SplitKit.cpp revision b5fa9333431673aac2ced8dea80152349a85cf6f
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/CodeGen/CalcSpillWeights.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30
31using namespace llvm;
32
33static cl::opt<bool>
34AllowSplit("spiller-splits-edges",
35           cl::desc("Allow critical edge splitting during spilling"));
36
37//===----------------------------------------------------------------------===//
38//                                 Split Analysis
39//===----------------------------------------------------------------------===//
40
41SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
42                             const LiveIntervals &lis,
43                             const MachineLoopInfo &mli)
44  : mf_(mf),
45    lis_(lis),
46    loops_(mli),
47    tii_(*mf.getTarget().getInstrInfo()),
48    curli_(0) {}
49
50void SplitAnalysis::clear() {
51  UseSlots.clear();
52  usingInstrs_.clear();
53  usingBlocks_.clear();
54  usingLoops_.clear();
55  curli_ = 0;
56}
57
58bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
59  MachineBasicBlock *T, *F;
60  SmallVector<MachineOperand, 4> Cond;
61  return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
62}
63
64/// analyzeUses - Count instructions, basic blocks, and loops using curli.
65void SplitAnalysis::analyzeUses() {
66  const MachineRegisterInfo &MRI = mf_.getRegInfo();
67  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
68       MachineInstr *MI = I.skipInstruction();) {
69    if (MI->isDebugValue() || !usingInstrs_.insert(MI))
70      continue;
71    UseSlots.push_back(lis_.getInstructionIndex(MI).getDefIndex());
72    MachineBasicBlock *MBB = MI->getParent();
73    if (usingBlocks_[MBB]++)
74      continue;
75    for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
76         Loop = Loop->getParentLoop())
77      usingLoops_[Loop]++;
78  }
79  array_pod_sort(UseSlots.begin(), UseSlots.end());
80  DEBUG(dbgs() << "  counted "
81               << usingInstrs_.size() << " instrs, "
82               << usingBlocks_.size() << " blocks, "
83               << usingLoops_.size()  << " loops.\n");
84}
85
86void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
87  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
88    unsigned count = usingBlocks_.lookup(*I);
89    OS << " BB#" << (*I)->getNumber();
90    if (count)
91      OS << '(' << count << ')';
92  }
93}
94
95// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
96// predecessor blocks, and exit blocks.
97void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
98  Blocks.clear();
99
100  // Blocks in the loop.
101  Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
102
103  // Predecessor blocks.
104  const MachineBasicBlock *Header = Loop->getHeader();
105  for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
106       E = Header->pred_end(); I != E; ++I)
107    if (!Blocks.Loop.count(*I))
108      Blocks.Preds.insert(*I);
109
110  // Exit blocks.
111  for (MachineLoop::block_iterator I = Loop->block_begin(),
112       E = Loop->block_end(); I != E; ++I) {
113    const MachineBasicBlock *MBB = *I;
114    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
115       SE = MBB->succ_end(); SI != SE; ++SI)
116      if (!Blocks.Loop.count(*SI))
117        Blocks.Exits.insert(*SI);
118  }
119}
120
121void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
122  OS << "Loop:";
123  print(B.Loop, OS);
124  OS << ", preds:";
125  print(B.Preds, OS);
126  OS << ", exits:";
127  print(B.Exits, OS);
128}
129
130/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
131/// and around the Loop.
132SplitAnalysis::LoopPeripheralUse SplitAnalysis::
133analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
134  LoopPeripheralUse use = ContainedInLoop;
135  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
136       I != E; ++I) {
137    const MachineBasicBlock *MBB = I->first;
138    // Is this a peripheral block?
139    if (use < MultiPeripheral &&
140        (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
141      if (I->second > 1) use = MultiPeripheral;
142      else               use = SinglePeripheral;
143      continue;
144    }
145    // Is it a loop block?
146    if (Blocks.Loop.count(MBB))
147      continue;
148    // It must be an unrelated block.
149    DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
150    return OutsideLoop;
151  }
152  return use;
153}
154
155/// getCriticalExits - It may be necessary to partially break critical edges
156/// leaving the loop if an exit block has predecessors from outside the loop
157/// periphery.
158void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
159                                     BlockPtrSet &CriticalExits) {
160  CriticalExits.clear();
161
162  // A critical exit block has curli live-in, and has a predecessor that is not
163  // in the loop nor a loop predecessor. For such an exit block, the edges
164  // carrying the new variable must be moved to a new pre-exit block.
165  for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
166       I != E; ++I) {
167    const MachineBasicBlock *Exit = *I;
168    // A single-predecessor exit block is definitely not a critical edge.
169    if (Exit->pred_size() == 1)
170      continue;
171    // This exit may not have curli live in at all. No need to split.
172    if (!lis_.isLiveInToMBB(*curli_, Exit))
173      continue;
174    // Does this exit block have a predecessor that is not a loop block or loop
175    // predecessor?
176    for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
177         PE = Exit->pred_end(); PI != PE; ++PI) {
178      const MachineBasicBlock *Pred = *PI;
179      if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
180        continue;
181      // This is a critical exit block, and we need to split the exit edge.
182      CriticalExits.insert(Exit);
183      break;
184    }
185  }
186}
187
188void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
189                                     BlockPtrSet &CriticalPreds) {
190  CriticalPreds.clear();
191
192  // A critical predecessor block has curli live-out, and has a successor that
193  // has curli live-in and is not in the loop nor a loop exit block. For such a
194  // predecessor block, we must carry the value in both the 'inside' and
195  // 'outside' registers.
196  for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
197       I != E; ++I) {
198    const MachineBasicBlock *Pred = *I;
199    // Definitely not a critical edge.
200    if (Pred->succ_size() == 1)
201      continue;
202    // This block may not have curli live out at all if there is a PHI.
203    if (!lis_.isLiveOutOfMBB(*curli_, Pred))
204      continue;
205    // Does this block have a successor outside the loop?
206    for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
207         SE = Pred->succ_end(); SI != SE; ++SI) {
208      const MachineBasicBlock *Succ = *SI;
209      if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
210        continue;
211      if (!lis_.isLiveInToMBB(*curli_, Succ))
212        continue;
213      // This is a critical predecessor block.
214      CriticalPreds.insert(Pred);
215      break;
216    }
217  }
218}
219
220/// canSplitCriticalExits - Return true if it is possible to insert new exit
221/// blocks before the blocks in CriticalExits.
222bool
223SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
224                                     BlockPtrSet &CriticalExits) {
225  // If we don't allow critical edge splitting, require no critical exits.
226  if (!AllowSplit)
227    return CriticalExits.empty();
228
229  for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
230       I != E; ++I) {
231    const MachineBasicBlock *Succ = *I;
232    // We want to insert a new pre-exit MBB before Succ, and change all the
233    // in-loop blocks to branch to the pre-exit instead of Succ.
234    // Check that all the in-loop predecessors can be changed.
235    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
236         PE = Succ->pred_end(); PI != PE; ++PI) {
237      const MachineBasicBlock *Pred = *PI;
238      // The external predecessors won't be altered.
239      if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
240        continue;
241      if (!canAnalyzeBranch(Pred))
242        return false;
243    }
244
245    // If Succ's layout predecessor falls through, that too must be analyzable.
246    // We need to insert the pre-exit block in the gap.
247    MachineFunction::const_iterator MFI = Succ;
248    if (MFI == mf_.begin())
249      continue;
250    if (!canAnalyzeBranch(--MFI))
251      return false;
252  }
253  // No problems found.
254  return true;
255}
256
257void SplitAnalysis::analyze(const LiveInterval *li) {
258  clear();
259  curli_ = li;
260  analyzeUses();
261}
262
263void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) {
264  assert(curli_ && "Call analyze() before getSplitLoops");
265  if (usingLoops_.empty())
266    return;
267
268  LoopBlocks Blocks;
269  BlockPtrSet CriticalExits;
270
271  // We split around loops where curli is used outside the periphery.
272  for (LoopCountMap::const_iterator I = usingLoops_.begin(),
273       E = usingLoops_.end(); I != E; ++I) {
274    const MachineLoop *Loop = I->first;
275    getLoopBlocks(Loop, Blocks);
276    DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });
277
278    switch(analyzeLoopPeripheralUse(Blocks)) {
279    case OutsideLoop:
280      break;
281    case MultiPeripheral:
282      // FIXME: We could split a live range with multiple uses in a peripheral
283      // block and still make progress. However, it is possible that splitting
284      // another live range will insert copies into a peripheral block, and
285      // there is a small chance we can enter an infinite loop, inserting copies
286      // forever.
287      // For safety, stick to splitting live ranges with uses outside the
288      // periphery.
289      DEBUG(dbgs() << ": multiple peripheral uses");
290      break;
291    case ContainedInLoop:
292      DEBUG(dbgs() << ": fully contained\n");
293      continue;
294    case SinglePeripheral:
295      DEBUG(dbgs() << ": single peripheral use\n");
296      continue;
297    }
298    // Will it be possible to split around this loop?
299    getCriticalExits(Blocks, CriticalExits);
300    DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
301    if (!canSplitCriticalExits(Blocks, CriticalExits))
302      continue;
303    // This is a possible split.
304    Loops.insert(Loop);
305  }
306
307  DEBUG(dbgs() << "  getSplitLoops found " << Loops.size()
308               << " candidate loops.\n");
309}
310
311const MachineLoop *SplitAnalysis::getBestSplitLoop() {
312  LoopPtrSet Loops;
313  getSplitLoops(Loops);
314  if (Loops.empty())
315    return 0;
316
317  // Pick the earliest loop.
318  // FIXME: Are there other heuristics to consider?
319  const MachineLoop *Best = 0;
320  SlotIndex BestIdx;
321  for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
322       ++I) {
323    SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
324    if (!Best || Idx < BestIdx)
325      Best = *I, BestIdx = Idx;
326  }
327  DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
328  return Best;
329}
330
331/// isBypassLoop - Return true if curli is live through Loop and has no uses
332/// inside the loop. Bypass loops are candidates for splitting because it can
333/// prevent interference inside the loop.
334bool SplitAnalysis::isBypassLoop(const MachineLoop *Loop) {
335  // If curli is live into the loop header and there are no uses in the loop, it
336  // must be live in the entire loop and live on at least one exiting edge.
337  return !usingLoops_.count(Loop) &&
338         lis_.isLiveInToMBB(*curli_, Loop->getHeader());
339}
340
341/// getBypassLoops - Get all the maximal bypass loops. These are the bypass
342/// loops whose parent is not a bypass loop.
343void SplitAnalysis::getBypassLoops(LoopPtrSet &BypassLoops) {
344  SmallVector<MachineLoop*, 8> Todo(loops_.begin(), loops_.end());
345  while (!Todo.empty()) {
346    MachineLoop *Loop = Todo.pop_back_val();
347    if (!usingLoops_.count(Loop)) {
348      // This is either a bypass loop or completely irrelevant.
349      if (lis_.isLiveInToMBB(*curli_, Loop->getHeader()))
350        BypassLoops.insert(Loop);
351      // Either way, skip the child loops.
352      continue;
353    }
354
355    // The child loops may be bypass loops.
356    Todo.append(Loop->begin(), Loop->end());
357  }
358}
359
360
361//===----------------------------------------------------------------------===//
362//                               LiveIntervalMap
363//===----------------------------------------------------------------------===//
364
365// Work around the fact that the std::pair constructors are broken for pointer
366// pairs in some implementations. makeVV(x, 0) works.
367static inline std::pair<const VNInfo*, VNInfo*>
368makeVV(const VNInfo *a, VNInfo *b) {
369  return std::make_pair(a, b);
370}
371
372void LiveIntervalMap::reset(LiveInterval *li) {
373  li_ = li;
374  valueMap_.clear();
375  liveOutCache_.clear();
376}
377
378bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
379  ValueMap::const_iterator i = valueMap_.find(ParentVNI);
380  return i != valueMap_.end() && i->second == 0;
381}
382
383// defValue - Introduce a li_ def for ParentVNI that could be later than
384// ParentVNI->def.
385VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
386  assert(li_ && "call reset first");
387  assert(ParentVNI && "Mapping  NULL value");
388  assert(Idx.isValid() && "Invalid SlotIndex");
389  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
390
391  // Create a new value.
392  VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
393
394  // Preserve the PHIDef bit.
395  if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
396    VNI->setIsPHIDef(true);
397
398  // Use insert for lookup, so we can add missing values with a second lookup.
399  std::pair<ValueMap::iterator,bool> InsP =
400    valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
401
402  // This is now a complex def. Mark with a NULL in valueMap.
403  if (!InsP.second)
404    InsP.first->second = 0;
405
406  return VNI;
407}
408
409
410// mapValue - Find the mapped value for ParentVNI at Idx.
411// Potentially create phi-def values.
412VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
413                                  bool *simple) {
414  assert(li_ && "call reset first");
415  assert(ParentVNI && "Mapping  NULL value");
416  assert(Idx.isValid() && "Invalid SlotIndex");
417  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
418
419  // Use insert for lookup, so we can add missing values with a second lookup.
420  std::pair<ValueMap::iterator,bool> InsP =
421    valueMap_.insert(makeVV(ParentVNI, 0));
422
423  // This was an unknown value. Create a simple mapping.
424  if (InsP.second) {
425    if (simple) *simple = true;
426    return InsP.first->second = li_->createValueCopy(ParentVNI,
427                                                     lis_.getVNInfoAllocator());
428  }
429
430  // This was a simple mapped value.
431  if (InsP.first->second) {
432    if (simple) *simple = true;
433    return InsP.first->second;
434  }
435
436  // This is a complex mapped value. There may be multiple defs, and we may need
437  // to create phi-defs.
438  if (simple) *simple = false;
439  MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
440  assert(IdxMBB && "No MBB at Idx");
441
442  // Is there a def in the same MBB we can extend?
443  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
444    return VNI;
445
446  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
447  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
448  // Perform a search for all predecessor blocks where we know the dominating
449  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
450  DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
451               << " at " << Idx << " in " << *li_ << '\n');
452
453  // Blocks where li_ should be live-in.
454  SmallVector<MachineDomTreeNode*, 16> LiveIn;
455  LiveIn.push_back(mdt_[IdxMBB]);
456
457  // Using liveOutCache_ as a visited set, perform a BFS for all reaching defs.
458  for (unsigned i = 0; i != LiveIn.size(); ++i) {
459    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
460    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
461           PE = MBB->pred_end(); PI != PE; ++PI) {
462       MachineBasicBlock *Pred = *PI;
463       // Is this a known live-out block?
464       std::pair<LiveOutMap::iterator,bool> LOIP =
465         liveOutCache_.insert(std::make_pair(Pred, LiveOutPair()));
466       // Yes, we have been here before.
467       if (!LOIP.second) {
468         DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
469                 dbgs() << "    known valno #" << VNI->id
470                        << " at BB#" << Pred->getNumber() << '\n');
471         continue;
472       }
473
474       // Does Pred provide a live-out value?
475       SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot();
476       if (VNInfo *VNI = extendTo(Pred, Last)) {
477         MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def);
478         DEBUG(dbgs() << "    found valno #" << VNI->id
479                      << " from BB#" << DefMBB->getNumber()
480                      << " at BB#" << Pred->getNumber() << '\n');
481         LiveOutPair &LOP = LOIP.first->second;
482         LOP.first = VNI;
483         LOP.second = mdt_[DefMBB];
484         continue;
485       }
486       // No, we need a live-in value for Pred as well
487       if (Pred != IdxMBB)
488         LiveIn.push_back(mdt_[Pred]);
489    }
490  }
491
492  // We may need to add phi-def values to preserve the SSA form.
493  // This is essentially the same iterative algorithm that SSAUpdater uses,
494  // except we already have a dominator tree, so we don't have to recompute it.
495  VNInfo *IdxVNI = 0;
496  unsigned Changes;
497  do {
498    Changes = 0;
499    DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
500    // Propagate live-out values down the dominator tree, inserting phi-defs when
501    // necessary. Since LiveIn was created by a BFS, going backwards makes it more
502    // likely for us to visit immediate dominators before their children.
503    for (unsigned i = LiveIn.size(); i; --i) {
504      MachineDomTreeNode *Node = LiveIn[i-1];
505      MachineBasicBlock *MBB = Node->getBlock();
506      MachineDomTreeNode *IDom = Node->getIDom();
507      LiveOutPair IDomValue;
508      // We need a live-in value to a block with no immediate dominator?
509      // This is probably an unreachable block that has survived somehow.
510      bool needPHI = !IDom;
511
512      // Get the IDom live-out value.
513      if (!needPHI) {
514        LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock());
515        if (I != liveOutCache_.end())
516          IDomValue = I->second;
517        else
518          // If IDom is outside our set of live-out blocks, there must be new
519          // defs, and we need a phi-def here.
520          needPHI = true;
521      }
522
523      // IDom dominates all of our predecessors, but it may not be the immediate
524      // dominator. Check if any of them have live-out values that are properly
525      // dominated by IDom. If so, we need a phi-def here.
526      if (!needPHI) {
527        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
528               PE = MBB->pred_end(); PI != PE; ++PI) {
529          LiveOutPair Value = liveOutCache_[*PI];
530          if (!Value.first || Value.first == IDomValue.first)
531            continue;
532          // This predecessor is carrying something other than IDomValue.
533          // It could be because IDomValue hasn't propagated yet, or it could be
534          // because MBB is in the dominance frontier of that value.
535          if (mdt_.dominates(IDom, Value.second)) {
536            needPHI = true;
537            break;
538          }
539        }
540      }
541
542      // Create a phi-def if required.
543      if (needPHI) {
544        ++Changes;
545        SlotIndex Start = lis_.getMBBStartIdx(MBB);
546        VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
547        VNI->setIsPHIDef(true);
548        DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
549                     << " phi-def #" << VNI->id << " at " << Start << '\n');
550        // We no longer need li_ to be live-in.
551        LiveIn.erase(LiveIn.begin()+(i-1));
552        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
553        if (MBB == IdxMBB)
554          IdxVNI = VNI;
555        // Check if we need to update live-out info.
556        LiveOutMap::iterator I = liveOutCache_.find(MBB);
557        if (I == liveOutCache_.end() || I->second.second == Node) {
558          // We already have a live-out defined in MBB, so this must be IdxMBB.
559          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
560          li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
561        } else {
562          // This phi-def is also live-out, so color the whole block.
563          li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
564          I->second = LiveOutPair(VNI, Node);
565        }
566      } else if (IDomValue.first) {
567        // No phi-def here. Remember incoming value for IdxMBB.
568        if (MBB == IdxMBB)
569          IdxVNI = IDomValue.first;
570        // Propagate IDomValue if needed:
571        // MBB is live-out and doesn't define its own value.
572        LiveOutMap::iterator I = liveOutCache_.find(MBB);
573        if (I != liveOutCache_.end() && I->second.second != Node &&
574            I->second.first != IDomValue.first) {
575          ++Changes;
576          I->second = IDomValue;
577          DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
578                       << " idom valno #" << IDomValue.first->id
579                       << " from BB#" << IDom->getBlock()->getNumber() << '\n');
580        }
581      }
582    }
583    DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
584  } while (Changes);
585
586  assert(IdxVNI && "Didn't find value for Idx");
587
588#ifndef NDEBUG
589  // Check the liveOutCache_ invariants.
590  for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end();
591         I != E; ++I) {
592    assert(I->first && "Null MBB entry in cache");
593    assert(I->second.first && "Null VNInfo in cache");
594    assert(I->second.second && "Null DomTreeNode in cache");
595    if (I->second.second->getBlock() == I->first)
596      continue;
597    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
598           PE = I->first->pred_end(); PI != PE; ++PI)
599      assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant");
600  }
601#endif
602
603  // Since we went through the trouble of a full BFS visiting all reaching defs,
604  // the values in LiveIn are now accurate. No more phi-defs are needed
605  // for these blocks, so we can color the live ranges.
606  // This makes the next mapValue call much faster.
607  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
608    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
609    SlotIndex Start = lis_.getMBBStartIdx(MBB);
610    if (MBB == IdxMBB) {
611      li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
612      continue;
613    }
614    // Anything in LiveIn other than IdxMBB is live-through.
615    VNInfo *VNI = liveOutCache_.lookup(MBB).first;
616    assert(VNI && "Missing block value");
617    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
618  }
619
620  return IdxVNI;
621}
622
623// extendTo - Find the last li_ value defined in MBB at or before Idx. The
624// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
625// Return the found VNInfo, or NULL.
626VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
627  assert(li_ && "call reset first");
628  LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
629  if (I == li_->begin())
630    return 0;
631  --I;
632  if (I->end <= lis_.getMBBStartIdx(MBB))
633    return 0;
634  if (I->end <= Idx)
635    I->end = Idx.getNextSlot();
636  return I->valno;
637}
638
639// addSimpleRange - Add a simple range from parentli_ to li_.
640// ParentVNI must be live in the [Start;End) interval.
641void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
642                                     const VNInfo *ParentVNI) {
643  assert(li_ && "call reset first");
644  bool simple;
645  VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
646  // A simple mapping is easy.
647  if (simple) {
648    li_->addRange(LiveRange(Start, End, VNI));
649    return;
650  }
651
652  // ParentVNI is a complex value. We must map per MBB.
653  MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
654  MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
655
656  if (MBB == MBBE) {
657    li_->addRange(LiveRange(Start, End, VNI));
658    return;
659  }
660
661  // First block.
662  li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
663
664  // Run sequence of full blocks.
665  for (++MBB; MBB != MBBE; ++MBB) {
666    Start = lis_.getMBBStartIdx(MBB);
667    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
668                            mapValue(ParentVNI, Start)));
669  }
670
671  // Final block.
672  Start = lis_.getMBBStartIdx(MBB);
673  if (Start != End)
674    li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
675}
676
677/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
678/// All needed values whose def is not inside [Start;End) must be defined
679/// beforehand so mapValue will work.
680void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
681  assert(li_ && "call reset first");
682  LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
683  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
684
685  // Check if --I begins before Start and overlaps.
686  if (I != B) {
687    --I;
688    if (I->end > Start)
689      addSimpleRange(Start, std::min(End, I->end), I->valno);
690    ++I;
691  }
692
693  // The remaining ranges begin after Start.
694  for (;I != E && I->start < End; ++I)
695    addSimpleRange(I->start, std::min(End, I->end), I->valno);
696}
697
698
699//===----------------------------------------------------------------------===//
700//                               Split Editor
701//===----------------------------------------------------------------------===//
702
703/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
704SplitEditor::SplitEditor(SplitAnalysis &sa,
705                         LiveIntervals &lis,
706                         VirtRegMap &vrm,
707                         MachineDominatorTree &mdt,
708                         LiveRangeEdit &edit)
709  : sa_(sa), lis_(lis), vrm_(vrm),
710    mri_(vrm.getMachineFunction().getRegInfo()),
711    tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
712    tri_(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
713    edit_(edit),
714    dupli_(lis_, mdt, edit.getParent()),
715    openli_(lis_, mdt, edit.getParent())
716{
717  // We don't need an AliasAnalysis since we will only be performing
718  // cheap-as-a-copy remats anyway.
719  edit_.anyRematerializable(lis_, tii_, 0);
720}
721
722bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
723  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
724    if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
725      return true;
726  return false;
727}
728
729VNInfo *SplitEditor::defFromParent(LiveIntervalMap &Reg,
730                                   VNInfo *ParentVNI,
731                                   SlotIndex UseIdx,
732                                   MachineBasicBlock &MBB,
733                                   MachineBasicBlock::iterator I) {
734  VNInfo *VNI = 0;
735  MachineInstr *CopyMI = 0;
736  SlotIndex Def;
737
738  // Attempt cheap-as-a-copy rematerialization.
739  LiveRangeEdit::Remat RM(ParentVNI);
740  if (edit_.canRematerializeAt(RM, UseIdx, true, lis_)) {
741    Def = edit_.rematerializeAt(MBB, I, Reg.getLI()->reg, RM,
742                                          lis_, tii_, tri_);
743  } else {
744    // Can't remat, just insert a copy from parent.
745    CopyMI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY),
746                     Reg.getLI()->reg).addReg(edit_.getReg());
747    Def = lis_.InsertMachineInstrInMaps(CopyMI).getDefIndex();
748  }
749
750  // Define the value in Reg.
751  VNI = Reg.defValue(ParentVNI, Def);
752  VNI->setCopy(CopyMI);
753
754  // Add minimal liveness for the new value.
755  if (UseIdx < Def)
756    UseIdx = Def;
757  Reg.getLI()->addRange(LiveRange(Def, UseIdx.getNextSlot(), VNI));
758  return VNI;
759}
760
761/// Create a new virtual register and live interval.
762void SplitEditor::openIntv() {
763  assert(!openli_.getLI() && "Previous LI not closed before openIntv");
764  if (!dupli_.getLI())
765    dupli_.reset(&edit_.create(mri_, lis_, vrm_));
766
767  openli_.reset(&edit_.create(mri_, lis_, vrm_));
768}
769
770/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
771/// not live before Idx, a COPY is not inserted.
772void SplitEditor::enterIntvBefore(SlotIndex Idx) {
773  assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
774  Idx = Idx.getUseIndex();
775  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
776  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx);
777  if (!ParentVNI) {
778    DEBUG(dbgs() << ": not live\n");
779    return;
780  }
781  DEBUG(dbgs() << ": valno " << ParentVNI->id);
782  truncatedValues.insert(ParentVNI);
783  MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
784  assert(MI && "enterIntvBefore called with invalid index");
785
786  defFromParent(openli_, ParentVNI, Idx, *MI->getParent(), MI);
787
788  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
789}
790
791/// enterIntvAtEnd - Enter openli at the end of MBB.
792void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
793  assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
794  SlotIndex End = lis_.getMBBEndIdx(&MBB).getPrevSlot();
795  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
796  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End);
797  if (!ParentVNI) {
798    DEBUG(dbgs() << ": not live\n");
799    return;
800  }
801  DEBUG(dbgs() << ": valno " << ParentVNI->id);
802  truncatedValues.insert(ParentVNI);
803  defFromParent(openli_, ParentVNI, End, MBB, MBB.getFirstTerminator());
804  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
805}
806
807/// useIntv - indicate that all instructions in MBB should use openli.
808void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
809  useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
810}
811
812void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
813  assert(openli_.getLI() && "openIntv not called before useIntv");
814  openli_.addRange(Start, End);
815  DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
816               << *openli_.getLI() << '\n');
817}
818
819/// leaveIntvAfter - Leave openli after the instruction at Idx.
820void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
821  assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
822  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
823
824  // The interval must be live beyond the instruction at Idx.
825  Idx = Idx.getBoundaryIndex();
826  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx);
827  if (!ParentVNI) {
828    DEBUG(dbgs() << ": not live\n");
829    return;
830  }
831  DEBUG(dbgs() << ": valno " << ParentVNI->id);
832
833  MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
834  VNInfo *VNI = defFromParent(dupli_, ParentVNI, Idx,
835                              *MII->getParent(), llvm::next(MII));
836
837  // Make sure that openli is properly extended from Idx to the new copy.
838  // FIXME: This shouldn't be necessary for remats.
839  openli_.addSimpleRange(Idx, VNI->def, ParentVNI);
840
841  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
842}
843
844/// leaveIntvAtTop - Leave the interval at the top of MBB.
845/// Currently, only one value can leave the interval.
846void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
847  assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
848  SlotIndex Start = lis_.getMBBStartIdx(&MBB);
849  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
850
851  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
852  if (!ParentVNI) {
853    DEBUG(dbgs() << ": not live\n");
854    return;
855  }
856
857  VNInfo *VNI = defFromParent(dupli_, ParentVNI, Start, MBB,
858                              MBB.SkipPHIsAndLabels(MBB.begin()));
859
860  // Finally we must make sure that openli is properly extended from Start to
861  // the new copy.
862  openli_.addSimpleRange(Start, VNI->def, ParentVNI);
863  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
864}
865
866/// closeIntv - Indicate that we are done editing the currently open
867/// LiveInterval, and ranges can be trimmed.
868void SplitEditor::closeIntv() {
869  assert(openli_.getLI() && "openIntv not called before closeIntv");
870
871  DEBUG(dbgs() << "    closeIntv cleaning up\n");
872  DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
873  openli_.reset(0);
874}
875
876/// rewrite - Rewrite all uses of reg to use the new registers.
877void SplitEditor::rewrite(unsigned reg) {
878  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
879       RE = mri_.reg_end(); RI != RE;) {
880    MachineOperand &MO = RI.getOperand();
881    unsigned OpNum = RI.getOperandNo();
882    MachineInstr *MI = MO.getParent();
883    ++RI;
884    if (MI->isDebugValue()) {
885      DEBUG(dbgs() << "Zapping " << *MI);
886      // FIXME: We can do much better with debug values.
887      MO.setReg(0);
888      continue;
889    }
890    SlotIndex Idx = lis_.getInstructionIndex(MI);
891    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
892    LiveInterval *LI = 0;
893    for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
894         ++I) {
895      LiveInterval *testli = *I;
896      if (testli->liveAt(Idx)) {
897        LI = testli;
898        break;
899      }
900    }
901    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
902    assert(LI && "No register was live at use");
903    MO.setReg(LI->reg);
904    if (MO.isUse() && !MI->isRegTiedToDefOperand(OpNum))
905      MO.setIsKill(LI->killedAt(Idx.getDefIndex()));
906    DEBUG(dbgs() << '\t' << *MI);
907  }
908}
909
910void
911SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
912  // Build vector of iterator pairs from the intervals.
913  typedef std::pair<LiveInterval::const_iterator,
914                    LiveInterval::const_iterator> IIPair;
915  SmallVector<IIPair, 8> Iters;
916  for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
917       ++LI) {
918    if (*LI == dupli_.getLI())
919      continue;
920    LiveInterval::const_iterator I = (*LI)->find(Start);
921    LiveInterval::const_iterator E = (*LI)->end();
922    if (I != E)
923      Iters.push_back(std::make_pair(I, E));
924  }
925
926  SlotIndex sidx = Start;
927  // Break [Start;End) into segments that don't overlap any intervals.
928  for (;;) {
929    SlotIndex next = sidx, eidx = End;
930    // Find overlapping intervals.
931    for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
932      LiveInterval::const_iterator I = Iters[i].first;
933      // Interval I is overlapping [sidx;eidx). Trim sidx.
934      if (I->start <= sidx) {
935        sidx = I->end;
936        // Move to the next run, remove iters when all are consumed.
937        I = ++Iters[i].first;
938        if (I == Iters[i].second) {
939          Iters.erase(Iters.begin() + i);
940          --i;
941          continue;
942        }
943      }
944      // Trim eidx too if needed.
945      if (I->start >= eidx)
946        continue;
947      eidx = I->start;
948      next = I->end;
949    }
950    // Now, [sidx;eidx) doesn't overlap anything in intervals_.
951    if (sidx < eidx)
952      dupli_.addSimpleRange(sidx, eidx, VNI);
953    // If the interval end was truncated, we can try again from next.
954    if (next <= sidx)
955      break;
956    sidx = next;
957  }
958}
959
960void SplitEditor::computeRemainder() {
961  // First we need to fill in the live ranges in dupli.
962  // If values were redefined, we need a full recoloring with SSA update.
963  // If values were truncated, we only need to truncate the ranges.
964  // If values were partially rematted, we should shrink to uses.
965  // If values were fully rematted, they should be omitted.
966  // FIXME: If a single value is redefined, just move the def and truncate.
967  LiveInterval &parent = edit_.getParent();
968
969  // Values that are fully contained in the split intervals.
970  SmallPtrSet<const VNInfo*, 8> deadValues;
971  // Map all curli values that should have live defs in dupli.
972  for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
973       E = parent.vni_end(); I != E; ++I) {
974    const VNInfo *VNI = *I;
975    // Don't transfer unused values to the new intervals.
976    if (VNI->isUnused())
977      continue;
978    // Original def is contained in the split intervals.
979    if (intervalsLiveAt(VNI->def)) {
980      // Did this value escape?
981      if (dupli_.isMapped(VNI))
982        truncatedValues.insert(VNI);
983      else
984        deadValues.insert(VNI);
985      continue;
986    }
987    // Add minimal live range at the definition.
988    VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
989    dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
990  }
991
992  // Add all ranges to dupli.
993  for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
994       I != E; ++I) {
995    const LiveRange &LR = *I;
996    if (truncatedValues.count(LR.valno)) {
997      // recolor after removing intervals_.
998      addTruncSimpleRange(LR.start, LR.end, LR.valno);
999    } else if (!deadValues.count(LR.valno)) {
1000      // recolor without truncation.
1001      dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
1002    }
1003  }
1004
1005  // Extend dupli_ to be live out of any critical loop predecessors.
1006  // This means we have multiple registers live out of those blocks.
1007  // The alternative would be to split the critical edges.
1008  if (criticalPreds_.empty())
1009    return;
1010  for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(),
1011       E = criticalPreds_.end(); I != E; ++I)
1012     dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot());
1013   criticalPreds_.clear();
1014}
1015
1016void SplitEditor::finish() {
1017  assert(!openli_.getLI() && "Previous LI not closed before rewrite");
1018  assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
1019
1020  // Complete dupli liveness.
1021  computeRemainder();
1022
1023  // Get rid of unused values and set phi-kill flags.
1024  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
1025    (*I)->RenumberValues(lis_);
1026
1027  // Rewrite instructions.
1028  rewrite(edit_.getReg());
1029
1030  // Now check if any registers were separated into multiple components.
1031  ConnectedVNInfoEqClasses ConEQ(lis_);
1032  for (unsigned i = 0, e = edit_.size(); i != e; ++i) {
1033    // Don't use iterators, they are invalidated by create() below.
1034    LiveInterval *li = edit_.get(i);
1035    unsigned NumComp = ConEQ.Classify(li);
1036    if (NumComp <= 1)
1037      continue;
1038    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1039    SmallVector<LiveInterval*, 8> dups;
1040    dups.push_back(li);
1041    for (unsigned i = 1; i != NumComp; ++i)
1042      dups.push_back(&edit_.create(mri_, lis_, vrm_));
1043    ConEQ.Distribute(&dups[0]);
1044    // Rewrite uses to the new regs.
1045    rewrite(li->reg);
1046  }
1047
1048  // Calculate spill weight and allocation hints for new intervals.
1049  VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
1050  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
1051    LiveInterval &li = **I;
1052    vrai.CalculateRegClass(li.reg);
1053    vrai.CalculateWeightAndHint(li);
1054    DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
1055                 << ":" << li << '\n');
1056  }
1057}
1058
1059
1060//===----------------------------------------------------------------------===//
1061//                               Loop Splitting
1062//===----------------------------------------------------------------------===//
1063
1064void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
1065  SplitAnalysis::LoopBlocks Blocks;
1066  sa_.getLoopBlocks(Loop, Blocks);
1067
1068  DEBUG({
1069    dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
1070  });
1071
1072  // Break critical edges as needed.
1073  SplitAnalysis::BlockPtrSet CriticalExits;
1074  sa_.getCriticalExits(Blocks, CriticalExits);
1075  assert(CriticalExits.empty() && "Cannot break critical exits yet");
1076
1077  // Get critical predecessors so computeRemainder can deal with them.
1078  sa_.getCriticalPreds(Blocks, criticalPreds_);
1079
1080  // Create new live interval for the loop.
1081  openIntv();
1082
1083  // Insert copies in the predecessors if live-in to the header.
1084  if (lis_.isLiveInToMBB(edit_.getParent(), Loop->getHeader())) {
1085    for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
1086           E = Blocks.Preds.end(); I != E; ++I) {
1087      MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
1088      enterIntvAtEnd(MBB);
1089    }
1090  }
1091
1092  // Switch all loop blocks.
1093  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
1094       E = Blocks.Loop.end(); I != E; ++I)
1095     useIntv(**I);
1096
1097  // Insert back copies in the exit blocks.
1098  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
1099       E = Blocks.Exits.end(); I != E; ++I) {
1100    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
1101    leaveIntvAtTop(MBB);
1102  }
1103
1104  // Done.
1105  closeIntv();
1106  finish();
1107}
1108
1109
1110//===----------------------------------------------------------------------===//
1111//                            Single Block Splitting
1112//===----------------------------------------------------------------------===//
1113
1114/// getMultiUseBlocks - if curli has more than one use in a basic block, it
1115/// may be an advantage to split curli for the duration of the block.
1116bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
1117  // If curli is local to one block, there is no point to splitting it.
1118  if (usingBlocks_.size() <= 1)
1119    return false;
1120  // Add blocks with multiple uses.
1121  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
1122       I != E; ++I)
1123    switch (I->second) {
1124    case 0:
1125    case 1:
1126      continue;
1127    case 2: {
1128      // When there are only two uses and curli is both live in and live out,
1129      // we don't really win anything by isolating the block since we would be
1130      // inserting two copies.
1131      // The remaing register would still have two uses in the block. (Unless it
1132      // separates into disconnected components).
1133      if (lis_.isLiveInToMBB(*curli_, I->first) &&
1134          lis_.isLiveOutOfMBB(*curli_, I->first))
1135        continue;
1136    } // Fall through.
1137    default:
1138      Blocks.insert(I->first);
1139    }
1140  return !Blocks.empty();
1141}
1142
1143/// splitSingleBlocks - Split curli into a separate live interval inside each
1144/// basic block in Blocks.
1145void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
1146  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
1147  // Determine the first and last instruction using curli in each block.
1148  typedef std::pair<SlotIndex,SlotIndex> IndexPair;
1149  typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
1150  IndexPairMap MBBRange;
1151  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1152       E = sa_.usingInstrs_.end(); I != E; ++I) {
1153    const MachineBasicBlock *MBB = (*I)->getParent();
1154    if (!Blocks.count(MBB))
1155      continue;
1156    SlotIndex Idx = lis_.getInstructionIndex(*I);
1157    DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
1158    IndexPair &IP = MBBRange[MBB];
1159    if (!IP.first.isValid() || Idx < IP.first)
1160      IP.first = Idx;
1161    if (!IP.second.isValid() || Idx > IP.second)
1162      IP.second = Idx;
1163  }
1164
1165  // Create a new interval for each block.
1166  for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
1167       E = Blocks.end(); I != E; ++I) {
1168    IndexPair &IP = MBBRange[*I];
1169    DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
1170                 << IP.first << ';' << IP.second << ")\n");
1171    assert(IP.first.isValid() && IP.second.isValid());
1172
1173    openIntv();
1174    enterIntvBefore(IP.first);
1175    useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
1176    leaveIntvAfter(IP.second);
1177    closeIntv();
1178  }
1179  finish();
1180}
1181
1182
1183//===----------------------------------------------------------------------===//
1184//                            Sub Block Splitting
1185//===----------------------------------------------------------------------===//
1186
1187/// getBlockForInsideSplit - If curli is contained inside a single basic block,
1188/// and it wou pay to subdivide the interval inside that block, return it.
1189/// Otherwise return NULL. The returned block can be passed to
1190/// SplitEditor::splitInsideBlock.
1191const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
1192  // The interval must be exclusive to one block.
1193  if (usingBlocks_.size() != 1)
1194    return 0;
1195  // Don't to this for less than 4 instructions. We want to be sure that
1196  // splitting actually reduces the instruction count per interval.
1197  if (usingInstrs_.size() < 4)
1198    return 0;
1199  return usingBlocks_.begin()->first;
1200}
1201
1202/// splitInsideBlock - Split curli into multiple intervals inside MBB.
1203void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1204  SmallVector<SlotIndex, 32> Uses;
1205  Uses.reserve(sa_.usingInstrs_.size());
1206  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1207       E = sa_.usingInstrs_.end(); I != E; ++I)
1208    if ((*I)->getParent() == MBB)
1209      Uses.push_back(lis_.getInstructionIndex(*I));
1210  DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1211               << Uses.size() << " instructions.\n");
1212  assert(Uses.size() >= 3 && "Need at least 3 instructions");
1213  array_pod_sort(Uses.begin(), Uses.end());
1214
1215  // Simple algorithm: Find the largest gap between uses as determined by slot
1216  // indices. Create new intervals for instructions before the gap and after the
1217  // gap.
1218  unsigned bestPos = 0;
1219  int bestGap = 0;
1220  DEBUG(dbgs() << "    dist (" << Uses[0]);
1221  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1222    int g = Uses[i-1].distance(Uses[i]);
1223    DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1224    if (g > bestGap)
1225      bestPos = i, bestGap = g;
1226  }
1227  DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1228
1229  // bestPos points to the first use after the best gap.
1230  assert(bestPos > 0 && "Invalid gap");
1231
1232  // FIXME: Don't create intervals for low densities.
1233
1234  // First interval before the gap. Don't create single-instr intervals.
1235  if (bestPos > 1) {
1236    openIntv();
1237    enterIntvBefore(Uses.front());
1238    useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
1239    leaveIntvAfter(Uses[bestPos-1]);
1240    closeIntv();
1241  }
1242
1243  // Second interval after the gap.
1244  if (bestPos < Uses.size()-1) {
1245    openIntv();
1246    enterIntvBefore(Uses[bestPos]);
1247    useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
1248    leaveIntvAfter(Uses.back());
1249    closeIntv();
1250  }
1251
1252  finish();
1253}
1254