
805  } else {
806    // The dupli value was defined somewhere inside the openli range.
807    DEBUG(dbgs() << "    leaveIntvAtTop source value defined at "
808                 << DupLR->valno->def << "\n");
809    // FIXME: We may not need a PHI here if all predecessors have the same
810    // value.
811    VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false,
812                                        lis_.getVNInfoAllocator());
813    VNI->setIsPHIDef(true);
814    openli_->addRange(LiveRange(VNI->def, Idx, VNI));
815
816    // FIXME: What if DupLR->valno is used by multiple exits? SSA Update.
817
818    // closeIntv is going to remove the superfluous live ranges.
819    DupLR->valno->def = Idx;
820    DupLR->valno->setIsPHIDef(false);
821  }
822
823  DEBUG(dbgs() << "    leaveIntvAtTop at " << Idx << ": " << *openli_ << '\n');
824}
825
826/// closeIntv - Indicate that we are done editing the currently open
827/// LiveInterval, and ranges can be trimmed.
828void SplitEditor::closeIntv() {
829  assert(openli_ && "openIntv not called before closeIntv");
830
831  DEBUG(dbgs() << "    closeIntv cleaning up\n");
832  DEBUG(dbgs() << "    open " << *openli_ << '\n');
833
834  if (liveThrough_) {
835    DEBUG(dbgs() << "    value live through region, leaving dupli as is.\n");
836  } else {
837    // live out with copies inserted, or killed by region. Either way we need to
838    // remove the overlapping region from dupli.
839    getDupLI();
840    for (LiveInterval::iterator I = openli_->begin(), E = openli_->end();
841         I != E; ++I) {
842      dupli_->removeRange(I->start, I->end);
843    }
844    // FIXME: A block branching to the entry block may also branch elsewhere
845    // curli is live. We need both openli and curli to be live in that case.
846    DEBUG(dbgs() << "    dup2 " << *dupli_ << '\n');
847  }
848  openli_ = 0;
849  valueMap_.clear();
850}
851
852/// rewrite - after all the new live ranges have been created, rewrite
853/// instructions using curli to use the new intervals.
854void SplitEditor::rewrite() {
855  assert(!openli_ && "Previous LI not closed before rewrite");
856  const LiveInterval *curli = sa_.getCurLI();
857  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg),
858       RE = mri_.reg_end(); RI != RE;) {
859    MachineOperand &MO = RI.getOperand();
860    MachineInstr *MI = MO.getParent();
861    ++RI;
862    if (MI->isDebugValue()) {
863      DEBUG(dbgs() << "Zapping " << *MI);
864      // FIXME: We can do much better with debug values.
865      MO.setReg(0);
866      continue;
867    }
868    SlotIndex Idx = lis_.getInstructionIndex(MI);
869    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
870    LiveInterval *LI = dupli_;
871    for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
872      LiveInterval *testli = intervals_[i];
873      if (testli->liveAt(Idx)) {
874        LI = testli;
875        break;
876      }
877    }
878    if (LI) {
879      MO.setReg(LI->reg);
880      sa_.removeUse(MI);
881      DEBUG(dbgs() << "  rewrite " << Idx << '\t' << *MI);
882    }
883  }
884
885  // dupli_ goes in last, after rewriting.
886  if (dupli_) {
887    if (dupli_->empty()) {
888      DEBUG(dbgs() << "  dupli became empty?\n");
889      lis_.removeInterval(dupli_->reg);
890      dupli_ = 0;
891    } else {
892      dupli_->RenumberValues(lis_);
893      intervals_.push_back(dupli_);
894    }
895  }
896
897  // Calculate spill weight and allocation hints for new intervals.
898  VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
899  for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
900    LiveInterval &li = *intervals_[i];
901    vrai.CalculateRegClass(li.reg);
902    vrai.CalculateWeightAndHint(li);
903    DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
904                 << ":" << li << '\n');
905  }
906}
907
908
909//===----------------------------------------------------------------------===//
910//                               Loop Splitting
911//===----------------------------------------------------------------------===//
912
913bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
914  SplitAnalysis::LoopBlocks Blocks;
915  sa_.getLoopBlocks(Loop, Blocks);
916
917  // Break critical edges as needed.
918  SplitAnalysis::BlockPtrSet CriticalExits;
919  sa_.getCriticalExits(Blocks, CriticalExits);
920  assert(CriticalExits.empty() && "Cannot break critical exits yet");
921
922  // Create new live interval for the loop.
923  openIntv();
924
925  // Insert copies in the predecessors.
926  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
927       E = Blocks.Preds.end(); I != E; ++I) {
928    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
929    enterIntvAtEnd(MBB, *Loop->getHeader());
930  }
931
932  // Switch all loop blocks.
933  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
934       E = Blocks.Loop.end(); I != E; ++I)
935     useIntv(**I);
936
937  // Insert back copies in the exit blocks.
938  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
939       E = Blocks.Exits.end(); I != E; ++I) {
940    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
941    leaveIntvAtTop(MBB);
942  }
943
944  // Done.
945  closeIntv();
946  rewrite();
947  return dupli_;
948}
949
950
951//===----------------------------------------------------------------------===//
952//                            Single Block Splitting
953//===----------------------------------------------------------------------===//
954
955/// splitSingleBlocks - Split curli into a separate live interval inside each
956/// basic block in Blocks. Return true if curli has been completely replaced,
957/// false if curli is still intact, and needs to be spilled or split further.
958bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
959  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
960  // Determine the first and last instruction using curli in each block.
961  typedef std::pair<SlotIndex,SlotIndex> IndexPair;
962  typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
963  IndexPairMap MBBRange;
964  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
965       E = sa_.usingInstrs_.end(); I != E; ++I) {
966    const MachineBasicBlock *MBB = (*I)->getParent();
967    if (!Blocks.count(MBB))
968      continue;
969    SlotIndex Idx = lis_.getInstructionIndex(*I);
970    DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
971    IndexPair &IP = MBBRange[MBB];
972    if (!IP.first.isValid() || Idx < IP.first)
973      IP.first = Idx;
974    if (!IP.second.isValid() || Idx > IP.second)
975      IP.second = Idx;
976  }
977
978  // Create a new interval for each block.
979  for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
980       E = Blocks.end(); I != E; ++I) {
981    IndexPair &IP = MBBRange[*I];
982    DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
983                 << IP.first << ';' << IP.second << ")\n");
984    assert(IP.first.isValid() && IP.second.isValid());
985
986    openIntv();
987    enterIntvBefore(IP.first);
988    useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
989    leaveIntvAfter(IP.second);
990    closeIntv();
991  }
992  rewrite();
993  return dupli_;
994}
995
996
997//===----------------------------------------------------------------------===//
998//                            Sub Block Splitting
999//===----------------------------------------------------------------------===//
1000
1001/// getBlockForInsideSplit - If curli is contained inside a single basic block,
1002/// and it wou pay to subdivide the interval inside that block, return it.
1003/// Otherwise return NULL. The returned block can be passed to
1004/// SplitEditor::splitInsideBlock.
1005const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
1006  // The interval must be exclusive to one block.
1007  if (usingBlocks_.size() != 1)
1008    return 0;
1009  // Don't to this for less than 4 instructions. We want to be sure that
1010  // splitting actually reduces the instruction count per interval.
1011  if (usingInstrs_.size() < 4)
1012    return 0;
1013  return usingBlocks_.begin()->first;
1014}
1015
1016/// splitInsideBlock - Split curli into multiple intervals inside MBB. Return
1017/// true if curli has been completely replaced, false if curli is still
1018/// intact, and needs to be spilled or split further.
1019bool SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1020  SmallVector<SlotIndex, 32> Uses;
1021  Uses.reserve(sa_.usingInstrs_.size());
1022  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1023       E = sa_.usingInstrs_.end(); I != E; ++I)
1024    if ((*I)->getParent() == MBB)
1025      Uses.push_back(lis_.getInstructionIndex(*I));
1026  DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1027               << Uses.size() << " instructions.\n");
1028  assert(Uses.size() >= 3 && "Need at least 3 instructions");
1029  array_pod_sort(Uses.begin(), Uses.end());
1030
1031  // Simple algorithm: Find the largest gap between uses as determined by slot
1032  // indices. Create new intervals for instructions before the gap and after the
1033  // gap.
1034  unsigned bestPos = 0;
1035  int bestGap = 0;
1036  DEBUG(dbgs() << "    dist (" << Uses[0]);
1037  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1038    int g = Uses[i-1].distance(Uses[i]);
1039    DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1040    if (g > bestGap)
1041      bestPos = i, bestGap = g;
1042  }
1043  DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1044
1045  // bestPos points to the first use after the best gap.
1046  assert(bestPos > 0 && "Invalid gap");
1047
1048  // FIXME: Don't create intervals for low densities.
1049
1050  // First interval before the gap. Don't create single-instr intervals.
1051  if (bestPos > 1) {
1052    openIntv();
1053    enterIntvBefore(Uses.front());
1054    useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
1055    leaveIntvAfter(Uses[bestPos-1]);
1056    closeIntv();
1057  }
1058
1059  // Second interval after the gap.
1060  if (bestPos < Uses.size()-1) {
1061    openIntv();
1062    enterIntvBefore(Uses[bestPos]);
1063    useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
1064    leaveIntvAfter(Uses.back());
1065    closeIntv();
1066  }
1067
1068  rewrite();
1069  return dupli_;
1070}
1071