SplitKit.h revision 0f43811903f10394f7088f4634c0b4f9668cbac0
1//===-------- SplitKit.h - Toolkit for splitting live ranges ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/IntervalMap.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/CodeGen/SlotIndexes.h"
19
20namespace llvm {
21
22class ConnectedVNInfoEqClasses;
23class LiveInterval;
24class LiveIntervals;
25class LiveRangeEdit;
26class MachineInstr;
27class MachineLoop;
28class MachineLoopInfo;
29class MachineRegisterInfo;
30class TargetInstrInfo;
31class TargetRegisterInfo;
32class VirtRegMap;
33class VNInfo;
34class raw_ostream;
35
36/// At some point we should just include MachineDominators.h:
37class MachineDominatorTree;
38template <class NodeT> class DomTreeNodeBase;
39typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
40
41
42/// SplitAnalysis - Analyze a LiveInterval, looking for live range splitting
43/// opportunities.
44class SplitAnalysis {
45public:
46  const MachineFunction &MF;
47  const LiveIntervals &LIS;
48  const MachineLoopInfo &Loops;
49  const TargetInstrInfo &TII;
50
51  // Instructions using the the current register.
52  typedef SmallPtrSet<const MachineInstr*, 16> InstrPtrSet;
53  InstrPtrSet UsingInstrs;
54
55  // Sorted slot indexes of using instructions.
56  SmallVector<SlotIndex, 8> UseSlots;
57
58  // The number of instructions using CurLI in each basic block.
59  typedef DenseMap<const MachineBasicBlock*, unsigned> BlockCountMap;
60  BlockCountMap UsingBlocks;
61
62  // The number of basic block using CurLI in each loop.
63  typedef DenseMap<const MachineLoop*, unsigned> LoopCountMap;
64  LoopCountMap UsingLoops;
65
66private:
67  // Current live interval.
68  const LiveInterval *CurLI;
69
70  // Sumarize statistics by counting instructions using CurLI.
71  void analyzeUses();
72
73  /// canAnalyzeBranch - Return true if MBB ends in a branch that can be
74  /// analyzed.
75  bool canAnalyzeBranch(const MachineBasicBlock *MBB);
76
77public:
78  SplitAnalysis(const MachineFunction &mf, const LiveIntervals &lis,
79                const MachineLoopInfo &mli);
80
81  /// analyze - set CurLI to the specified interval, and analyze how it may be
82  /// split.
83  void analyze(const LiveInterval *li);
84
85  /// clear - clear all data structures so SplitAnalysis is ready to analyze a
86  /// new interval.
87  void clear();
88
89  /// hasUses - Return true if MBB has any uses of CurLI.
90  bool hasUses(const MachineBasicBlock *MBB) const {
91    return UsingBlocks.lookup(MBB);
92  }
93
94  typedef SmallPtrSet<const MachineBasicBlock*, 16> BlockPtrSet;
95  typedef SmallPtrSet<const MachineLoop*, 16> LoopPtrSet;
96
97  // Print a set of blocks with use counts.
98  void print(const BlockPtrSet&, raw_ostream&) const;
99
100  // Sets of basic blocks surrounding a machine loop.
101  struct LoopBlocks {
102    BlockPtrSet Loop;  // Blocks in the loop.
103    BlockPtrSet Preds; // Loop predecessor blocks.
104    BlockPtrSet Exits; // Loop exit blocks.
105
106    void clear() {
107      Loop.clear();
108      Preds.clear();
109      Exits.clear();
110    }
111  };
112
113  // Print loop blocks with use counts.
114  void print(const LoopBlocks&, raw_ostream&) const;
115
116  // Calculate the block sets surrounding the loop.
117  void getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks);
118
119  /// LoopPeripheralUse - how is a variable used in and around a loop?
120  /// Peripheral blocks are the loop predecessors and exit blocks.
121  enum LoopPeripheralUse {
122    ContainedInLoop,  // All uses are inside the loop.
123    SinglePeripheral, // At most one instruction per peripheral block.
124    MultiPeripheral,  // Multiple instructions in some peripheral blocks.
125    OutsideLoop       // Uses outside loop periphery.
126  };
127
128  /// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in
129  /// and around the Loop.
130  LoopPeripheralUse analyzeLoopPeripheralUse(const LoopBlocks&);
131
132  /// getCriticalExits - It may be necessary to partially break critical edges
133  /// leaving the loop if an exit block has phi uses of CurLI. Collect the exit
134  /// blocks that need special treatment into CriticalExits.
135  void getCriticalExits(const LoopBlocks &Blocks, BlockPtrSet &CriticalExits);
136
137  /// canSplitCriticalExits - Return true if it is possible to insert new exit
138  /// blocks before the blocks in CriticalExits.
139  bool canSplitCriticalExits(const LoopBlocks &Blocks,
140                             BlockPtrSet &CriticalExits);
141
142  /// getCriticalPreds - Get the set of loop predecessors with critical edges to
143  /// blocks outside the loop that have CurLI live in. We don't have to break
144  /// these edges, but they do require special treatment.
145  void getCriticalPreds(const LoopBlocks &Blocks, BlockPtrSet &CriticalPreds);
146
147  /// getSplitLoops - Get the set of loops that have CurLI uses and would be
148  /// profitable to split.
149  void getSplitLoops(LoopPtrSet&);
150
151  /// getBestSplitLoop - Return the loop where CurLI may best be split to a
152  /// separate register, or NULL.
153  const MachineLoop *getBestSplitLoop();
154
155  /// isBypassLoop - Return true if CurLI is live through Loop and has no uses
156  /// inside the loop. Bypass loops are candidates for splitting because it can
157  /// prevent interference inside the loop.
158  bool isBypassLoop(const MachineLoop *Loop);
159
160  /// getBypassLoops - Get all the maximal bypass loops. These are the bypass
161  /// loops whose parent is not a bypass loop.
162  void getBypassLoops(LoopPtrSet&);
163
164  /// getMultiUseBlocks - Add basic blocks to Blocks that may benefit from
165  /// having CurLI split to a new live interval. Return true if Blocks can be
166  /// passed to SplitEditor::splitSingleBlocks.
167  bool getMultiUseBlocks(BlockPtrSet &Blocks);
168
169  /// getBlockForInsideSplit - If CurLI is contained inside a single basic
170  /// block, and it would pay to subdivide the interval inside that block,
171  /// return it. Otherwise return NULL. The returned block can be passed to
172  /// SplitEditor::splitInsideBlock.
173  const MachineBasicBlock *getBlockForInsideSplit();
174};
175
176
177/// LiveIntervalMap - Map values from a large LiveInterval into a small
178/// interval that is a subset. Insert phi-def values as needed. This class is
179/// used by SplitEditor to create new smaller LiveIntervals.
180///
181/// ParentLI is the larger interval, LI is the subset interval. Every value
182/// in LI corresponds to exactly one value in ParentLI, and the live range
183/// of the value is contained within the live range of the ParentLI value.
184/// Values in ParentLI may map to any number of OpenLI values, including 0.
185class LiveIntervalMap {
186  LiveIntervals &LIS;
187  MachineDominatorTree &MDT;
188
189  // The parent interval is never changed.
190  const LiveInterval &ParentLI;
191
192  // The child interval's values are fully contained inside ParentLI values.
193  LiveInterval *LI;
194
195  typedef DenseMap<const VNInfo*, VNInfo*> ValueMap;
196
197  // Map ParentLI values to simple values in LI that are defined at the same
198  // SlotIndex, or NULL for ParentLI values that have complex LI defs.
199  // Note there is a difference between values mapping to NULL (complex), and
200  // values not present (unknown/unmapped).
201  ValueMap Values;
202
203  typedef std::pair<VNInfo*, MachineDomTreeNode*> LiveOutPair;
204  typedef DenseMap<MachineBasicBlock*,LiveOutPair> LiveOutMap;
205
206  // LiveOutCache - Map each basic block where LI is live out to the live-out
207  // value and its defining block. One of these conditions shall be true:
208  //
209  //  1. !LiveOutCache.count(MBB)
210  //  2. LiveOutCache[MBB].second.getNode() == MBB
211  //  3. forall P in preds(MBB): LiveOutCache[P] == LiveOutCache[MBB]
212  //
213  // This is only a cache, the values can be computed as:
214  //
215  //  VNI = LI->getVNInfoAt(LIS.getMBBEndIdx(MBB))
216  //  Node = mbt_[LIS.getMBBFromIndex(VNI->def)]
217  //
218  // The cache is also used as a visiteed set by mapValue().
219  LiveOutMap LiveOutCache;
220
221  // Dump the live-out cache to dbgs().
222  void dumpCache();
223
224public:
225  LiveIntervalMap(LiveIntervals &lis,
226                  MachineDominatorTree &mdt,
227                  const LiveInterval &parentli)
228    : LIS(lis), MDT(mdt), ParentLI(parentli), LI(0) {}
229
230  /// reset - clear all data structures and start a new live interval.
231  void reset(LiveInterval *);
232
233  /// getLI - return the current live interval.
234  LiveInterval *getLI() const { return LI; }
235
236  /// defValue - define a value in LI from the ParentLI value VNI and Idx.
237  /// Idx does not have to be ParentVNI->def, but it must be contained within
238  /// ParentVNI's live range in ParentLI.
239  /// Return the new LI value.
240  VNInfo *defValue(const VNInfo *ParentVNI, SlotIndex Idx);
241
242  /// mapValue - map ParentVNI to the corresponding LI value at Idx. It is
243  /// assumed that ParentVNI is live at Idx.
244  /// If ParentVNI has not been defined by defValue, it is assumed that
245  /// ParentVNI->def dominates Idx.
246  /// If ParentVNI has been defined by defValue one or more times, a value that
247  /// dominates Idx will be returned. This may require creating extra phi-def
248  /// values and adding live ranges to LI.
249  /// If simple is not NULL, *simple will indicate if ParentVNI is a simply
250  /// mapped value.
251  VNInfo *mapValue(const VNInfo *ParentVNI, SlotIndex Idx, bool *simple = 0);
252
253  // extendTo - Find the last LI value defined in MBB at or before Idx. The
254  // parentli is assumed to be live at Idx. Extend the live range to include
255  // Idx. Return the found VNInfo, or NULL.
256  VNInfo *extendTo(const MachineBasicBlock *MBB, SlotIndex Idx);
257
258  /// isMapped - Return true is ParentVNI is a known mapped value. It may be a
259  /// simple 1-1 mapping or a complex mapping to later defs.
260  bool isMapped(const VNInfo *ParentVNI) const {
261    return Values.count(ParentVNI);
262  }
263
264  /// isComplexMapped - Return true if ParentVNI has received new definitions
265  /// with defValue.
266  bool isComplexMapped(const VNInfo *ParentVNI) const;
267
268  /// markComplexMapped - Mark ParentVNI as complex mapped regardless of the
269  /// number of definitions.
270  void markComplexMapped(const VNInfo *ParentVNI) { Values[ParentVNI] = 0; }
271
272  // addSimpleRange - Add a simple range from ParentLI to LI.
273  // ParentVNI must be live in the [Start;End) interval.
274  void addSimpleRange(SlotIndex Start, SlotIndex End, const VNInfo *ParentVNI);
275
276  /// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
277  /// All needed values whose def is not inside [Start;End) must be defined
278  /// beforehand so mapValue will work.
279  void addRange(SlotIndex Start, SlotIndex End);
280};
281
282
283/// SplitEditor - Edit machine code and LiveIntervals for live range
284/// splitting.
285///
286/// - Create a SplitEditor from a SplitAnalysis.
287/// - Start a new live interval with openIntv.
288/// - Mark the places where the new interval is entered using enterIntv*
289/// - Mark the ranges where the new interval is used with useIntv*
290/// - Mark the places where the interval is exited with exitIntv*.
291/// - Finish the current interval with closeIntv and repeat from 2.
292/// - Rewrite instructions with finish().
293///
294class SplitEditor {
295  SplitAnalysis &sa_;
296  LiveIntervals &LIS;
297  VirtRegMap &VRM;
298  MachineRegisterInfo &MRI;
299  MachineDominatorTree &MDT;
300  const TargetInstrInfo &TII;
301  const TargetRegisterInfo &TRI;
302
303  /// Edit - The current parent register and new intervals created.
304  LiveRangeEdit &Edit;
305
306  /// Index into Edit of the currently open interval.
307  /// The index 0 is used for the complement, so the first interval started by
308  /// openIntv will be 1.
309  unsigned OpenIdx;
310
311  typedef IntervalMap<SlotIndex, unsigned> RegAssignMap;
312
313  /// Allocator for the interval map. This will eventually be shared with
314  /// SlotIndexes and LiveIntervals.
315  RegAssignMap::Allocator Allocator;
316
317  /// RegAssign - Map of the assigned register indexes.
318  /// Edit.get(RegAssign.lookup(Idx)) is the register that should be live at
319  /// Idx.
320  RegAssignMap RegAssign;
321
322  /// LIMappers - One LiveIntervalMap or each interval in Edit.
323  SmallVector<LiveIntervalMap, 4> LIMappers;
324
325  /// defFromParent - Define Reg from ParentVNI at UseIdx using either
326  /// rematerialization or a COPY from parent. Return the new value.
327  VNInfo *defFromParent(unsigned RegIdx,
328                        VNInfo *ParentVNI,
329                        SlotIndex UseIdx,
330                        MachineBasicBlock &MBB,
331                        MachineBasicBlock::iterator I);
332
333  /// rewriteAssigned - Rewrite all uses of Edit.getReg() to assigned registers.
334  void rewriteAssigned();
335
336  /// rewriteComponents - Rewrite all uses of Intv[0] according to the eq
337  /// classes in ConEQ.
338  /// This must be done when Intvs[0] is styill live at all uses, before calling
339  /// ConEq.Distribute().
340  void rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
341                         const ConnectedVNInfoEqClasses &ConEq);
342
343public:
344  /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
345  /// Newly created intervals will be appended to newIntervals.
346  SplitEditor(SplitAnalysis &SA, LiveIntervals&, VirtRegMap&,
347              MachineDominatorTree&, LiveRangeEdit&);
348
349  /// getAnalysis - Get the corresponding analysis.
350  SplitAnalysis &getAnalysis() { return sa_; }
351
352  /// Create a new virtual register and live interval.
353  void openIntv();
354
355  /// enterIntvBefore - Enter OpenLI before the instruction at Idx. If CurLI is
356  /// not live before Idx, a COPY is not inserted.
357  void enterIntvBefore(SlotIndex Idx);
358
359  /// enterIntvAtEnd - Enter OpenLI at the end of MBB.
360  void enterIntvAtEnd(MachineBasicBlock &MBB);
361
362  /// useIntv - indicate that all instructions in MBB should use OpenLI.
363  void useIntv(const MachineBasicBlock &MBB);
364
365  /// useIntv - indicate that all instructions in range should use OpenLI.
366  void useIntv(SlotIndex Start, SlotIndex End);
367
368  /// leaveIntvAfter - Leave OpenLI after the instruction at Idx.
369  void leaveIntvAfter(SlotIndex Idx);
370
371  /// leaveIntvAtTop - Leave the interval at the top of MBB.
372  /// Currently, only one value can leave the interval.
373  void leaveIntvAtTop(MachineBasicBlock &MBB);
374
375  /// closeIntv - Indicate that we are done editing the currently open
376  /// LiveInterval, and ranges can be trimmed.
377  void closeIntv();
378
379  /// finish - after all the new live ranges have been created, compute the
380  /// remaining live range, and rewrite instructions to use the new registers.
381  void finish();
382
383  /// dump - print the current interval maping to dbgs().
384  void dump() const;
385
386  // ===--- High level methods ---===
387
388  /// splitAroundLoop - Split CurLI into a separate live interval inside
389  /// the loop.
390  void splitAroundLoop(const MachineLoop*);
391
392  /// splitSingleBlocks - Split CurLI into a separate live interval inside each
393  /// basic block in Blocks.
394  void splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks);
395
396  /// splitInsideBlock - Split CurLI into multiple intervals inside MBB.
397  void splitInsideBlock(const MachineBasicBlock *);
398};
399
400}
401