SplitKit.cpp revision c1c622ef0dd29d1bafd580790aec5231af50abf2
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28
29using namespace llvm;
30
31STATISTIC(NumFinished, "Number of splits finished");
32STATISTIC(NumSimple,   "Number of splits that were simple");
33STATISTIC(NumCopies,   "Number of copies inserted for splitting");
34STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
35STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
36
37//===----------------------------------------------------------------------===//
38//                                 Split Analysis
39//===----------------------------------------------------------------------===//
40
41SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
42                             const LiveIntervals &lis,
43                             const MachineLoopInfo &mli)
44  : MF(vrm.getMachineFunction()),
45    VRM(vrm),
46    LIS(lis),
47    Loops(mli),
48    TII(*MF.getTarget().getInstrInfo()),
49    CurLI(0),
50    LastSplitPoint(MF.getNumBlockIDs()) {}
51
52void SplitAnalysis::clear() {
53  UseSlots.clear();
54  UseBlocks.clear();
55  ThroughBlocks.clear();
56  CurLI = 0;
57  DidRepairRange = false;
58}
59
60SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
61  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
62  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
63  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
64
65  // Compute split points on the first call. The pair is independent of the
66  // current live interval.
67  if (!LSP.first.isValid()) {
68    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
69    if (FirstTerm == MBB->end())
70      LSP.first = LIS.getMBBEndIdx(MBB);
71    else
72      LSP.first = LIS.getInstructionIndex(FirstTerm);
73
74    // If there is a landing pad successor, also find the call instruction.
75    if (!LPad)
76      return LSP.first;
77    // There may not be a call instruction (?) in which case we ignore LPad.
78    LSP.second = LSP.first;
79    for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
80         I != E;) {
81      --I;
82      if (I->getDesc().isCall()) {
83        LSP.second = LIS.getInstructionIndex(I);
84        break;
85      }
86    }
87  }
88
89  // If CurLI is live into a landing pad successor, move the last split point
90  // back to the call that may throw.
91  if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
92    return LSP.second;
93  else
94    return LSP.first;
95}
96
97/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
98void SplitAnalysis::analyzeUses() {
99  assert(UseSlots.empty() && "Call clear first");
100
101  // First get all the defs from the interval values. This provides the correct
102  // slots for early clobbers.
103  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
104       E = CurLI->vni_end(); I != E; ++I)
105    if (!(*I)->isPHIDef() && !(*I)->isUnused())
106      UseSlots.push_back((*I)->def);
107
108  // Get use slots form the use-def chain.
109  const MachineRegisterInfo &MRI = MF.getRegInfo();
110  for (MachineRegisterInfo::use_nodbg_iterator
111       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
112       ++I)
113    if (!I.getOperand().isUndef())
114      UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
115
116  array_pod_sort(UseSlots.begin(), UseSlots.end());
117
118  // Remove duplicates, keeping the smaller slot for each instruction.
119  // That is what we want for early clobbers.
120  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
121                             SlotIndex::isSameInstr),
122                 UseSlots.end());
123
124  // Compute per-live block info.
125  if (!calcLiveBlockInfo()) {
126    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
127    // I am looking at you, RegisterCoalescer!
128    DidRepairRange = true;
129    ++NumRepairs;
130    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
131    const_cast<LiveIntervals&>(LIS)
132      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
133    UseBlocks.clear();
134    ThroughBlocks.clear();
135    bool fixed = calcLiveBlockInfo();
136    (void)fixed;
137    assert(fixed && "Couldn't fix broken live interval");
138  }
139
140  DEBUG(dbgs() << "Analyze counted "
141               << UseSlots.size() << " instrs in "
142               << UseBlocks.size() << " blocks, through "
143               << NumThroughBlocks << " blocks.\n");
144}
145
146/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
147/// where CurLI is live.
148bool SplitAnalysis::calcLiveBlockInfo() {
149  ThroughBlocks.resize(MF.getNumBlockIDs());
150  NumThroughBlocks = NumGapBlocks = 0;
151  if (CurLI->empty())
152    return true;
153
154  LiveInterval::const_iterator LVI = CurLI->begin();
155  LiveInterval::const_iterator LVE = CurLI->end();
156
157  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
158  UseI = UseSlots.begin();
159  UseE = UseSlots.end();
160
161  // Loop over basic blocks where CurLI is live.
162  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
163  for (;;) {
164    BlockInfo BI;
165    BI.MBB = MFI;
166    SlotIndex Start, Stop;
167    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
168
169    // If the block contains no uses, the range must be live through. At one
170    // point, RegisterCoalescer could create dangling ranges that ended
171    // mid-block.
172    if (UseI == UseE || *UseI >= Stop) {
173      ++NumThroughBlocks;
174      ThroughBlocks.set(BI.MBB->getNumber());
175      // The range shouldn't end mid-block if there are no uses. This shouldn't
176      // happen.
177      if (LVI->end < Stop)
178        return false;
179    } else {
180      // This block has uses. Find the first and last uses in the block.
181      BI.FirstInstr = *UseI;
182      assert(BI.FirstInstr >= Start);
183      do ++UseI;
184      while (UseI != UseE && *UseI < Stop);
185      BI.LastInstr = UseI[-1];
186      assert(BI.LastInstr < Stop);
187
188      // LVI is the first live segment overlapping MBB.
189      BI.LiveIn = LVI->start <= Start;
190
191      // When not live in, the first use should be a def.
192      if (!BI.LiveIn) {
193        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
194        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
195        BI.FirstDef = BI.FirstInstr;
196      }
197
198      // Look for gaps in the live range.
199      BI.LiveOut = true;
200      while (LVI->end < Stop) {
201        SlotIndex LastStop = LVI->end;
202        if (++LVI == LVE || LVI->start >= Stop) {
203          BI.LiveOut = false;
204          BI.LastInstr = LastStop;
205          break;
206        }
207
208        if (LastStop < LVI->start) {
209          // There is a gap in the live range. Create duplicate entries for the
210          // live-in snippet and the live-out snippet.
211          ++NumGapBlocks;
212
213          // Push the Live-in part.
214          BI.LiveOut = false;
215          UseBlocks.push_back(BI);
216          UseBlocks.back().LastInstr = LastStop;
217
218          // Set up BI for the live-out part.
219          BI.LiveIn = false;
220          BI.LiveOut = true;
221          BI.FirstInstr = BI.FirstDef = LVI->start;
222        }
223
224        // A LiveRange that starts in the middle of the block must be a def.
225        assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
226        if (!BI.FirstDef)
227          BI.FirstDef = LVI->start;
228      }
229
230      UseBlocks.push_back(BI);
231
232      // LVI is now at LVE or LVI->end >= Stop.
233      if (LVI == LVE)
234        break;
235    }
236
237    // Live segment ends exactly at Stop. Move to the next segment.
238    if (LVI->end == Stop && ++LVI == LVE)
239      break;
240
241    // Pick the next basic block.
242    if (LVI->start < Stop)
243      ++MFI;
244    else
245      MFI = LIS.getMBBFromIndex(LVI->start);
246  }
247
248  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
249  return true;
250}
251
252unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
253  if (cli->empty())
254    return 0;
255  LiveInterval *li = const_cast<LiveInterval*>(cli);
256  LiveInterval::iterator LVI = li->begin();
257  LiveInterval::iterator LVE = li->end();
258  unsigned Count = 0;
259
260  // Loop over basic blocks where li is live.
261  MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
262  SlotIndex Stop = LIS.getMBBEndIdx(MFI);
263  for (;;) {
264    ++Count;
265    LVI = li->advanceTo(LVI, Stop);
266    if (LVI == LVE)
267      return Count;
268    do {
269      ++MFI;
270      Stop = LIS.getMBBEndIdx(MFI);
271    } while (Stop <= LVI->start);
272  }
273}
274
275bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
276  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
277  const LiveInterval &Orig = LIS.getInterval(OrigReg);
278  assert(!Orig.empty() && "Splitting empty interval?");
279  LiveInterval::const_iterator I = Orig.find(Idx);
280
281  // Range containing Idx should begin at Idx.
282  if (I != Orig.end() && I->start <= Idx)
283    return I->start == Idx;
284
285  // Range does not contain Idx, previous must end at Idx.
286  return I != Orig.begin() && (--I)->end == Idx;
287}
288
289void SplitAnalysis::analyze(const LiveInterval *li) {
290  clear();
291  CurLI = li;
292  analyzeUses();
293}
294
295
296//===----------------------------------------------------------------------===//
297//                               Split Editor
298//===----------------------------------------------------------------------===//
299
300/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
301SplitEditor::SplitEditor(SplitAnalysis &sa,
302                         LiveIntervals &lis,
303                         VirtRegMap &vrm,
304                         MachineDominatorTree &mdt)
305  : SA(sa), LIS(lis), VRM(vrm),
306    MRI(vrm.getMachineFunction().getRegInfo()),
307    MDT(mdt),
308    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
309    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
310    Edit(0),
311    OpenIdx(0),
312    SpillMode(SM_Partition),
313    RegAssign(Allocator)
314{}
315
316void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
317  Edit = &LRE;
318  SpillMode = SM;
319  OpenIdx = 0;
320  RegAssign.clear();
321  Values.clear();
322
323  // Reset the LiveRangeCalc instances needed for this spill mode.
324  LRCalc[0].reset(&VRM.getMachineFunction());
325  if (SpillMode)
326    LRCalc[1].reset(&VRM.getMachineFunction());
327
328  // We don't need an AliasAnalysis since we will only be performing
329  // cheap-as-a-copy remats anyway.
330  Edit->anyRematerializable(LIS, TII, 0);
331}
332
333void SplitEditor::dump() const {
334  if (RegAssign.empty()) {
335    dbgs() << " empty\n";
336    return;
337  }
338
339  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
340    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
341  dbgs() << '\n';
342}
343
344VNInfo *SplitEditor::defValue(unsigned RegIdx,
345                              const VNInfo *ParentVNI,
346                              SlotIndex Idx) {
347  assert(ParentVNI && "Mapping  NULL value");
348  assert(Idx.isValid() && "Invalid SlotIndex");
349  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
350  LiveInterval *LI = Edit->get(RegIdx);
351
352  // Create a new value.
353  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
354
355  // Use insert for lookup, so we can add missing values with a second lookup.
356  std::pair<ValueMap::iterator, bool> InsP =
357    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
358
359  // This was the first time (RegIdx, ParentVNI) was mapped.
360  // Keep it as a simple def without any liveness.
361  if (InsP.second)
362    return VNI;
363
364  // If the previous value was a simple mapping, add liveness for it now.
365  if (VNInfo *OldVNI = InsP.first->second) {
366    SlotIndex Def = OldVNI->def;
367    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
368    // No longer a simple mapping.
369    InsP.first->second = 0;
370  }
371
372  // This is a complex mapping, add liveness for VNI
373  SlotIndex Def = VNI->def;
374  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
375
376  return VNI;
377}
378
379void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
380  assert(ParentVNI && "Mapping  NULL value");
381  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
382
383  // ParentVNI was either unmapped or already complex mapped. Either way.
384  if (!VNI)
385    return;
386
387  // This was previously a single mapping. Make sure the old def is represented
388  // by a trivial live range.
389  SlotIndex Def = VNI->def;
390  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
391  VNI = 0;
392}
393
394// extendRange - Extend the live range to reach Idx.
395// Potentially create phi-def values.
396void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
397  getLRCalc(RegIdx).extend(Edit->get(RegIdx), Idx.getNextSlot(),
398                         LIS.getSlotIndexes(), &MDT, &LIS.getVNInfoAllocator());
399}
400
401VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
402                                   VNInfo *ParentVNI,
403                                   SlotIndex UseIdx,
404                                   MachineBasicBlock &MBB,
405                                   MachineBasicBlock::iterator I) {
406  MachineInstr *CopyMI = 0;
407  SlotIndex Def;
408  LiveInterval *LI = Edit->get(RegIdx);
409
410  // We may be trying to avoid interference that ends at a deleted instruction,
411  // so always begin RegIdx 0 early and all others late.
412  bool Late = RegIdx != 0;
413
414  // Attempt cheap-as-a-copy rematerialization.
415  LiveRangeEdit::Remat RM(ParentVNI);
416  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
417    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
418    ++NumRemats;
419  } else {
420    // Can't remat, just insert a copy from parent.
421    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
422               .addReg(Edit->getReg());
423    Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
424            .getDefIndex();
425    ++NumCopies;
426  }
427
428  // Define the value in Reg.
429  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
430  VNI->setCopy(CopyMI);
431  return VNI;
432}
433
434/// Create a new virtual register and live interval.
435unsigned SplitEditor::openIntv() {
436  // Create the complement as index 0.
437  if (Edit->empty())
438    Edit->create(LIS, VRM);
439
440  // Create the open interval.
441  OpenIdx = Edit->size();
442  Edit->create(LIS, VRM);
443  return OpenIdx;
444}
445
446void SplitEditor::selectIntv(unsigned Idx) {
447  assert(Idx != 0 && "Cannot select the complement interval");
448  assert(Idx < Edit->size() && "Can only select previously opened interval");
449  DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
450  OpenIdx = Idx;
451}
452
453SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
454  assert(OpenIdx && "openIntv not called before enterIntvBefore");
455  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
456  Idx = Idx.getBaseIndex();
457  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
458  if (!ParentVNI) {
459    DEBUG(dbgs() << ": not live\n");
460    return Idx;
461  }
462  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
463  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
464  assert(MI && "enterIntvBefore called with invalid index");
465
466  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
467  return VNI->def;
468}
469
470SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
471  assert(OpenIdx && "openIntv not called before enterIntvAfter");
472  DEBUG(dbgs() << "    enterIntvAfter " << Idx);
473  Idx = Idx.getBoundaryIndex();
474  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
475  if (!ParentVNI) {
476    DEBUG(dbgs() << ": not live\n");
477    return Idx;
478  }
479  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
480  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
481  assert(MI && "enterIntvAfter called with invalid index");
482
483  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
484                              llvm::next(MachineBasicBlock::iterator(MI)));
485  return VNI->def;
486}
487
488SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
489  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
490  SlotIndex End = LIS.getMBBEndIdx(&MBB);
491  SlotIndex Last = End.getPrevSlot();
492  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
493  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
494  if (!ParentVNI) {
495    DEBUG(dbgs() << ": not live\n");
496    return End;
497  }
498  DEBUG(dbgs() << ": valno " << ParentVNI->id);
499  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
500                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
501  RegAssign.insert(VNI->def, End, OpenIdx);
502  DEBUG(dump());
503  return VNI->def;
504}
505
506/// useIntv - indicate that all instructions in MBB should use OpenLI.
507void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
508  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
509}
510
511void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
512  assert(OpenIdx && "openIntv not called before useIntv");
513  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
514  RegAssign.insert(Start, End, OpenIdx);
515  DEBUG(dump());
516}
517
518SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
519  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
520  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
521
522  // The interval must be live beyond the instruction at Idx.
523  Idx = Idx.getBoundaryIndex();
524  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
525  if (!ParentVNI) {
526    DEBUG(dbgs() << ": not live\n");
527    return Idx.getNextSlot();
528  }
529  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
530
531  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
532  assert(MI && "No instruction at index");
533  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
534                              llvm::next(MachineBasicBlock::iterator(MI)));
535  return VNI->def;
536}
537
538SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
539  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
540  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
541
542  // The interval must be live into the instruction at Idx.
543  Idx = Idx.getBaseIndex();
544  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
545  if (!ParentVNI) {
546    DEBUG(dbgs() << ": not live\n");
547    return Idx.getNextSlot();
548  }
549  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
550
551  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
552  assert(MI && "No instruction at index");
553  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
554  return VNI->def;
555}
556
557SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
558  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
559  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
560  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
561
562  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
563  if (!ParentVNI) {
564    DEBUG(dbgs() << ": not live\n");
565    return Start;
566  }
567
568  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
569                              MBB.SkipPHIsAndLabels(MBB.begin()));
570  RegAssign.insert(Start, VNI->def, OpenIdx);
571  DEBUG(dump());
572  return VNI->def;
573}
574
575void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
576  assert(OpenIdx && "openIntv not called before overlapIntv");
577  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
578  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
579         "Parent changes value in extended range");
580  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
581         "Range cannot span basic blocks");
582
583  // The complement interval will be extended as needed by extendRange().
584  if (ParentVNI)
585    markComplexMapped(0, ParentVNI);
586  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
587  RegAssign.insert(Start, End, OpenIdx);
588  DEBUG(dump());
589}
590
591/// transferValues - Transfer all possible values to the new live ranges.
592/// Values that were rematerialized are left alone, they need extendRange().
593bool SplitEditor::transferValues() {
594  bool Skipped = false;
595  RegAssignMap::const_iterator AssignI = RegAssign.begin();
596  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
597         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
598    DEBUG(dbgs() << "  blit " << *ParentI << ':');
599    VNInfo *ParentVNI = ParentI->valno;
600    // RegAssign has holes where RegIdx 0 should be used.
601    SlotIndex Start = ParentI->start;
602    AssignI.advanceTo(Start);
603    do {
604      unsigned RegIdx;
605      SlotIndex End = ParentI->end;
606      if (!AssignI.valid()) {
607        RegIdx = 0;
608      } else if (AssignI.start() <= Start) {
609        RegIdx = AssignI.value();
610        if (AssignI.stop() < End) {
611          End = AssignI.stop();
612          ++AssignI;
613        }
614      } else {
615        RegIdx = 0;
616        End = std::min(End, AssignI.start());
617      }
618
619      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
620      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
621      LiveInterval *LI = Edit->get(RegIdx);
622
623      // Check for a simply defined value that can be blitted directly.
624      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
625        DEBUG(dbgs() << ':' << VNI->id);
626        LI->addRange(LiveRange(Start, End, VNI));
627        Start = End;
628        continue;
629      }
630
631      // Skip rematerialized values, we need to use extendRange() and
632      // extendPHIKillRanges() to completely recompute the live ranges.
633      if (Edit->didRematerialize(ParentVNI)) {
634        DEBUG(dbgs() << "(remat)");
635        Skipped = true;
636        Start = End;
637        continue;
638      }
639
640      LiveRangeCalc &LRC = getLRCalc(RegIdx);
641
642      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
643      // so the live range is accurate. Add live-in blocks in [Start;End) to the
644      // LiveInBlocks.
645      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
646      SlotIndex BlockStart, BlockEnd;
647      tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
648
649      // The first block may be live-in, or it may have its own def.
650      if (Start != BlockStart) {
651        VNInfo *VNI = LI->extendInBlock(BlockStart,
652                                        std::min(BlockEnd, End).getPrevSlot());
653        assert(VNI && "Missing def for complex mapped value");
654        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
655        // MBB has its own def. Is it also live-out?
656        if (BlockEnd <= End)
657          LRC.setLiveOutValue(MBB, VNI);
658
659        // Skip to the next block for live-in.
660        ++MBB;
661        BlockStart = BlockEnd;
662      }
663
664      // Handle the live-in blocks covered by [Start;End).
665      assert(Start <= BlockStart && "Expected live-in block");
666      while (BlockStart < End) {
667        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
668        BlockEnd = LIS.getMBBEndIdx(MBB);
669        if (BlockStart == ParentVNI->def) {
670          // This block has the def of a parent PHI, so it isn't live-in.
671          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
672          VNInfo *VNI = LI->extendInBlock(BlockStart,
673                                         std::min(BlockEnd, End).getPrevSlot());
674          assert(VNI && "Missing def for complex mapped parent PHI");
675          if (End >= BlockEnd)
676            LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
677        } else {
678          // This block needs a live-in value.  The last block covered may not
679          // be live-out.
680          if (End < BlockEnd)
681            LRC.addLiveInBlock(LI, MDT[MBB], End);
682          else {
683            // Live-through, and we don't know the value.
684            LRC.addLiveInBlock(LI, MDT[MBB]);
685            LRC.setLiveOutValue(MBB, 0);
686          }
687        }
688        BlockStart = BlockEnd;
689        ++MBB;
690      }
691      Start = End;
692    } while (Start != ParentI->end);
693    DEBUG(dbgs() << '\n');
694  }
695
696  LRCalc[0].calculateValues(LIS.getSlotIndexes(), &MDT,
697                            &LIS.getVNInfoAllocator());
698  if (SpillMode)
699    LRCalc[1].calculateValues(LIS.getSlotIndexes(), &MDT,
700                              &LIS.getVNInfoAllocator());
701
702  return Skipped;
703}
704
705void SplitEditor::extendPHIKillRanges() {
706    // Extend live ranges to be live-out for successor PHI values.
707  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
708       E = Edit->getParent().vni_end(); I != E; ++I) {
709    const VNInfo *PHIVNI = *I;
710    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
711      continue;
712    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
713    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
714    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
715         PE = MBB->pred_end(); PI != PE; ++PI) {
716      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
717      // The predecessor may not have a live-out value. That is OK, like an
718      // undef PHI operand.
719      if (Edit->getParent().liveAt(End)) {
720        assert(RegAssign.lookup(End) == RegIdx &&
721               "Different register assignment in phi predecessor");
722        extendRange(RegIdx, End);
723      }
724    }
725  }
726}
727
728/// rewriteAssigned - Rewrite all uses of Edit->getReg().
729void SplitEditor::rewriteAssigned(bool ExtendRanges) {
730  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
731       RE = MRI.reg_end(); RI != RE;) {
732    MachineOperand &MO = RI.getOperand();
733    MachineInstr *MI = MO.getParent();
734    ++RI;
735    // LiveDebugVariables should have handled all DBG_VALUE instructions.
736    if (MI->isDebugValue()) {
737      DEBUG(dbgs() << "Zapping " << *MI);
738      MO.setReg(0);
739      continue;
740    }
741
742    // <undef> operands don't really read the register, so it doesn't matter
743    // which register we choose.  When the use operand is tied to a def, we must
744    // use the same register as the def, so just do that always.
745    SlotIndex Idx = LIS.getInstructionIndex(MI);
746    if (MO.isDef() || MO.isUndef())
747      Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
748
749    // Rewrite to the mapped register at Idx.
750    unsigned RegIdx = RegAssign.lookup(Idx);
751    MO.setReg(Edit->get(RegIdx)->reg);
752    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
753                 << Idx << ':' << RegIdx << '\t' << *MI);
754
755    // Extend liveness to Idx if the instruction reads reg.
756    if (!ExtendRanges || MO.isUndef())
757      continue;
758
759    // Skip instructions that don't read Reg.
760    if (MO.isDef()) {
761      if (!MO.getSubReg() && !MO.isEarlyClobber())
762        continue;
763      // We may wan't to extend a live range for a partial redef, or for a use
764      // tied to an early clobber.
765      Idx = Idx.getPrevSlot();
766      if (!Edit->getParent().liveAt(Idx))
767        continue;
768    } else
769      Idx = Idx.getUseIndex();
770
771    extendRange(RegIdx, Idx);
772  }
773}
774
775void SplitEditor::deleteRematVictims() {
776  SmallVector<MachineInstr*, 8> Dead;
777  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
778    LiveInterval *LI = *I;
779    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
780           LII != LIE; ++LII) {
781      // Dead defs end at the store slot.
782      if (LII->end != LII->valno->def.getNextSlot())
783        continue;
784      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
785      assert(MI && "Missing instruction for dead def");
786      MI->addRegisterDead(LI->reg, &TRI);
787
788      if (!MI->allDefsAreDead())
789        continue;
790
791      DEBUG(dbgs() << "All defs dead: " << *MI);
792      Dead.push_back(MI);
793    }
794  }
795
796  if (Dead.empty())
797    return;
798
799  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
800}
801
802void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
803  ++NumFinished;
804
805  // At this point, the live intervals in Edit contain VNInfos corresponding to
806  // the inserted copies.
807
808  // Add the original defs from the parent interval.
809  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
810         E = Edit->getParent().vni_end(); I != E; ++I) {
811    const VNInfo *ParentVNI = *I;
812    if (ParentVNI->isUnused())
813      continue;
814    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
815    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
816    VNI->setIsPHIDef(ParentVNI->isPHIDef());
817    VNI->setCopy(ParentVNI->getCopy());
818
819    // Mark rematted values as complex everywhere to force liveness computation.
820    // The new live ranges may be truncated.
821    if (Edit->didRematerialize(ParentVNI))
822      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
823        markComplexMapped(i, ParentVNI);
824  }
825
826  // Transfer the simply mapped values, check if any are skipped.
827  bool Skipped = transferValues();
828  if (Skipped)
829    extendPHIKillRanges();
830  else
831    ++NumSimple;
832
833  // Rewrite virtual registers, possibly extending ranges.
834  rewriteAssigned(Skipped);
835
836  // Delete defs that were rematted everywhere.
837  if (Skipped)
838    deleteRematVictims();
839
840  // Get rid of unused values and set phi-kill flags.
841  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
842    (*I)->RenumberValues(LIS);
843
844  // Provide a reverse mapping from original indices to Edit ranges.
845  if (LRMap) {
846    LRMap->clear();
847    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
848      LRMap->push_back(i);
849  }
850
851  // Now check if any registers were separated into multiple components.
852  ConnectedVNInfoEqClasses ConEQ(LIS);
853  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
854    // Don't use iterators, they are invalidated by create() below.
855    LiveInterval *li = Edit->get(i);
856    unsigned NumComp = ConEQ.Classify(li);
857    if (NumComp <= 1)
858      continue;
859    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
860    SmallVector<LiveInterval*, 8> dups;
861    dups.push_back(li);
862    for (unsigned j = 1; j != NumComp; ++j)
863      dups.push_back(&Edit->create(LIS, VRM));
864    ConEQ.Distribute(&dups[0], MRI);
865    // The new intervals all map back to i.
866    if (LRMap)
867      LRMap->resize(Edit->size(), i);
868  }
869
870  // Calculate spill weight and allocation hints for new intervals.
871  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
872
873  assert(!LRMap || LRMap->size() == Edit->size());
874}
875
876
877//===----------------------------------------------------------------------===//
878//                            Single Block Splitting
879//===----------------------------------------------------------------------===//
880
881bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
882                                           bool SingleInstrs) const {
883  // Always split for multiple instructions.
884  if (!BI.isOneInstr())
885    return true;
886  // Don't split for single instructions unless explicitly requested.
887  if (!SingleInstrs)
888    return false;
889  // Splitting a live-through range always makes progress.
890  if (BI.LiveIn && BI.LiveOut)
891    return true;
892  // No point in isolating a copy. It has no register class constraints.
893  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
894    return false;
895  // Finally, don't isolate an end point that was created by earlier splits.
896  return isOriginalEndpoint(BI.FirstInstr);
897}
898
899void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
900  openIntv();
901  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
902  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
903    LastSplitPoint));
904  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
905    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
906  } else {
907      // The last use is after the last valid split point.
908    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
909    useIntv(SegStart, SegStop);
910    overlapIntv(SegStop, BI.LastInstr);
911  }
912}
913
914
915//===----------------------------------------------------------------------===//
916//                    Global Live Range Splitting Support
917//===----------------------------------------------------------------------===//
918
919// These methods support a method of global live range splitting that uses a
920// global algorithm to decide intervals for CFG edges. They will insert split
921// points and color intervals in basic blocks while avoiding interference.
922//
923// Note that splitSingleBlock is also useful for blocks where both CFG edges
924// are on the stack.
925
926void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
927                                        unsigned IntvIn, SlotIndex LeaveBefore,
928                                        unsigned IntvOut, SlotIndex EnterAfter){
929  SlotIndex Start, Stop;
930  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
931
932  DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
933               << ") intf " << LeaveBefore << '-' << EnterAfter
934               << ", live-through " << IntvIn << " -> " << IntvOut);
935
936  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
937
938  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
939  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
940  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
941
942  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
943
944  if (!IntvOut) {
945    DEBUG(dbgs() << ", spill on entry.\n");
946    //
947    //        <<<<<<<<<    Possible LeaveBefore interference.
948    //    |-----------|    Live through.
949    //    -____________    Spill on entry.
950    //
951    selectIntv(IntvIn);
952    SlotIndex Idx = leaveIntvAtTop(*MBB);
953    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
954    (void)Idx;
955    return;
956  }
957
958  if (!IntvIn) {
959    DEBUG(dbgs() << ", reload on exit.\n");
960    //
961    //    >>>>>>>          Possible EnterAfter interference.
962    //    |-----------|    Live through.
963    //    ___________--    Reload on exit.
964    //
965    selectIntv(IntvOut);
966    SlotIndex Idx = enterIntvAtEnd(*MBB);
967    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
968    (void)Idx;
969    return;
970  }
971
972  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
973    DEBUG(dbgs() << ", straight through.\n");
974    //
975    //    |-----------|    Live through.
976    //    -------------    Straight through, same intv, no interference.
977    //
978    selectIntv(IntvOut);
979    useIntv(Start, Stop);
980    return;
981  }
982
983  // We cannot legally insert splits after LSP.
984  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
985  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
986
987  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
988                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
989    DEBUG(dbgs() << ", switch avoiding interference.\n");
990    //
991    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
992    //    |-----------|    Live through.
993    //    ------=======    Switch intervals between interference.
994    //
995    selectIntv(IntvOut);
996    SlotIndex Idx;
997    if (LeaveBefore && LeaveBefore < LSP) {
998      Idx = enterIntvBefore(LeaveBefore);
999      useIntv(Idx, Stop);
1000    } else {
1001      Idx = enterIntvAtEnd(*MBB);
1002    }
1003    selectIntv(IntvIn);
1004    useIntv(Start, Idx);
1005    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1006    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1007    return;
1008  }
1009
1010  DEBUG(dbgs() << ", create local intv for interference.\n");
1011  //
1012  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1013  //    |-----------|    Live through.
1014  //    ==---------==    Switch intervals before/after interference.
1015  //
1016  assert(LeaveBefore <= EnterAfter && "Missed case");
1017
1018  selectIntv(IntvOut);
1019  SlotIndex Idx = enterIntvAfter(EnterAfter);
1020  useIntv(Idx, Stop);
1021  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1022
1023  selectIntv(IntvIn);
1024  Idx = leaveIntvBefore(LeaveBefore);
1025  useIntv(Start, Idx);
1026  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1027}
1028
1029
1030void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1031                                  unsigned IntvIn, SlotIndex LeaveBefore) {
1032  SlotIndex Start, Stop;
1033  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1034
1035  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1036               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1037               << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1038               << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1039
1040  assert(IntvIn && "Must have register in");
1041  assert(BI.LiveIn && "Must be live-in");
1042  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1043
1044  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1045    DEBUG(dbgs() << " before interference.\n");
1046    //
1047    //               <<<    Interference after kill.
1048    //     |---o---x   |    Killed in block.
1049    //     =========        Use IntvIn everywhere.
1050    //
1051    selectIntv(IntvIn);
1052    useIntv(Start, BI.LastInstr);
1053    return;
1054  }
1055
1056  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1057
1058  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1059    //
1060    //               <<<    Possible interference after last use.
1061    //     |---o---o---|    Live-out on stack.
1062    //     =========____    Leave IntvIn after last use.
1063    //
1064    //                 <    Interference after last use.
1065    //     |---o---o--o|    Live-out on stack, late last use.
1066    //     ============     Copy to stack after LSP, overlap IntvIn.
1067    //            \_____    Stack interval is live-out.
1068    //
1069    if (BI.LastInstr < LSP) {
1070      DEBUG(dbgs() << ", spill after last use before interference.\n");
1071      selectIntv(IntvIn);
1072      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1073      useIntv(Start, Idx);
1074      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1075    } else {
1076      DEBUG(dbgs() << ", spill before last split point.\n");
1077      selectIntv(IntvIn);
1078      SlotIndex Idx = leaveIntvBefore(LSP);
1079      overlapIntv(Idx, BI.LastInstr);
1080      useIntv(Start, Idx);
1081      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1082    }
1083    return;
1084  }
1085
1086  // The interference is overlapping somewhere we wanted to use IntvIn. That
1087  // means we need to create a local interval that can be allocated a
1088  // different register.
1089  unsigned LocalIntv = openIntv();
1090  (void)LocalIntv;
1091  DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1092
1093  if (!BI.LiveOut || BI.LastInstr < LSP) {
1094    //
1095    //           <<<<<<<    Interference overlapping uses.
1096    //     |---o---o---|    Live-out on stack.
1097    //     =====----____    Leave IntvIn before interference, then spill.
1098    //
1099    SlotIndex To = leaveIntvAfter(BI.LastInstr);
1100    SlotIndex From = enterIntvBefore(LeaveBefore);
1101    useIntv(From, To);
1102    selectIntv(IntvIn);
1103    useIntv(Start, From);
1104    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1105    return;
1106  }
1107
1108  //           <<<<<<<    Interference overlapping uses.
1109  //     |---o---o--o|    Live-out on stack, late last use.
1110  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1111  //            \_____    Stack interval is live-out.
1112  //
1113  SlotIndex To = leaveIntvBefore(LSP);
1114  overlapIntv(To, BI.LastInstr);
1115  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1116  useIntv(From, To);
1117  selectIntv(IntvIn);
1118  useIntv(Start, From);
1119  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1120}
1121
1122void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1123                                   unsigned IntvOut, SlotIndex EnterAfter) {
1124  SlotIndex Start, Stop;
1125  tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1126
1127  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1128               << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1129               << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1130               << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1131
1132  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1133
1134  assert(IntvOut && "Must have register out");
1135  assert(BI.LiveOut && "Must be live-out");
1136  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1137
1138  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1139    DEBUG(dbgs() << " after interference.\n");
1140    //
1141    //    >>>>             Interference before def.
1142    //    |   o---o---|    Defined in block.
1143    //        =========    Use IntvOut everywhere.
1144    //
1145    selectIntv(IntvOut);
1146    useIntv(BI.FirstInstr, Stop);
1147    return;
1148  }
1149
1150  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1151    DEBUG(dbgs() << ", reload after interference.\n");
1152    //
1153    //    >>>>             Interference before def.
1154    //    |---o---o---|    Live-through, stack-in.
1155    //    ____=========    Enter IntvOut before first use.
1156    //
1157    selectIntv(IntvOut);
1158    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1159    useIntv(Idx, Stop);
1160    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1161    return;
1162  }
1163
1164  // The interference is overlapping somewhere we wanted to use IntvOut. That
1165  // means we need to create a local interval that can be allocated a
1166  // different register.
1167  DEBUG(dbgs() << ", interference overlaps uses.\n");
1168  //
1169  //    >>>>>>>          Interference overlapping uses.
1170  //    |---o---o---|    Live-through, stack-in.
1171  //    ____---======    Create local interval for interference range.
1172  //
1173  selectIntv(IntvOut);
1174  SlotIndex Idx = enterIntvAfter(EnterAfter);
1175  useIntv(Idx, Stop);
1176  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1177
1178  openIntv();
1179  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1180  useIntv(From, Idx);
1181}
1182