SplitKit.cpp revision c8ec765551119d5bdcfeebdaeb869242c098bdc5
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/CalcSpillWeights.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30
31using namespace llvm;
32
33static cl::opt<bool>
34AllowSplit("spiller-splits-edges",
35           cl::desc("Allow critical edge splitting during spilling"));
36
37STATISTIC(NumFinished, "Number of splits finished");
38STATISTIC(NumSimple,   "Number of splits that were simple");
39
40//===----------------------------------------------------------------------===//
41//                                 Split Analysis
42//===----------------------------------------------------------------------===//
43
44SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
45                             const LiveIntervals &lis,
46                             const MachineLoopInfo &mli)
47  : MF(vrm.getMachineFunction()),
48    VRM(vrm),
49    LIS(lis),
50    Loops(mli),
51    TII(*MF.getTarget().getInstrInfo()),
52    CurLI(0) {}
53
54void SplitAnalysis::clear() {
55  UseSlots.clear();
56  UsingInstrs.clear();
57  UsingBlocks.clear();
58  LiveBlocks.clear();
59  CurLI = 0;
60}
61
62bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
63  MachineBasicBlock *T, *F;
64  SmallVector<MachineOperand, 4> Cond;
65  return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
66}
67
68/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
69void SplitAnalysis::analyzeUses() {
70  const MachineRegisterInfo &MRI = MF.getRegInfo();
71  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg),
72       E = MRI.reg_end(); I != E; ++I) {
73    MachineOperand &MO = I.getOperand();
74    if (MO.isUse() && MO.isUndef())
75      continue;
76    MachineInstr *MI = MO.getParent();
77    if (MI->isDebugValue() || !UsingInstrs.insert(MI))
78      continue;
79    UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
80    MachineBasicBlock *MBB = MI->getParent();
81    UsingBlocks[MBB]++;
82  }
83  array_pod_sort(UseSlots.begin(), UseSlots.end());
84
85  // Compute per-live block info.
86  if (!calcLiveBlockInfo()) {
87    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
88    // I am looking at you, SimpleRegisterCoalescing!
89    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
90    const_cast<LiveIntervals&>(LIS)
91      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
92    LiveBlocks.clear();
93    bool fixed = calcLiveBlockInfo();
94    (void)fixed;
95    assert(fixed && "Couldn't fix broken live interval");
96  }
97
98  DEBUG(dbgs() << "Analyze counted "
99               << UsingInstrs.size() << " instrs, "
100               << UsingBlocks.size() << " blocks, "
101               << LiveBlocks.size() << " spanned.\n");
102}
103
104/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
105/// where CurLI is live.
106bool SplitAnalysis::calcLiveBlockInfo() {
107  if (CurLI->empty())
108    return true;
109
110  LiveInterval::const_iterator LVI = CurLI->begin();
111  LiveInterval::const_iterator LVE = CurLI->end();
112
113  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
114  UseI = UseSlots.begin();
115  UseE = UseSlots.end();
116
117  // Loop over basic blocks where CurLI is live.
118  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
119  for (;;) {
120    BlockInfo BI;
121    BI.MBB = MFI;
122    tie(BI.Start, BI.Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
123
124    // The last split point is the latest possible insertion point that dominates
125    // all successor blocks. If interference reaches LastSplitPoint, it is not
126    // possible to insert a split or reload that makes CurLI live in the
127    // outgoing bundle.
128    MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB);
129    if (LSP == BI.MBB->end())
130      BI.LastSplitPoint = BI.Stop;
131    else
132      BI.LastSplitPoint = LIS.getInstructionIndex(LSP);
133
134    // LVI is the first live segment overlapping MBB.
135    BI.LiveIn = LVI->start <= BI.Start;
136    if (!BI.LiveIn)
137      BI.Def = LVI->start;
138
139    // Find the first and last uses in the block.
140    BI.Uses = hasUses(MFI);
141    if (BI.Uses && UseI != UseE) {
142      BI.FirstUse = *UseI;
143      assert(BI.FirstUse >= BI.Start);
144      do ++UseI;
145      while (UseI != UseE && *UseI < BI.Stop);
146      BI.LastUse = UseI[-1];
147      assert(BI.LastUse < BI.Stop);
148    }
149
150    // Look for gaps in the live range.
151    bool hasGap = false;
152    BI.LiveOut = true;
153    while (LVI->end < BI.Stop) {
154      SlotIndex LastStop = LVI->end;
155      if (++LVI == LVE || LVI->start >= BI.Stop) {
156        BI.Kill = LastStop;
157        BI.LiveOut = false;
158        break;
159      }
160      if (LastStop < LVI->start) {
161        hasGap = true;
162        BI.Kill = LastStop;
163        BI.Def = LVI->start;
164      }
165    }
166
167    // Don't set LiveThrough when the block has a gap.
168    BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
169    LiveBlocks.push_back(BI);
170
171    // FIXME: This should never happen. The live range stops or starts without a
172    // corresponding use. An earlier pass did something wrong.
173    if (!BI.LiveThrough && !BI.Uses)
174      return false;
175
176    // LVI is now at LVE or LVI->end >= Stop.
177    if (LVI == LVE)
178      break;
179
180    // Live segment ends exactly at Stop. Move to the next segment.
181    if (LVI->end == BI.Stop && ++LVI == LVE)
182      break;
183
184    // Pick the next basic block.
185    if (LVI->start < BI.Stop)
186      ++MFI;
187    else
188      MFI = LIS.getMBBFromIndex(LVI->start);
189  }
190  return true;
191}
192
193bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
194  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
195  const LiveInterval &Orig = LIS.getInterval(OrigReg);
196  assert(!Orig.empty() && "Splitting empty interval?");
197  LiveInterval::const_iterator I = Orig.find(Idx);
198
199  // Range containing Idx should begin at Idx.
200  if (I != Orig.end() && I->start <= Idx)
201    return I->start == Idx;
202
203  // Range does not contain Idx, previous must end at Idx.
204  return I != Orig.begin() && (--I)->end == Idx;
205}
206
207void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
208  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
209    unsigned count = UsingBlocks.lookup(*I);
210    OS << " BB#" << (*I)->getNumber();
211    if (count)
212      OS << '(' << count << ')';
213  }
214}
215
216void SplitAnalysis::analyze(const LiveInterval *li) {
217  clear();
218  CurLI = li;
219  analyzeUses();
220}
221
222
223//===----------------------------------------------------------------------===//
224//                               Split Editor
225//===----------------------------------------------------------------------===//
226
227/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
228SplitEditor::SplitEditor(SplitAnalysis &sa,
229                         LiveIntervals &lis,
230                         VirtRegMap &vrm,
231                         MachineDominatorTree &mdt)
232  : SA(sa), LIS(lis), VRM(vrm),
233    MRI(vrm.getMachineFunction().getRegInfo()),
234    MDT(mdt),
235    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
236    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
237    Edit(0),
238    OpenIdx(0),
239    RegAssign(Allocator)
240{}
241
242void SplitEditor::reset(LiveRangeEdit &lre) {
243  Edit = &lre;
244  OpenIdx = 0;
245  RegAssign.clear();
246  Values.clear();
247
248  // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
249  LiveOutSeen.clear();
250
251  // We don't need an AliasAnalysis since we will only be performing
252  // cheap-as-a-copy remats anyway.
253  Edit->anyRematerializable(LIS, TII, 0);
254}
255
256void SplitEditor::dump() const {
257  if (RegAssign.empty()) {
258    dbgs() << " empty\n";
259    return;
260  }
261
262  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
263    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
264  dbgs() << '\n';
265}
266
267VNInfo *SplitEditor::defValue(unsigned RegIdx,
268                              const VNInfo *ParentVNI,
269                              SlotIndex Idx) {
270  assert(ParentVNI && "Mapping  NULL value");
271  assert(Idx.isValid() && "Invalid SlotIndex");
272  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
273  LiveInterval *LI = Edit->get(RegIdx);
274
275  // Create a new value.
276  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
277
278  // Use insert for lookup, so we can add missing values with a second lookup.
279  std::pair<ValueMap::iterator, bool> InsP =
280    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
281
282  // This was the first time (RegIdx, ParentVNI) was mapped.
283  // Keep it as a simple def without any liveness.
284  if (InsP.second)
285    return VNI;
286
287  // If the previous value was a simple mapping, add liveness for it now.
288  if (VNInfo *OldVNI = InsP.first->second) {
289    SlotIndex Def = OldVNI->def;
290    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
291    // No longer a simple mapping.
292    InsP.first->second = 0;
293  }
294
295  // This is a complex mapping, add liveness for VNI
296  SlotIndex Def = VNI->def;
297  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
298
299  return VNI;
300}
301
302void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
303  assert(ParentVNI && "Mapping  NULL value");
304  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
305
306  // ParentVNI was either unmapped or already complex mapped. Either way.
307  if (!VNI)
308    return;
309
310  // This was previously a single mapping. Make sure the old def is represented
311  // by a trivial live range.
312  SlotIndex Def = VNI->def;
313  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
314  VNI = 0;
315}
316
317// extendRange - Extend the live range to reach Idx.
318// Potentially create phi-def values.
319void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
320  assert(Idx.isValid() && "Invalid SlotIndex");
321  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
322  assert(IdxMBB && "No MBB at Idx");
323  LiveInterval *LI = Edit->get(RegIdx);
324
325  // Is there a def in the same MBB we can extend?
326  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
327    return;
328
329  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
330  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
331  // Perform a search for all predecessor blocks where we know the dominating
332  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
333
334  // Initialize the live-out cache the first time it is needed.
335  if (LiveOutSeen.empty()) {
336    unsigned N = VRM.getMachineFunction().getNumBlockIDs();
337    LiveOutSeen.resize(N);
338    LiveOutCache.resize(N);
339  }
340
341  // Blocks where LI should be live-in.
342  SmallVector<MachineDomTreeNode*, 16> LiveIn;
343  LiveIn.push_back(MDT[IdxMBB]);
344
345  // Remember if we have seen more than one value.
346  bool UniqueVNI = true;
347  VNInfo *IdxVNI = 0;
348
349  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
350  for (unsigned i = 0; i != LiveIn.size(); ++i) {
351    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
352    assert(!MBB->pred_empty() && "Value live-in to entry block?");
353    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
354           PE = MBB->pred_end(); PI != PE; ++PI) {
355       MachineBasicBlock *Pred = *PI;
356       LiveOutPair &LOP = LiveOutCache[Pred];
357
358       // Is this a known live-out block?
359       if (LiveOutSeen.test(Pred->getNumber())) {
360         if (VNInfo *VNI = LOP.first) {
361           if (IdxVNI && IdxVNI != VNI)
362             UniqueVNI = false;
363           IdxVNI = VNI;
364         }
365         continue;
366       }
367
368       // First time. LOP is garbage and must be cleared below.
369       LiveOutSeen.set(Pred->getNumber());
370
371       // Does Pred provide a live-out value?
372       SlotIndex Start, Last;
373       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
374       Last = Last.getPrevSlot();
375       VNInfo *VNI = LI->extendInBlock(Start, Last);
376       LOP.first = VNI;
377       if (VNI) {
378         LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
379         if (IdxVNI && IdxVNI != VNI)
380           UniqueVNI = false;
381         IdxVNI = VNI;
382         continue;
383       }
384       LOP.second = 0;
385
386       // No, we need a live-in value for Pred as well
387       if (Pred != IdxMBB)
388         LiveIn.push_back(MDT[Pred]);
389       else
390         UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help.
391    }
392  }
393
394  // We may need to add phi-def values to preserve the SSA form.
395  if (UniqueVNI) {
396    LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]);
397    // Update LiveOutCache, but skip IdxMBB at LiveIn[0].
398    for (unsigned i = 1, e = LiveIn.size(); i != e; ++i)
399      LiveOutCache[LiveIn[i]->getBlock()] = LOP;
400  } else
401    IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB);
402
403  // Since we went through the trouble of a full BFS visiting all reaching defs,
404  // the values in LiveIn are now accurate. No more phi-defs are needed
405  // for these blocks, so we can color the live ranges.
406  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
407    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
408    SlotIndex Start = LIS.getMBBStartIdx(MBB);
409    VNInfo *VNI = LiveOutCache[MBB].first;
410
411    // Anything in LiveIn other than IdxMBB is live-through.
412    // In IdxMBB, we should stop at Idx unless the same value is live-out.
413    if (MBB == IdxMBB && IdxVNI != VNI)
414      LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
415    else
416      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
417  }
418}
419
420VNInfo *SplitEditor::updateSSA(unsigned RegIdx,
421                               SmallVectorImpl<MachineDomTreeNode*> &LiveIn,
422                               SlotIndex Idx,
423                               const MachineBasicBlock *IdxMBB) {
424  // This is essentially the same iterative algorithm that SSAUpdater uses,
425  // except we already have a dominator tree, so we don't have to recompute it.
426  LiveInterval *LI = Edit->get(RegIdx);
427  VNInfo *IdxVNI = 0;
428  unsigned Changes;
429  do {
430    Changes = 0;
431    // Propagate live-out values down the dominator tree, inserting phi-defs
432    // when necessary. Since LiveIn was created by a BFS, going backwards makes
433    // it more likely for us to visit immediate dominators before their
434    // children.
435    for (unsigned i = LiveIn.size(); i; --i) {
436      MachineDomTreeNode *Node = LiveIn[i-1];
437      MachineBasicBlock *MBB = Node->getBlock();
438      MachineDomTreeNode *IDom = Node->getIDom();
439      LiveOutPair IDomValue;
440
441      // We need a live-in value to a block with no immediate dominator?
442      // This is probably an unreachable block that has survived somehow.
443      bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
444
445      // IDom dominates all of our predecessors, but it may not be the immediate
446      // dominator. Check if any of them have live-out values that are properly
447      // dominated by IDom. If so, we need a phi-def here.
448      if (!needPHI) {
449        IDomValue = LiveOutCache[IDom->getBlock()];
450        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
451               PE = MBB->pred_end(); PI != PE; ++PI) {
452          LiveOutPair Value = LiveOutCache[*PI];
453          if (!Value.first || Value.first == IDomValue.first)
454            continue;
455          // This predecessor is carrying something other than IDomValue.
456          // It could be because IDomValue hasn't propagated yet, or it could be
457          // because MBB is in the dominance frontier of that value.
458          if (MDT.dominates(IDom, Value.second)) {
459            needPHI = true;
460            break;
461          }
462        }
463      }
464
465      // Create a phi-def if required.
466      if (needPHI) {
467        ++Changes;
468        SlotIndex Start = LIS.getMBBStartIdx(MBB);
469        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
470        VNI->setIsPHIDef(true);
471        // We no longer need LI to be live-in.
472        LiveIn.erase(LiveIn.begin()+(i-1));
473        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
474        if (MBB == IdxMBB)
475          IdxVNI = VNI;
476        // Check if we need to update live-out info.
477        LiveOutPair &LOP = LiveOutCache[MBB];
478        if (LOP.second == Node || !LiveOutSeen.test(MBB->getNumber())) {
479          // We already have a live-out defined in MBB, so this must be IdxMBB.
480          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
481          LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
482        } else {
483          // This phi-def is also live-out, so color the whole block.
484          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
485          LOP = LiveOutPair(VNI, Node);
486        }
487      } else if (IDomValue.first) {
488        // No phi-def here. Remember incoming value for IdxMBB.
489        if (MBB == IdxMBB) {
490          IdxVNI = IDomValue.first;
491          // IdxMBB need not be live-out.
492          if (!LiveOutSeen.test(MBB->getNumber()))
493            continue;
494        }
495        assert(LiveOutSeen.test(MBB->getNumber()) && "Expected live-out block");
496        // Propagate IDomValue if needed:
497        // MBB is live-out and doesn't define its own value.
498        LiveOutPair &LOP = LiveOutCache[MBB];
499        if (LOP.second != Node && LOP.first != IDomValue.first) {
500          ++Changes;
501          LOP = IDomValue;
502        }
503      }
504    }
505  } while (Changes);
506
507  assert(IdxVNI && "Didn't find value for Idx");
508  return IdxVNI;
509}
510
511VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
512                                   VNInfo *ParentVNI,
513                                   SlotIndex UseIdx,
514                                   MachineBasicBlock &MBB,
515                                   MachineBasicBlock::iterator I) {
516  MachineInstr *CopyMI = 0;
517  SlotIndex Def;
518  LiveInterval *LI = Edit->get(RegIdx);
519
520  // Attempt cheap-as-a-copy rematerialization.
521  LiveRangeEdit::Remat RM(ParentVNI);
522  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
523    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
524  } else {
525    // Can't remat, just insert a copy from parent.
526    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
527               .addReg(Edit->getReg());
528    Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
529  }
530
531  // Define the value in Reg.
532  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
533  VNI->setCopy(CopyMI);
534  return VNI;
535}
536
537/// Create a new virtual register and live interval.
538void SplitEditor::openIntv() {
539  assert(!OpenIdx && "Previous LI not closed before openIntv");
540
541  // Create the complement as index 0.
542  if (Edit->empty())
543    Edit->create(LIS, VRM);
544
545  // Create the open interval.
546  OpenIdx = Edit->size();
547  Edit->create(LIS, VRM);
548}
549
550SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
551  assert(OpenIdx && "openIntv not called before enterIntvBefore");
552  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
553  Idx = Idx.getBaseIndex();
554  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
555  if (!ParentVNI) {
556    DEBUG(dbgs() << ": not live\n");
557    return Idx;
558  }
559  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
560  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
561  assert(MI && "enterIntvBefore called with invalid index");
562
563  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
564  return VNI->def;
565}
566
567SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
568  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
569  SlotIndex End = LIS.getMBBEndIdx(&MBB);
570  SlotIndex Last = End.getPrevSlot();
571  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
572  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
573  if (!ParentVNI) {
574    DEBUG(dbgs() << ": not live\n");
575    return End;
576  }
577  DEBUG(dbgs() << ": valno " << ParentVNI->id);
578  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
579                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
580  RegAssign.insert(VNI->def, End, OpenIdx);
581  DEBUG(dump());
582  return VNI->def;
583}
584
585/// useIntv - indicate that all instructions in MBB should use OpenLI.
586void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
587  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
588}
589
590void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
591  assert(OpenIdx && "openIntv not called before useIntv");
592  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
593  RegAssign.insert(Start, End, OpenIdx);
594  DEBUG(dump());
595}
596
597SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
598  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
599  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
600
601  // The interval must be live beyond the instruction at Idx.
602  Idx = Idx.getBoundaryIndex();
603  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
604  if (!ParentVNI) {
605    DEBUG(dbgs() << ": not live\n");
606    return Idx.getNextSlot();
607  }
608  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
609
610  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
611  assert(MI && "No instruction at index");
612  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
613                              llvm::next(MachineBasicBlock::iterator(MI)));
614  return VNI->def;
615}
616
617SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
618  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
619  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
620
621  // The interval must be live into the instruction at Idx.
622  Idx = Idx.getBoundaryIndex();
623  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
624  if (!ParentVNI) {
625    DEBUG(dbgs() << ": not live\n");
626    return Idx.getNextSlot();
627  }
628  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
629
630  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
631  assert(MI && "No instruction at index");
632  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
633  return VNI->def;
634}
635
636SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
637  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
638  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
639  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
640
641  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
642  if (!ParentVNI) {
643    DEBUG(dbgs() << ": not live\n");
644    return Start;
645  }
646
647  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
648                              MBB.SkipPHIsAndLabels(MBB.begin()));
649  RegAssign.insert(Start, VNI->def, OpenIdx);
650  DEBUG(dump());
651  return VNI->def;
652}
653
654void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
655  assert(OpenIdx && "openIntv not called before overlapIntv");
656  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
657  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
658         "Parent changes value in extended range");
659  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
660         "Range cannot span basic blocks");
661
662  // The complement interval will be extended as needed by extendRange().
663  markComplexMapped(0, ParentVNI);
664  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
665  RegAssign.insert(Start, End, OpenIdx);
666  DEBUG(dump());
667}
668
669/// closeIntv - Indicate that we are done editing the currently open
670/// LiveInterval, and ranges can be trimmed.
671void SplitEditor::closeIntv() {
672  assert(OpenIdx && "openIntv not called before closeIntv");
673  OpenIdx = 0;
674}
675
676/// transferSimpleValues - Transfer all simply defined values to the new live
677/// ranges.
678/// Values that were rematerialized or that have multiple defs are left alone.
679bool SplitEditor::transferSimpleValues() {
680  bool Skipped = false;
681  RegAssignMap::const_iterator AssignI = RegAssign.begin();
682  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
683         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
684    DEBUG(dbgs() << "  blit " << *ParentI << ':');
685    VNInfo *ParentVNI = ParentI->valno;
686    // RegAssign has holes where RegIdx 0 should be used.
687    SlotIndex Start = ParentI->start;
688    AssignI.advanceTo(Start);
689    do {
690      unsigned RegIdx;
691      SlotIndex End = ParentI->end;
692      if (!AssignI.valid()) {
693        RegIdx = 0;
694      } else if (AssignI.start() <= Start) {
695        RegIdx = AssignI.value();
696        if (AssignI.stop() < End) {
697          End = AssignI.stop();
698          ++AssignI;
699        }
700      } else {
701        RegIdx = 0;
702        End = std::min(End, AssignI.start());
703      }
704      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
705      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
706        DEBUG(dbgs() << ':' << VNI->id);
707        Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI));
708      } else
709        Skipped = true;
710      Start = End;
711    } while (Start != ParentI->end);
712    DEBUG(dbgs() << '\n');
713  }
714  return Skipped;
715}
716
717void SplitEditor::extendPHIKillRanges() {
718    // Extend live ranges to be live-out for successor PHI values.
719  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
720       E = Edit->getParent().vni_end(); I != E; ++I) {
721    const VNInfo *PHIVNI = *I;
722    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
723      continue;
724    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
725    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
726    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
727         PE = MBB->pred_end(); PI != PE; ++PI) {
728      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
729      // The predecessor may not have a live-out value. That is OK, like an
730      // undef PHI operand.
731      if (Edit->getParent().liveAt(End)) {
732        assert(RegAssign.lookup(End) == RegIdx &&
733               "Different register assignment in phi predecessor");
734        extendRange(RegIdx, End);
735      }
736    }
737  }
738}
739
740/// rewriteAssigned - Rewrite all uses of Edit->getReg().
741void SplitEditor::rewriteAssigned(bool ExtendRanges) {
742  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
743       RE = MRI.reg_end(); RI != RE;) {
744    MachineOperand &MO = RI.getOperand();
745    MachineInstr *MI = MO.getParent();
746    ++RI;
747    // LiveDebugVariables should have handled all DBG_VALUE instructions.
748    if (MI->isDebugValue()) {
749      DEBUG(dbgs() << "Zapping " << *MI);
750      MO.setReg(0);
751      continue;
752    }
753
754    // <undef> operands don't really read the register, so just assign them to
755    // the complement.
756    if (MO.isUse() && MO.isUndef()) {
757      MO.setReg(Edit->get(0)->reg);
758      continue;
759    }
760
761    SlotIndex Idx = LIS.getInstructionIndex(MI);
762    if (MO.isDef())
763      Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
764
765    // Rewrite to the mapped register at Idx.
766    unsigned RegIdx = RegAssign.lookup(Idx);
767    MO.setReg(Edit->get(RegIdx)->reg);
768    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
769                 << Idx << ':' << RegIdx << '\t' << *MI);
770
771    // Extend liveness to Idx if the instruction reads reg.
772    if (!ExtendRanges)
773      continue;
774
775    // Skip instructions that don't read Reg.
776    if (MO.isDef()) {
777      if (!MO.getSubReg() && !MO.isEarlyClobber())
778        continue;
779      // We may wan't to extend a live range for a partial redef, or for a use
780      // tied to an early clobber.
781      Idx = Idx.getPrevSlot();
782      if (!Edit->getParent().liveAt(Idx))
783        continue;
784    } else
785      Idx = Idx.getUseIndex();
786
787    extendRange(RegIdx, Idx);
788  }
789}
790
791void SplitEditor::deleteRematVictims() {
792  SmallVector<MachineInstr*, 8> Dead;
793  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
794    LiveInterval *LI = *I;
795    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
796           LII != LIE; ++LII) {
797      // Dead defs end at the store slot.
798      if (LII->end != LII->valno->def.getNextSlot())
799        continue;
800      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
801      assert(MI && "Missing instruction for dead def");
802      MI->addRegisterDead(LI->reg, &TRI);
803
804      if (!MI->allDefsAreDead())
805        continue;
806
807      DEBUG(dbgs() << "All defs dead: " << *MI);
808      Dead.push_back(MI);
809    }
810  }
811
812  if (Dead.empty())
813    return;
814
815  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
816}
817
818void SplitEditor::finish() {
819  assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
820  ++NumFinished;
821
822  // At this point, the live intervals in Edit contain VNInfos corresponding to
823  // the inserted copies.
824
825  // Add the original defs from the parent interval.
826  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
827         E = Edit->getParent().vni_end(); I != E; ++I) {
828    const VNInfo *ParentVNI = *I;
829    if (ParentVNI->isUnused())
830      continue;
831    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
832    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
833    VNI->setIsPHIDef(ParentVNI->isPHIDef());
834    VNI->setCopy(ParentVNI->getCopy());
835
836    // Mark rematted values as complex everywhere to force liveness computation.
837    // The new live ranges may be truncated.
838    if (Edit->didRematerialize(ParentVNI))
839      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
840        markComplexMapped(i, ParentVNI);
841  }
842
843#ifndef NDEBUG
844  // Every new interval must have a def by now, otherwise the split is bogus.
845  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
846    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
847#endif
848
849  // Transfer the simply mapped values, check if any are complex.
850  bool Complex = transferSimpleValues();
851  if (Complex)
852    extendPHIKillRanges();
853  else
854    ++NumSimple;
855
856  // Rewrite virtual registers, possibly extending ranges.
857  rewriteAssigned(Complex);
858
859  // Delete defs that were rematted everywhere.
860  if (Complex)
861    deleteRematVictims();
862
863  // Get rid of unused values and set phi-kill flags.
864  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
865    (*I)->RenumberValues(LIS);
866
867  // Now check if any registers were separated into multiple components.
868  ConnectedVNInfoEqClasses ConEQ(LIS);
869  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
870    // Don't use iterators, they are invalidated by create() below.
871    LiveInterval *li = Edit->get(i);
872    unsigned NumComp = ConEQ.Classify(li);
873    if (NumComp <= 1)
874      continue;
875    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
876    SmallVector<LiveInterval*, 8> dups;
877    dups.push_back(li);
878    for (unsigned i = 1; i != NumComp; ++i)
879      dups.push_back(&Edit->create(LIS, VRM));
880    ConEQ.Distribute(&dups[0], MRI);
881  }
882
883  // Calculate spill weight and allocation hints for new intervals.
884  VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops);
885  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
886    LiveInterval &li = **I;
887    vrai.CalculateRegClass(li.reg);
888    vrai.CalculateWeightAndHint(li);
889    DEBUG(dbgs() << "  new interval " << MRI.getRegClass(li.reg)->getName()
890                 << ":" << li << '\n');
891  }
892}
893
894
895//===----------------------------------------------------------------------===//
896//                            Single Block Splitting
897//===----------------------------------------------------------------------===//
898
899/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
900/// may be an advantage to split CurLI for the duration of the block.
901bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
902  // If CurLI is local to one block, there is no point to splitting it.
903  if (LiveBlocks.size() <= 1)
904    return false;
905  // Add blocks with multiple uses.
906  for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
907    const BlockInfo &BI = LiveBlocks[i];
908    if (!BI.Uses)
909      continue;
910    unsigned Instrs = UsingBlocks.lookup(BI.MBB);
911    if (Instrs <= 1)
912      continue;
913    if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough)
914      continue;
915    Blocks.insert(BI.MBB);
916  }
917  return !Blocks.empty();
918}
919
920/// splitSingleBlocks - Split CurLI into a separate live interval inside each
921/// basic block in Blocks.
922void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
923  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
924
925  for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) {
926    const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i];
927    if (!BI.Uses || !Blocks.count(BI.MBB))
928      continue;
929
930    openIntv();
931    SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
932                                                  BI.LastSplitPoint));
933    if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) {
934      useIntv(SegStart, leaveIntvAfter(BI.LastUse));
935    } else {
936      // The last use is after the last valid split point.
937      SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint);
938      useIntv(SegStart, SegStop);
939      overlapIntv(SegStop, BI.LastUse);
940    }
941    closeIntv();
942  }
943  finish();
944}
945