SplitKit.cpp revision edb87555e466e781087e18936f427816c952f3e7
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/CodeGen/CalcSpillWeights.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29
30using namespace llvm;
31
32static cl::opt<bool>
33AllowSplit("spiller-splits-edges",
34           cl::desc("Allow critical edge splitting during spilling"));
35
36//===----------------------------------------------------------------------===//
37//                                 Split Analysis
38//===----------------------------------------------------------------------===//
39
40SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
41                             const LiveIntervals &lis,
42                             const MachineLoopInfo &mli)
43  : MF(vrm.getMachineFunction()),
44    VRM(vrm),
45    LIS(lis),
46    Loops(mli),
47    TII(*MF.getTarget().getInstrInfo()),
48    CurLI(0) {}
49
50void SplitAnalysis::clear() {
51  UseSlots.clear();
52  UsingInstrs.clear();
53  UsingBlocks.clear();
54  LiveBlocks.clear();
55  CurLI = 0;
56}
57
58bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
59  MachineBasicBlock *T, *F;
60  SmallVector<MachineOperand, 4> Cond;
61  return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
62}
63
64/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
65void SplitAnalysis::analyzeUses() {
66  const MachineRegisterInfo &MRI = MF.getRegInfo();
67  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg),
68       E = MRI.reg_end(); I != E; ++I) {
69    MachineOperand &MO = I.getOperand();
70    if (MO.isUse() && MO.isUndef())
71      continue;
72    MachineInstr *MI = MO.getParent();
73    if (MI->isDebugValue() || !UsingInstrs.insert(MI))
74      continue;
75    UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
76    MachineBasicBlock *MBB = MI->getParent();
77    UsingBlocks[MBB]++;
78  }
79  array_pod_sort(UseSlots.begin(), UseSlots.end());
80  calcLiveBlockInfo();
81  DEBUG(dbgs() << "  counted "
82               << UsingInstrs.size() << " instrs, "
83               << UsingBlocks.size() << " blocks.\n");
84}
85
86/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
87/// where CurLI is live.
88void SplitAnalysis::calcLiveBlockInfo() {
89  if (CurLI->empty())
90    return;
91
92  LiveInterval::const_iterator LVI = CurLI->begin();
93  LiveInterval::const_iterator LVE = CurLI->end();
94
95  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
96  UseI = UseSlots.begin();
97  UseE = UseSlots.end();
98
99  // Loop over basic blocks where CurLI is live.
100  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
101  for (;;) {
102    BlockInfo BI;
103    BI.MBB = MFI;
104    SlotIndex Start, Stop;
105    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
106
107    // The last split point is the latest possible insertion point that dominates
108    // all successor blocks. If interference reaches LastSplitPoint, it is not
109    // possible to insert a split or reload that makes CurLI live in the
110    // outgoing bundle.
111    MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB);
112    if (LSP == BI.MBB->end())
113      BI.LastSplitPoint = Stop;
114    else
115      BI.LastSplitPoint = LIS.getInstructionIndex(LSP);
116
117    // LVI is the first live segment overlapping MBB.
118    BI.LiveIn = LVI->start <= Start;
119    if (!BI.LiveIn)
120      BI.Def = LVI->start;
121
122    // Find the first and last uses in the block.
123    BI.Uses = hasUses(MFI);
124    if (BI.Uses && UseI != UseE) {
125      BI.FirstUse = *UseI;
126      assert(BI.FirstUse >= Start);
127      do ++UseI;
128      while (UseI != UseE && *UseI < Stop);
129      BI.LastUse = UseI[-1];
130      assert(BI.LastUse < Stop);
131    }
132
133    // Look for gaps in the live range.
134    bool hasGap = false;
135    BI.LiveOut = true;
136    while (LVI->end < Stop) {
137      SlotIndex LastStop = LVI->end;
138      if (++LVI == LVE || LVI->start >= Stop) {
139        BI.Kill = LastStop;
140        BI.LiveOut = false;
141        break;
142      }
143      if (LastStop < LVI->start) {
144        hasGap = true;
145        BI.Kill = LastStop;
146        BI.Def = LVI->start;
147      }
148    }
149
150    // Don't set LiveThrough when the block has a gap.
151    BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
152    LiveBlocks.push_back(BI);
153
154    // LVI is now at LVE or LVI->end >= Stop.
155    if (LVI == LVE)
156      break;
157
158    // Live segment ends exactly at Stop. Move to the next segment.
159    if (LVI->end == Stop && ++LVI == LVE)
160      break;
161
162    // Pick the next basic block.
163    if (LVI->start < Stop)
164      ++MFI;
165    else
166      MFI = LIS.getMBBFromIndex(LVI->start);
167  }
168}
169
170bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
171  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
172  const LiveInterval &Orig = LIS.getInterval(OrigReg);
173  assert(!Orig.empty() && "Splitting empty interval?");
174  LiveInterval::const_iterator I = Orig.find(Idx);
175
176  // Range containing Idx should begin at Idx.
177  if (I != Orig.end() && I->start <= Idx)
178    return I->start == Idx;
179
180  // Range does not contain Idx, previous must end at Idx.
181  return I != Orig.begin() && (--I)->end == Idx;
182}
183
184void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
185  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
186    unsigned count = UsingBlocks.lookup(*I);
187    OS << " BB#" << (*I)->getNumber();
188    if (count)
189      OS << '(' << count << ')';
190  }
191}
192
193void SplitAnalysis::analyze(const LiveInterval *li) {
194  clear();
195  CurLI = li;
196  analyzeUses();
197}
198
199
200//===----------------------------------------------------------------------===//
201//                               LiveIntervalMap
202//===----------------------------------------------------------------------===//
203
204// Work around the fact that the std::pair constructors are broken for pointer
205// pairs in some implementations. makeVV(x, 0) works.
206static inline std::pair<const VNInfo*, VNInfo*>
207makeVV(const VNInfo *a, VNInfo *b) {
208  return std::make_pair(a, b);
209}
210
211void LiveIntervalMap::reset(LiveInterval *li) {
212  LI = li;
213  LiveOutCache.clear();
214}
215
216
217// mapValue - Find the mapped value for ParentVNI at Idx.
218// Potentially create phi-def values.
219VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
220                                  bool *simple) {
221  assert(LI && "call reset first");
222  assert(ParentVNI && "Mapping  NULL value");
223  assert(Idx.isValid() && "Invalid SlotIndex");
224  assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
225
226  // This is a complex mapped value. There may be multiple defs, and we may need
227  // to create phi-defs.
228  if (simple) *simple = false;
229  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
230  assert(IdxMBB && "No MBB at Idx");
231
232  // Is there a def in the same MBB we can extend?
233  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
234    return VNI;
235
236  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
237  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
238  // Perform a search for all predecessor blocks where we know the dominating
239  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
240  DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
241               << " at " << Idx << " in " << *LI << '\n');
242
243  // Blocks where LI should be live-in.
244  SmallVector<MachineDomTreeNode*, 16> LiveIn;
245  LiveIn.push_back(MDT[IdxMBB]);
246
247  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
248  for (unsigned i = 0; i != LiveIn.size(); ++i) {
249    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
250    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
251           PE = MBB->pred_end(); PI != PE; ++PI) {
252       MachineBasicBlock *Pred = *PI;
253       // Is this a known live-out block?
254       std::pair<LiveOutMap::iterator,bool> LOIP =
255         LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
256       // Yes, we have been here before.
257       if (!LOIP.second) {
258         DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
259                 dbgs() << "    known valno #" << VNI->id
260                        << " at BB#" << Pred->getNumber() << '\n');
261         continue;
262       }
263
264       // Does Pred provide a live-out value?
265       SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot();
266       if (VNInfo *VNI = extendTo(Pred, Last)) {
267         MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
268         DEBUG(dbgs() << "    found valno #" << VNI->id
269                      << " from BB#" << DefMBB->getNumber()
270                      << " at BB#" << Pred->getNumber() << '\n');
271         LiveOutPair &LOP = LOIP.first->second;
272         LOP.first = VNI;
273         LOP.second = MDT[DefMBB];
274         continue;
275       }
276       // No, we need a live-in value for Pred as well
277       if (Pred != IdxMBB)
278         LiveIn.push_back(MDT[Pred]);
279    }
280  }
281
282  // We may need to add phi-def values to preserve the SSA form.
283  // This is essentially the same iterative algorithm that SSAUpdater uses,
284  // except we already have a dominator tree, so we don't have to recompute it.
285  VNInfo *IdxVNI = 0;
286  unsigned Changes;
287  do {
288    Changes = 0;
289    DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
290    // Propagate live-out values down the dominator tree, inserting phi-defs when
291    // necessary. Since LiveIn was created by a BFS, going backwards makes it more
292    // likely for us to visit immediate dominators before their children.
293    for (unsigned i = LiveIn.size(); i; --i) {
294      MachineDomTreeNode *Node = LiveIn[i-1];
295      MachineBasicBlock *MBB = Node->getBlock();
296      MachineDomTreeNode *IDom = Node->getIDom();
297      LiveOutPair IDomValue;
298      // We need a live-in value to a block with no immediate dominator?
299      // This is probably an unreachable block that has survived somehow.
300      bool needPHI = !IDom;
301
302      // Get the IDom live-out value.
303      if (!needPHI) {
304        LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
305        if (I != LiveOutCache.end())
306          IDomValue = I->second;
307        else
308          // If IDom is outside our set of live-out blocks, there must be new
309          // defs, and we need a phi-def here.
310          needPHI = true;
311      }
312
313      // IDom dominates all of our predecessors, but it may not be the immediate
314      // dominator. Check if any of them have live-out values that are properly
315      // dominated by IDom. If so, we need a phi-def here.
316      if (!needPHI) {
317        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
318               PE = MBB->pred_end(); PI != PE; ++PI) {
319          LiveOutPair Value = LiveOutCache[*PI];
320          if (!Value.first || Value.first == IDomValue.first)
321            continue;
322          // This predecessor is carrying something other than IDomValue.
323          // It could be because IDomValue hasn't propagated yet, or it could be
324          // because MBB is in the dominance frontier of that value.
325          if (MDT.dominates(IDom, Value.second)) {
326            needPHI = true;
327            break;
328          }
329        }
330      }
331
332      // Create a phi-def if required.
333      if (needPHI) {
334        ++Changes;
335        SlotIndex Start = LIS.getMBBStartIdx(MBB);
336        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
337        VNI->setIsPHIDef(true);
338        DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
339                     << " phi-def #" << VNI->id << " at " << Start << '\n');
340        // We no longer need LI to be live-in.
341        LiveIn.erase(LiveIn.begin()+(i-1));
342        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
343        if (MBB == IdxMBB)
344          IdxVNI = VNI;
345        // Check if we need to update live-out info.
346        LiveOutMap::iterator I = LiveOutCache.find(MBB);
347        if (I == LiveOutCache.end() || I->second.second == Node) {
348          // We already have a live-out defined in MBB, so this must be IdxMBB.
349          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
350          LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
351        } else {
352          // This phi-def is also live-out, so color the whole block.
353          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
354          I->second = LiveOutPair(VNI, Node);
355        }
356      } else if (IDomValue.first) {
357        // No phi-def here. Remember incoming value for IdxMBB.
358        if (MBB == IdxMBB)
359          IdxVNI = IDomValue.first;
360        // Propagate IDomValue if needed:
361        // MBB is live-out and doesn't define its own value.
362        LiveOutMap::iterator I = LiveOutCache.find(MBB);
363        if (I != LiveOutCache.end() && I->second.second != Node &&
364            I->second.first != IDomValue.first) {
365          ++Changes;
366          I->second = IDomValue;
367          DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
368                       << " idom valno #" << IDomValue.first->id
369                       << " from BB#" << IDom->getBlock()->getNumber() << '\n');
370        }
371      }
372    }
373    DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
374  } while (Changes);
375
376  assert(IdxVNI && "Didn't find value for Idx");
377
378#ifndef NDEBUG
379  // Check the LiveOutCache invariants.
380  for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
381         I != E; ++I) {
382    assert(I->first && "Null MBB entry in cache");
383    assert(I->second.first && "Null VNInfo in cache");
384    assert(I->second.second && "Null DomTreeNode in cache");
385    if (I->second.second->getBlock() == I->first)
386      continue;
387    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
388           PE = I->first->pred_end(); PI != PE; ++PI)
389      assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
390  }
391#endif
392
393  // Since we went through the trouble of a full BFS visiting all reaching defs,
394  // the values in LiveIn are now accurate. No more phi-defs are needed
395  // for these blocks, so we can color the live ranges.
396  // This makes the next mapValue call much faster.
397  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
398    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
399    SlotIndex Start = LIS.getMBBStartIdx(MBB);
400    VNInfo *VNI = LiveOutCache.lookup(MBB).first;
401
402    // Anything in LiveIn other than IdxMBB is live-through.
403    // In IdxMBB, we should stop at Idx unless the same value is live-out.
404    if (MBB == IdxMBB && IdxVNI != VNI)
405      LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
406    else
407      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
408  }
409
410  return IdxVNI;
411}
412
413#ifndef NDEBUG
414void LiveIntervalMap::dumpCache() {
415  for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
416         I != E; ++I) {
417    assert(I->first && "Null MBB entry in cache");
418    assert(I->second.first && "Null VNInfo in cache");
419    assert(I->second.second && "Null DomTreeNode in cache");
420    dbgs() << "    cache: BB#" << I->first->getNumber()
421           << " has valno #" << I->second.first->id << " from BB#"
422           << I->second.second->getBlock()->getNumber() << ", preds";
423    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
424           PE = I->first->pred_end(); PI != PE; ++PI)
425      dbgs() << " BB#" << (*PI)->getNumber();
426    dbgs() << '\n';
427  }
428  dbgs() << "    cache: " << LiveOutCache.size() << " entries.\n";
429}
430#endif
431
432// extendTo - Find the last LI value defined in MBB at or before Idx. The
433// ParentLI is assumed to be live at Idx. Extend the live range to Idx.
434// Return the found VNInfo, or NULL.
435VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
436  assert(LI && "call reset first");
437  LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx);
438  if (I == LI->begin())
439    return 0;
440  --I;
441  if (I->end <= LIS.getMBBStartIdx(MBB))
442    return 0;
443  if (I->end <= Idx)
444    I->end = Idx.getNextSlot();
445  return I->valno;
446}
447
448
449//===----------------------------------------------------------------------===//
450//                               Split Editor
451//===----------------------------------------------------------------------===//
452
453/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
454SplitEditor::SplitEditor(SplitAnalysis &sa,
455                         LiveIntervals &lis,
456                         VirtRegMap &vrm,
457                         MachineDominatorTree &mdt,
458                         LiveRangeEdit &edit)
459  : SA(sa), LIS(lis), VRM(vrm),
460    MRI(vrm.getMachineFunction().getRegInfo()),
461    MDT(mdt),
462    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
463    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
464    Edit(edit),
465    OpenIdx(0),
466    RegAssign(Allocator)
467{
468  // We don't need an AliasAnalysis since we will only be performing
469  // cheap-as-a-copy remats anyway.
470  Edit.anyRematerializable(LIS, TII, 0);
471}
472
473void SplitEditor::dump() const {
474  if (RegAssign.empty()) {
475    dbgs() << " empty\n";
476    return;
477  }
478
479  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
480    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
481  dbgs() << '\n';
482}
483
484VNInfo *SplitEditor::defValue(unsigned RegIdx,
485                              const VNInfo *ParentVNI,
486                              SlotIndex Idx) {
487  assert(ParentVNI && "Mapping  NULL value");
488  assert(Idx.isValid() && "Invalid SlotIndex");
489  assert(Edit.getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
490  LiveInterval *LI = Edit.get(RegIdx);
491
492  // Create a new value.
493  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
494
495  // Preserve the PHIDef bit.
496  if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
497    VNI->setIsPHIDef(true);
498
499  // Use insert for lookup, so we can add missing values with a second lookup.
500  std::pair<ValueMap::iterator, bool> InsP =
501    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
502
503  // This was the first time (RegIdx, ParentVNI) was mapped.
504  // Keep it as a simple def without any liveness.
505  if (InsP.second)
506    return VNI;
507
508  // If the previous value was a simple mapping, add liveness for it now.
509  if (VNInfo *OldVNI = InsP.first->second) {
510    SlotIndex Def = OldVNI->def;
511    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
512    // No longer a simple mapping.
513    InsP.first->second = 0;
514  }
515
516  // This is a complex mapping, add liveness for VNI
517  SlotIndex Def = VNI->def;
518  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
519
520  return VNI;
521}
522
523void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
524  assert(ParentVNI && "Mapping  NULL value");
525  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
526
527  // ParentVNI was either unmapped or already complex mapped. Either way.
528  if (!VNI)
529    return;
530
531  // This was previously a single mapping. Make sure the old def is represented
532  // by a trivial live range.
533  SlotIndex Def = VNI->def;
534  Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
535  VNI = 0;
536}
537
538VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
539                                   VNInfo *ParentVNI,
540                                   SlotIndex UseIdx,
541                                   MachineBasicBlock &MBB,
542                                   MachineBasicBlock::iterator I) {
543  MachineInstr *CopyMI = 0;
544  SlotIndex Def;
545  LiveInterval *LI = Edit.get(RegIdx);
546
547  // Attempt cheap-as-a-copy rematerialization.
548  LiveRangeEdit::Remat RM(ParentVNI);
549  if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
550    Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
551  } else {
552    // Can't remat, just insert a copy from parent.
553    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
554               .addReg(Edit.getReg());
555    Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
556  }
557
558  // Temporarily mark all values as complex mapped.
559  markComplexMapped(RegIdx, ParentVNI);
560
561  // Define the value in Reg.
562  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
563  VNI->setCopy(CopyMI);
564  return VNI;
565}
566
567/// Create a new virtual register and live interval.
568void SplitEditor::openIntv() {
569  assert(!OpenIdx && "Previous LI not closed before openIntv");
570
571  // Create the complement as index 0.
572  if (Edit.empty()) {
573    Edit.create(MRI, LIS, VRM);
574    LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
575    LIMappers.back().reset(Edit.get(0));
576  }
577
578  // Create the open interval.
579  OpenIdx = Edit.size();
580  Edit.create(MRI, LIS, VRM);
581  LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
582  LIMappers[OpenIdx].reset(Edit.get(OpenIdx));
583}
584
585SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
586  assert(OpenIdx && "openIntv not called before enterIntvBefore");
587  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
588  Idx = Idx.getBaseIndex();
589  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
590  if (!ParentVNI) {
591    DEBUG(dbgs() << ": not live\n");
592    return Idx;
593  }
594  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
595  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
596  assert(MI && "enterIntvBefore called with invalid index");
597
598  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
599  return VNI->def;
600}
601
602SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
603  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
604  SlotIndex End = LIS.getMBBEndIdx(&MBB);
605  SlotIndex Last = End.getPrevSlot();
606  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
607  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last);
608  if (!ParentVNI) {
609    DEBUG(dbgs() << ": not live\n");
610    return End;
611  }
612  DEBUG(dbgs() << ": valno " << ParentVNI->id);
613  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
614                              LIS.getLastSplitPoint(Edit.getParent(), &MBB));
615  RegAssign.insert(VNI->def, End, OpenIdx);
616  DEBUG(dump());
617  return VNI->def;
618}
619
620/// useIntv - indicate that all instructions in MBB should use OpenLI.
621void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
622  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
623}
624
625void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
626  assert(OpenIdx && "openIntv not called before useIntv");
627  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
628  RegAssign.insert(Start, End, OpenIdx);
629  DEBUG(dump());
630}
631
632SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
633  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
634  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
635
636  // The interval must be live beyond the instruction at Idx.
637  Idx = Idx.getBoundaryIndex();
638  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
639  if (!ParentVNI) {
640    DEBUG(dbgs() << ": not live\n");
641    return Idx.getNextSlot();
642  }
643  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
644
645  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
646  assert(MI && "No instruction at index");
647  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
648                              llvm::next(MachineBasicBlock::iterator(MI)));
649  return VNI->def;
650}
651
652SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
653  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
654  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
655
656  // The interval must be live into the instruction at Idx.
657  Idx = Idx.getBoundaryIndex();
658  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
659  if (!ParentVNI) {
660    DEBUG(dbgs() << ": not live\n");
661    return Idx.getNextSlot();
662  }
663  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
664
665  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
666  assert(MI && "No instruction at index");
667  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
668  return VNI->def;
669}
670
671SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
672  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
673  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
674  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
675
676  VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
677  if (!ParentVNI) {
678    DEBUG(dbgs() << ": not live\n");
679    return Start;
680  }
681
682  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
683                              MBB.SkipPHIsAndLabels(MBB.begin()));
684  RegAssign.insert(Start, VNI->def, OpenIdx);
685  DEBUG(dump());
686  return VNI->def;
687}
688
689void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
690  assert(OpenIdx && "openIntv not called before overlapIntv");
691  assert(Edit.getParent().getVNInfoAt(Start) ==
692         Edit.getParent().getVNInfoAt(End.getPrevSlot()) &&
693         "Parent changes value in extended range");
694  assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*");
695  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
696         "Range cannot span basic blocks");
697
698  // Treat this as useIntv() for now. The complement interval will be extended
699  // as needed by mapValue().
700  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
701  RegAssign.insert(Start, End, OpenIdx);
702  DEBUG(dump());
703}
704
705/// closeIntv - Indicate that we are done editing the currently open
706/// LiveInterval, and ranges can be trimmed.
707void SplitEditor::closeIntv() {
708  assert(OpenIdx && "openIntv not called before closeIntv");
709  OpenIdx = 0;
710}
711
712/// rewriteAssigned - Rewrite all uses of Edit.getReg().
713void SplitEditor::rewriteAssigned() {
714  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()),
715       RE = MRI.reg_end(); RI != RE;) {
716    MachineOperand &MO = RI.getOperand();
717    MachineInstr *MI = MO.getParent();
718    ++RI;
719    // LiveDebugVariables should have handled all DBG_VALUE instructions.
720    if (MI->isDebugValue()) {
721      DEBUG(dbgs() << "Zapping " << *MI);
722      MO.setReg(0);
723      continue;
724    }
725
726    // <undef> operands don't really read the register, so just assign them to
727    // the complement.
728    if (MO.isUse() && MO.isUndef()) {
729      MO.setReg(Edit.get(0)->reg);
730      continue;
731    }
732
733    SlotIndex Idx = LIS.getInstructionIndex(MI);
734    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
735
736    // Rewrite to the mapped register at Idx.
737    unsigned RegIdx = RegAssign.lookup(Idx);
738    MO.setReg(Edit.get(RegIdx)->reg);
739    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
740                 << Idx << ':' << RegIdx << '\t' << *MI);
741
742    // Extend liveness to Idx.
743    const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
744    LIMappers[RegIdx].mapValue(ParentVNI, Idx);
745  }
746}
747
748/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
749void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
750                                    const ConnectedVNInfoEqClasses &ConEq) {
751  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
752       RE = MRI.reg_end(); RI != RE;) {
753    MachineOperand &MO = RI.getOperand();
754    MachineInstr *MI = MO.getParent();
755    ++RI;
756    if (MO.isUse() && MO.isUndef())
757      continue;
758    // DBG_VALUE instructions should have been eliminated earlier.
759    SlotIndex Idx = LIS.getInstructionIndex(MI);
760    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
761    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
762                 << Idx << ':');
763    const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
764    assert(VNI && "Interval not live at use.");
765    MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
766    DEBUG(dbgs() << VNI->id << '\t' << *MI);
767  }
768}
769
770void SplitEditor::finish() {
771  assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
772
773  // At this point, the live intervals in Edit contain VNInfos corresponding to
774  // the inserted copies.
775
776  // Add the original defs from the parent interval.
777  for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
778         E = Edit.getParent().vni_end(); I != E; ++I) {
779    const VNInfo *ParentVNI = *I;
780    if (ParentVNI->isUnused())
781      continue;
782    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
783    // Mark all values as complex to force liveness computation.
784    // This should really only be necessary for remat victims, but we are lazy.
785    markComplexMapped(RegIdx, ParentVNI);
786    defValue(RegIdx, ParentVNI, ParentVNI->def);
787  }
788
789#ifndef NDEBUG
790  // Every new interval must have a def by now, otherwise the split is bogus.
791  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
792    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
793#endif
794
795  // FIXME: Don't recompute the liveness of all values, infer it from the
796  // overlaps between the parent live interval and RegAssign.
797  // The mapValue algorithm is only necessary when:
798  // - The parent value maps to multiple defs, and new phis are needed, or
799  // - The value has been rematerialized before some uses, and we want to
800  //   minimize the live range so it only reaches the remaining uses.
801  // All other values have simple liveness that can be computed from RegAssign
802  // and the parent live interval.
803
804  // Extend live ranges to be live-out for successor PHI values.
805  for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
806       E = Edit.getParent().vni_end(); I != E; ++I) {
807    const VNInfo *PHIVNI = *I;
808    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
809      continue;
810    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
811    LiveIntervalMap &LIM = LIMappers[RegIdx];
812    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
813    DEBUG(dbgs() << "  map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def
814                 << " -> " << RegIdx << '\n');
815    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
816         PE = MBB->pred_end(); PI != PE; ++PI) {
817      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
818      DEBUG(dbgs() << "    pred BB#" << (*PI)->getNumber() << '@' << End);
819      // The predecessor may not have a live-out value. That is OK, like an
820      // undef PHI operand.
821      if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) {
822        DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n");
823        assert(RegAssign.lookup(End) == RegIdx &&
824               "Different register assignment in phi predecessor");
825        LIM.mapValue(VNI, End);
826      }
827      else
828        DEBUG(dbgs() << " is not live-out\n");
829    }
830    DEBUG(dbgs() << "    " << *LIM.getLI() << '\n');
831  }
832
833  // Rewrite instructions.
834  rewriteAssigned();
835
836  // FIXME: Delete defs that were rematted everywhere.
837
838  // Get rid of unused values and set phi-kill flags.
839  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
840    (*I)->RenumberValues(LIS);
841
842  // Now check if any registers were separated into multiple components.
843  ConnectedVNInfoEqClasses ConEQ(LIS);
844  for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
845    // Don't use iterators, they are invalidated by create() below.
846    LiveInterval *li = Edit.get(i);
847    unsigned NumComp = ConEQ.Classify(li);
848    if (NumComp <= 1)
849      continue;
850    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
851    SmallVector<LiveInterval*, 8> dups;
852    dups.push_back(li);
853    for (unsigned i = 1; i != NumComp; ++i)
854      dups.push_back(&Edit.create(MRI, LIS, VRM));
855    rewriteComponents(dups, ConEQ);
856    ConEQ.Distribute(&dups[0]);
857  }
858
859  // Calculate spill weight and allocation hints for new intervals.
860  VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops);
861  for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){
862    LiveInterval &li = **I;
863    vrai.CalculateRegClass(li.reg);
864    vrai.CalculateWeightAndHint(li);
865    DEBUG(dbgs() << "  new interval " << MRI.getRegClass(li.reg)->getName()
866                 << ":" << li << '\n');
867  }
868}
869
870
871//===----------------------------------------------------------------------===//
872//                            Single Block Splitting
873//===----------------------------------------------------------------------===//
874
875/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
876/// may be an advantage to split CurLI for the duration of the block.
877bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
878  // If CurLI is local to one block, there is no point to splitting it.
879  if (LiveBlocks.size() <= 1)
880    return false;
881  // Add blocks with multiple uses.
882  for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
883    const BlockInfo &BI = LiveBlocks[i];
884    if (!BI.Uses)
885      continue;
886    unsigned Instrs = UsingBlocks.lookup(BI.MBB);
887    if (Instrs <= 1)
888      continue;
889    if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough)
890      continue;
891    Blocks.insert(BI.MBB);
892  }
893  return !Blocks.empty();
894}
895
896/// splitSingleBlocks - Split CurLI into a separate live interval inside each
897/// basic block in Blocks.
898void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
899  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
900
901  for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) {
902    const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i];
903    if (!BI.Uses || !Blocks.count(BI.MBB))
904      continue;
905
906    openIntv();
907    SlotIndex SegStart = enterIntvBefore(BI.FirstUse);
908    if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) {
909      useIntv(SegStart, leaveIntvAfter(BI.LastUse));
910    } else {
911      // The last use is after the last valid split point.
912      SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint);
913      useIntv(SegStart, SegStop);
914      overlapIntv(SegStop, BI.LastUse);
915    }
916    closeIntv();
917  }
918  finish();
919}
920