StackColoring.cpp revision 0b8c9a80f20772c3793201ab5b251d3520b9cea3
1//===-- StackColoring.cpp -------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements the stack-coloring optimization that looks for
11// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12// which represent the possible lifetime of stack slots. It attempts to
13// merge disjoint stack slots and reduce the used stack space.
14// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15//
16// TODO: In the future we plan to improve stack coloring in the following ways:
17// 1. Allow merging multiple small slots into a single larger slot at different
18//    offsets.
19// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20//    spill slots.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "stackcoloring"
25#include "llvm/CodeGen/Passes.h"
26#include "MachineTraceMetrics.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/PostOrderIterator.h"
30#include "llvm/ADT/SetVector.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SparseSet.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/CodeGen/LiveInterval.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39#include "llvm/CodeGen/MachineDominators.h"
40#include "llvm/CodeGen/MachineFrameInfo.h"
41#include "llvm/CodeGen/MachineFunctionPass.h"
42#include "llvm/CodeGen/MachineLoopInfo.h"
43#include "llvm/CodeGen/MachineMemOperand.h"
44#include "llvm/CodeGen/MachineModuleInfo.h"
45#include "llvm/CodeGen/MachineRegisterInfo.h"
46#include "llvm/CodeGen/SlotIndexes.h"
47#include "llvm/DebugInfo.h"
48#include "llvm/IR/Function.h"
49#include "llvm/IR/Instructions.h"
50#include "llvm/IR/Module.h"
51#include "llvm/MC/MCInstrItineraries.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetRegisterInfo.h"
57
58using namespace llvm;
59
60static cl::opt<bool>
61DisableColoring("no-stack-coloring",
62        cl::init(false), cl::Hidden,
63        cl::desc("Disable stack coloring"));
64
65/// The user may write code that uses allocas outside of the declared lifetime
66/// zone. This can happen when the user returns a reference to a local
67/// data-structure. We can detect these cases and decide not to optimize the
68/// code. If this flag is enabled, we try to save the user.
69static cl::opt<bool>
70ProtectFromEscapedAllocas("protect-from-escaped-allocas",
71        cl::init(false), cl::Hidden,
72        cl::desc("Do not optimize lifetime zones that are broken"));
73
74STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
75STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
76STATISTIC(StackSlotMerged, "Number of stack slot merged.");
77STATISTIC(EscapedAllocas,
78          "Number of allocas that escaped the lifetime region");
79
80//===----------------------------------------------------------------------===//
81//                           StackColoring Pass
82//===----------------------------------------------------------------------===//
83
84namespace {
85/// StackColoring - A machine pass for merging disjoint stack allocations,
86/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
87class StackColoring : public MachineFunctionPass {
88  MachineFrameInfo *MFI;
89  MachineFunction *MF;
90
91  /// A class representing liveness information for a single basic block.
92  /// Each bit in the BitVector represents the liveness property
93  /// for a different stack slot.
94  struct BlockLifetimeInfo {
95    /// Which slots BEGINs in each basic block.
96    BitVector Begin;
97    /// Which slots ENDs in each basic block.
98    BitVector End;
99    /// Which slots are marked as LIVE_IN, coming into each basic block.
100    BitVector LiveIn;
101    /// Which slots are marked as LIVE_OUT, coming out of each basic block.
102    BitVector LiveOut;
103  };
104
105  /// Maps active slots (per bit) for each basic block.
106  DenseMap<MachineBasicBlock*, BlockLifetimeInfo> BlockLiveness;
107
108  /// Maps serial numbers to basic blocks.
109  DenseMap<MachineBasicBlock*, int> BasicBlocks;
110  /// Maps basic blocks to a serial number.
111  SmallVector<MachineBasicBlock*, 8> BasicBlockNumbering;
112
113  /// Maps liveness intervals for each slot.
114  SmallVector<LiveInterval*, 16> Intervals;
115  /// VNInfo is used for the construction of LiveIntervals.
116  VNInfo::Allocator VNInfoAllocator;
117  /// SlotIndex analysis object.
118  SlotIndexes *Indexes;
119
120  /// The list of lifetime markers found. These markers are to be removed
121  /// once the coloring is done.
122  SmallVector<MachineInstr*, 8> Markers;
123
124  /// SlotSizeSorter - A Sort utility for arranging stack slots according
125  /// to their size.
126  struct SlotSizeSorter {
127    MachineFrameInfo *MFI;
128    SlotSizeSorter(MachineFrameInfo *mfi) : MFI(mfi) { }
129    bool operator()(int LHS, int RHS) {
130      // We use -1 to denote a uninteresting slot. Place these slots at the end.
131      if (LHS == -1) return false;
132      if (RHS == -1) return true;
133      // Sort according to size.
134      return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
135  }
136};
137
138public:
139  static char ID;
140  StackColoring() : MachineFunctionPass(ID) {
141    initializeStackColoringPass(*PassRegistry::getPassRegistry());
142  }
143  void getAnalysisUsage(AnalysisUsage &AU) const;
144  bool runOnMachineFunction(MachineFunction &MF);
145
146private:
147  /// Debug.
148  void dump();
149
150  /// Removes all of the lifetime marker instructions from the function.
151  /// \returns true if any markers were removed.
152  bool removeAllMarkers();
153
154  /// Scan the machine function and find all of the lifetime markers.
155  /// Record the findings in the BEGIN and END vectors.
156  /// \returns the number of markers found.
157  unsigned collectMarkers(unsigned NumSlot);
158
159  /// Perform the dataflow calculation and calculate the lifetime for each of
160  /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
161  /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
162  /// in and out blocks.
163  void calculateLocalLiveness();
164
165  /// Construct the LiveIntervals for the slots.
166  void calculateLiveIntervals(unsigned NumSlots);
167
168  /// Go over the machine function and change instructions which use stack
169  /// slots to use the joint slots.
170  void remapInstructions(DenseMap<int, int> &SlotRemap);
171
172  /// The input program may contain intructions which are not inside lifetime
173  /// markers. This can happen due to a bug in the compiler or due to a bug in
174  /// user code (for example, returning a reference to a local variable).
175  /// This procedure checks all of the instructions in the function and
176  /// invalidates lifetime ranges which do not contain all of the instructions
177  /// which access that frame slot.
178  void removeInvalidSlotRanges();
179
180  /// Map entries which point to other entries to their destination.
181  ///   A->B->C becomes A->C.
182   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
183};
184} // end anonymous namespace
185
186char StackColoring::ID = 0;
187char &llvm::StackColoringID = StackColoring::ID;
188
189INITIALIZE_PASS_BEGIN(StackColoring,
190                   "stack-coloring", "Merge disjoint stack slots", false, false)
191INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
192INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
193INITIALIZE_PASS_END(StackColoring,
194                   "stack-coloring", "Merge disjoint stack slots", false, false)
195
196void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
197  AU.addRequired<MachineDominatorTree>();
198  AU.addPreserved<MachineDominatorTree>();
199  AU.addRequired<SlotIndexes>();
200  MachineFunctionPass::getAnalysisUsage(AU);
201}
202
203void StackColoring::dump() {
204  for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
205       FI != FE; ++FI) {
206    unsigned Num = BasicBlocks[*FI];
207    DEBUG(dbgs()<<"Inspecting block #"<<Num<<" ["<<FI->getName()<<"]\n");
208    Num = 0;
209    DEBUG(dbgs()<<"BEGIN  : {");
210    for (unsigned i=0; i < BlockLiveness[*FI].Begin.size(); ++i)
211      DEBUG(dbgs()<<BlockLiveness[*FI].Begin.test(i)<<" ");
212    DEBUG(dbgs()<<"}\n");
213
214    DEBUG(dbgs()<<"END    : {");
215    for (unsigned i=0; i < BlockLiveness[*FI].End.size(); ++i)
216      DEBUG(dbgs()<<BlockLiveness[*FI].End.test(i)<<" ");
217
218    DEBUG(dbgs()<<"}\n");
219
220    DEBUG(dbgs()<<"LIVE_IN: {");
221    for (unsigned i=0; i < BlockLiveness[*FI].LiveIn.size(); ++i)
222      DEBUG(dbgs()<<BlockLiveness[*FI].LiveIn.test(i)<<" ");
223
224    DEBUG(dbgs()<<"}\n");
225    DEBUG(dbgs()<<"LIVEOUT: {");
226    for (unsigned i=0; i < BlockLiveness[*FI].LiveOut.size(); ++i)
227      DEBUG(dbgs()<<BlockLiveness[*FI].LiveOut.test(i)<<" ");
228    DEBUG(dbgs()<<"}\n");
229  }
230}
231
232unsigned StackColoring::collectMarkers(unsigned NumSlot) {
233  unsigned MarkersFound = 0;
234  // Scan the function to find all lifetime markers.
235  // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a
236  // deterministic numbering, and because we'll need a post-order iteration
237  // later for solving the liveness dataflow problem.
238  for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
239       FI != FE; ++FI) {
240
241    // Assign a serial number to this basic block.
242    BasicBlocks[*FI] = BasicBlockNumbering.size();
243    BasicBlockNumbering.push_back(*FI);
244
245    BlockLiveness[*FI].Begin.resize(NumSlot);
246    BlockLiveness[*FI].End.resize(NumSlot);
247
248    for (MachineBasicBlock::iterator BI = (*FI)->begin(), BE = (*FI)->end();
249         BI != BE; ++BI) {
250
251      if (BI->getOpcode() != TargetOpcode::LIFETIME_START &&
252          BI->getOpcode() != TargetOpcode::LIFETIME_END)
253        continue;
254
255      Markers.push_back(BI);
256
257      bool IsStart = BI->getOpcode() == TargetOpcode::LIFETIME_START;
258      MachineOperand &MI = BI->getOperand(0);
259      unsigned Slot = MI.getIndex();
260
261      MarkersFound++;
262
263      const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
264      if (Allocation) {
265        DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
266              " with allocation: "<< Allocation->getName()<<"\n");
267      }
268
269      if (IsStart) {
270        BlockLiveness[*FI].Begin.set(Slot);
271      } else {
272        if (BlockLiveness[*FI].Begin.test(Slot)) {
273          // Allocas that start and end within a single block are handled
274          // specially when computing the LiveIntervals to avoid pessimizing
275          // the liveness propagation.
276          BlockLiveness[*FI].Begin.reset(Slot);
277        } else {
278          BlockLiveness[*FI].End.set(Slot);
279        }
280      }
281    }
282  }
283
284  // Update statistics.
285  NumMarkerSeen += MarkersFound;
286  return MarkersFound;
287}
288
289void StackColoring::calculateLocalLiveness() {
290  // Perform a standard reverse dataflow computation to solve for
291  // global liveness.  The BEGIN set here is equivalent to KILL in the standard
292  // formulation, and END is equivalent to GEN.  The result of this computation
293  // is a map from blocks to bitvectors where the bitvectors represent which
294  // allocas are live in/out of that block.
295  SmallPtrSet<MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
296                                           BasicBlockNumbering.end());
297  unsigned NumSSMIters = 0;
298  bool changed = true;
299  while (changed) {
300    changed = false;
301    ++NumSSMIters;
302
303    SmallPtrSet<MachineBasicBlock*, 8> NextBBSet;
304
305    for (SmallVector<MachineBasicBlock*, 8>::iterator
306         PI = BasicBlockNumbering.begin(), PE = BasicBlockNumbering.end();
307         PI != PE; ++PI) {
308
309      MachineBasicBlock *BB = *PI;
310      if (!BBSet.count(BB)) continue;
311
312      BitVector LocalLiveIn;
313      BitVector LocalLiveOut;
314
315      // Forward propagation from begins to ends.
316      for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
317           PE = BB->pred_end(); PI != PE; ++PI)
318        LocalLiveIn |= BlockLiveness[*PI].LiveOut;
319      LocalLiveIn |= BlockLiveness[BB].End;
320      LocalLiveIn.reset(BlockLiveness[BB].Begin);
321
322      // Reverse propagation from ends to begins.
323      for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
324           SE = BB->succ_end(); SI != SE; ++SI)
325        LocalLiveOut |= BlockLiveness[*SI].LiveIn;
326      LocalLiveOut |= BlockLiveness[BB].Begin;
327      LocalLiveOut.reset(BlockLiveness[BB].End);
328
329      LocalLiveIn |= LocalLiveOut;
330      LocalLiveOut |= LocalLiveIn;
331
332      // After adopting the live bits, we need to turn-off the bits which
333      // are de-activated in this block.
334      LocalLiveOut.reset(BlockLiveness[BB].End);
335      LocalLiveIn.reset(BlockLiveness[BB].Begin);
336
337      // If we have both BEGIN and END markers in the same basic block then
338      // we know that the BEGIN marker comes after the END, because we already
339      // handle the case where the BEGIN comes before the END when collecting
340      // the markers (and building the BEGIN/END vectore).
341      // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
342      // BEGIN and END because it means that the value lives before and after
343      // this basic block.
344      BitVector LocalEndBegin = BlockLiveness[BB].End;
345      LocalEndBegin &= BlockLiveness[BB].Begin;
346      LocalLiveIn |= LocalEndBegin;
347      LocalLiveOut |= LocalEndBegin;
348
349      if (LocalLiveIn.test(BlockLiveness[BB].LiveIn)) {
350        changed = true;
351        BlockLiveness[BB].LiveIn |= LocalLiveIn;
352
353        for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
354             PE = BB->pred_end(); PI != PE; ++PI)
355          NextBBSet.insert(*PI);
356      }
357
358      if (LocalLiveOut.test(BlockLiveness[BB].LiveOut)) {
359        changed = true;
360        BlockLiveness[BB].LiveOut |= LocalLiveOut;
361
362        for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
363             SE = BB->succ_end(); SI != SE; ++SI)
364          NextBBSet.insert(*SI);
365      }
366    }
367
368    BBSet = NextBBSet;
369  }// while changed.
370}
371
372void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
373  SmallVector<SlotIndex, 16> Starts;
374  SmallVector<SlotIndex, 16> Finishes;
375
376  // For each block, find which slots are active within this block
377  // and update the live intervals.
378  for (MachineFunction::iterator MBB = MF->begin(), MBBe = MF->end();
379       MBB != MBBe; ++MBB) {
380    Starts.clear();
381    Starts.resize(NumSlots);
382    Finishes.clear();
383    Finishes.resize(NumSlots);
384
385    // Create the interval for the basic blocks with lifetime markers in them.
386    for (SmallVector<MachineInstr*, 8>::iterator it = Markers.begin(),
387         e = Markers.end(); it != e; ++it) {
388      MachineInstr *MI = *it;
389      if (MI->getParent() != MBB)
390        continue;
391
392      assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
393              MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
394             "Invalid Lifetime marker");
395
396      bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
397      MachineOperand &Mo = MI->getOperand(0);
398      int Slot = Mo.getIndex();
399      assert(Slot >= 0 && "Invalid slot");
400
401      SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
402
403      if (IsStart) {
404        if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
405          Starts[Slot] = ThisIndex;
406      } else {
407        if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
408          Finishes[Slot] = ThisIndex;
409      }
410    }
411
412    // Create the interval of the blocks that we previously found to be 'alive'.
413    BitVector Alive = BlockLiveness[MBB].LiveIn;
414    Alive |= BlockLiveness[MBB].LiveOut;
415
416    if (Alive.any()) {
417      for (int pos = Alive.find_first(); pos != -1;
418           pos = Alive.find_next(pos)) {
419        if (!Starts[pos].isValid())
420          Starts[pos] = Indexes->getMBBStartIdx(MBB);
421        if (!Finishes[pos].isValid())
422          Finishes[pos] = Indexes->getMBBEndIdx(MBB);
423      }
424    }
425
426    for (unsigned i = 0; i < NumSlots; ++i) {
427      assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
428      if (!Starts[i].isValid())
429        continue;
430
431      assert(Starts[i] && Finishes[i] && "Invalid interval");
432      VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
433      SlotIndex S = Starts[i];
434      SlotIndex F = Finishes[i];
435      if (S < F) {
436        // We have a single consecutive region.
437        Intervals[i]->addRange(LiveRange(S, F, ValNum));
438      } else {
439        // We have two non consecutive regions. This happens when
440        // LIFETIME_START appears after the LIFETIME_END marker.
441        SlotIndex NewStart = Indexes->getMBBStartIdx(MBB);
442        SlotIndex NewFin = Indexes->getMBBEndIdx(MBB);
443        Intervals[i]->addRange(LiveRange(NewStart, F, ValNum));
444        Intervals[i]->addRange(LiveRange(S, NewFin, ValNum));
445      }
446    }
447  }
448}
449
450bool StackColoring::removeAllMarkers() {
451  unsigned Count = 0;
452  for (unsigned i = 0; i < Markers.size(); ++i) {
453    Markers[i]->eraseFromParent();
454    Count++;
455  }
456  Markers.clear();
457
458  DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
459  return Count;
460}
461
462void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
463  unsigned FixedInstr = 0;
464  unsigned FixedMemOp = 0;
465  unsigned FixedDbg = 0;
466  MachineModuleInfo *MMI = &MF->getMMI();
467
468  // Remap debug information that refers to stack slots.
469  MachineModuleInfo::VariableDbgInfoMapTy &VMap = MMI->getVariableDbgInfo();
470  for (MachineModuleInfo::VariableDbgInfoMapTy::iterator VI = VMap.begin(),
471       VE = VMap.end(); VI != VE; ++VI) {
472    const MDNode *Var = VI->first;
473    if (!Var) continue;
474    std::pair<unsigned, DebugLoc> &VP = VI->second;
475    if (SlotRemap.count(VP.first)) {
476      DEBUG(dbgs()<<"Remapping debug info for ["<<Var->getName()<<"].\n");
477      VP.first = SlotRemap[VP.first];
478      FixedDbg++;
479    }
480  }
481
482  // Keep a list of *allocas* which need to be remapped.
483  DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
484  for (DenseMap<int, int>::iterator it = SlotRemap.begin(),
485       e = SlotRemap.end(); it != e; ++it) {
486    const AllocaInst *From = MFI->getObjectAllocation(it->first);
487    const AllocaInst *To = MFI->getObjectAllocation(it->second);
488    assert(To && From && "Invalid allocation object");
489    Allocas[From] = To;
490  }
491
492  // Remap all instructions to the new stack slots.
493  MachineFunction::iterator BB, BBE;
494  MachineBasicBlock::iterator I, IE;
495  for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB)
496    for (I = BB->begin(), IE = BB->end(); I != IE; ++I) {
497
498      // Skip lifetime markers. We'll remove them soon.
499      if (I->getOpcode() == TargetOpcode::LIFETIME_START ||
500          I->getOpcode() == TargetOpcode::LIFETIME_END)
501        continue;
502
503      // Update the MachineMemOperand to use the new alloca.
504      for (MachineInstr::mmo_iterator MM = I->memoperands_begin(),
505           E = I->memoperands_end(); MM != E; ++MM) {
506        MachineMemOperand *MMO = *MM;
507
508        const Value *V = MMO->getValue();
509
510        if (!V)
511          continue;
512
513        // Climb up and find the original alloca.
514        V = GetUnderlyingObject(V);
515        // If we did not find one, or if the one that we found is not in our
516        // map, then move on.
517        if (!V || !isa<AllocaInst>(V)) {
518          // Clear mem operand since we don't know for sure that it doesn't
519          // alias a merged alloca.
520          MMO->setValue(0);
521          continue;
522        }
523        const AllocaInst *AI= cast<AllocaInst>(V);
524        if (!Allocas.count(AI))
525          continue;
526
527        MMO->setValue(Allocas[AI]);
528        FixedMemOp++;
529      }
530
531      // Update all of the machine instruction operands.
532      for (unsigned i = 0 ; i <  I->getNumOperands(); ++i) {
533        MachineOperand &MO = I->getOperand(i);
534
535        if (!MO.isFI())
536          continue;
537        int FromSlot = MO.getIndex();
538
539        // Don't touch arguments.
540        if (FromSlot<0)
541          continue;
542
543        // Only look at mapped slots.
544        if (!SlotRemap.count(FromSlot))
545          continue;
546
547        // In a debug build, check that the instruction that we are modifying is
548        // inside the expected live range. If the instruction is not inside
549        // the calculated range then it means that the alloca usage moved
550        // outside of the lifetime markers, or that the user has a bug.
551        // NOTE: Alloca address calculations which happen outside the lifetime
552        // zone are are okay, despite the fact that we don't have a good way
553        // for validating all of the usages of the calculation.
554#ifndef NDEBUG
555        bool TouchesMemory = I->mayLoad() || I->mayStore();
556        // If we *don't* protect the user from escaped allocas, don't bother
557        // validating the instructions.
558        if (!I->isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
559          SlotIndex Index = Indexes->getInstructionIndex(I);
560          LiveInterval *Interval = Intervals[FromSlot];
561          assert(Interval->find(Index) != Interval->end() &&
562               "Found instruction usage outside of live range.");
563        }
564#endif
565
566        // Fix the machine instructions.
567        int ToSlot = SlotRemap[FromSlot];
568        MO.setIndex(ToSlot);
569        FixedInstr++;
570      }
571    }
572
573  DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
574  DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
575  DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
576}
577
578void StackColoring::removeInvalidSlotRanges() {
579  MachineFunction::iterator BB, BBE;
580  MachineBasicBlock::iterator I, IE;
581  for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB)
582    for (I = BB->begin(), IE = BB->end(); I != IE; ++I) {
583
584      if (I->getOpcode() == TargetOpcode::LIFETIME_START ||
585          I->getOpcode() == TargetOpcode::LIFETIME_END || I->isDebugValue())
586        continue;
587
588      // Some intervals are suspicious! In some cases we find address
589      // calculations outside of the lifetime zone, but not actual memory
590      // read or write. Memory accesses outside of the lifetime zone are a clear
591      // violation, but address calculations are okay. This can happen when
592      // GEPs are hoisted outside of the lifetime zone.
593      // So, in here we only check instructions which can read or write memory.
594      if (!I->mayLoad() && !I->mayStore())
595        continue;
596
597      // Check all of the machine operands.
598      for (unsigned i = 0 ; i <  I->getNumOperands(); ++i) {
599        MachineOperand &MO = I->getOperand(i);
600
601        if (!MO.isFI())
602          continue;
603
604        int Slot = MO.getIndex();
605
606        if (Slot<0)
607          continue;
608
609        if (Intervals[Slot]->empty())
610          continue;
611
612        // Check that the used slot is inside the calculated lifetime range.
613        // If it is not, warn about it and invalidate the range.
614        LiveInterval *Interval = Intervals[Slot];
615        SlotIndex Index = Indexes->getInstructionIndex(I);
616        if (Interval->find(Index) == Interval->end()) {
617          Intervals[Slot]->clear();
618          DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
619          EscapedAllocas++;
620        }
621      }
622    }
623}
624
625void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
626                                   unsigned NumSlots) {
627  // Expunge slot remap map.
628  for (unsigned i=0; i < NumSlots; ++i) {
629    // If we are remapping i
630    if (SlotRemap.count(i)) {
631      int Target = SlotRemap[i];
632      // As long as our target is mapped to something else, follow it.
633      while (SlotRemap.count(Target)) {
634        Target = SlotRemap[Target];
635        SlotRemap[i] = Target;
636      }
637    }
638  }
639}
640
641bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
642  DEBUG(dbgs() << "********** Stack Coloring **********\n"
643               << "********** Function: "
644               << ((const Value*)Func.getFunction())->getName() << '\n');
645  MF = &Func;
646  MFI = MF->getFrameInfo();
647  Indexes = &getAnalysis<SlotIndexes>();
648  BlockLiveness.clear();
649  BasicBlocks.clear();
650  BasicBlockNumbering.clear();
651  Markers.clear();
652  Intervals.clear();
653  VNInfoAllocator.Reset();
654
655  unsigned NumSlots = MFI->getObjectIndexEnd();
656
657  // If there are no stack slots then there are no markers to remove.
658  if (!NumSlots)
659    return false;
660
661  SmallVector<int, 8> SortedSlots;
662
663  SortedSlots.reserve(NumSlots);
664  Intervals.reserve(NumSlots);
665
666  unsigned NumMarkers = collectMarkers(NumSlots);
667
668  unsigned TotalSize = 0;
669  DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
670  DEBUG(dbgs()<<"Slot structure:\n");
671
672  for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
673    DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
674    TotalSize += MFI->getObjectSize(i);
675  }
676
677  DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
678
679  // Don't continue because there are not enough lifetime markers, or the
680  // stack is too small, or we are told not to optimize the slots.
681  if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
682    DEBUG(dbgs()<<"Will not try to merge slots.\n");
683    return removeAllMarkers();
684  }
685
686  for (unsigned i=0; i < NumSlots; ++i) {
687    LiveInterval *LI = new LiveInterval(i, 0);
688    Intervals.push_back(LI);
689    LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
690    SortedSlots.push_back(i);
691  }
692
693  // Calculate the liveness of each block.
694  calculateLocalLiveness();
695
696  // Propagate the liveness information.
697  calculateLiveIntervals(NumSlots);
698
699  // Search for allocas which are used outside of the declared lifetime
700  // markers.
701  if (ProtectFromEscapedAllocas)
702    removeInvalidSlotRanges();
703
704  // Maps old slots to new slots.
705  DenseMap<int, int> SlotRemap;
706  unsigned RemovedSlots = 0;
707  unsigned ReducedSize = 0;
708
709  // Do not bother looking at empty intervals.
710  for (unsigned I = 0; I < NumSlots; ++I) {
711    if (Intervals[SortedSlots[I]]->empty())
712      SortedSlots[I] = -1;
713  }
714
715  // This is a simple greedy algorithm for merging allocas. First, sort the
716  // slots, placing the largest slots first. Next, perform an n^2 scan and look
717  // for disjoint slots. When you find disjoint slots, merge the samller one
718  // into the bigger one and update the live interval. Remove the small alloca
719  // and continue.
720
721  // Sort the slots according to their size. Place unused slots at the end.
722  // Use stable sort to guarantee deterministic code generation.
723  std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
724                   SlotSizeSorter(MFI));
725
726  bool Chanded = true;
727  while (Chanded) {
728    Chanded = false;
729    for (unsigned I = 0; I < NumSlots; ++I) {
730      if (SortedSlots[I] == -1)
731        continue;
732
733      for (unsigned J=I+1; J < NumSlots; ++J) {
734        if (SortedSlots[J] == -1)
735          continue;
736
737        int FirstSlot = SortedSlots[I];
738        int SecondSlot = SortedSlots[J];
739        LiveInterval *First = Intervals[FirstSlot];
740        LiveInterval *Second = Intervals[SecondSlot];
741        assert (!First->empty() && !Second->empty() && "Found an empty range");
742
743        // Merge disjoint slots.
744        if (!First->overlaps(*Second)) {
745          Chanded = true;
746          First->MergeRangesInAsValue(*Second, First->getValNumInfo(0));
747          SlotRemap[SecondSlot] = FirstSlot;
748          SortedSlots[J] = -1;
749          DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
750                SecondSlot<<" together.\n");
751          unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
752                                           MFI->getObjectAlignment(SecondSlot));
753
754          assert(MFI->getObjectSize(FirstSlot) >=
755                 MFI->getObjectSize(SecondSlot) &&
756                 "Merging a small object into a larger one");
757
758          RemovedSlots+=1;
759          ReducedSize += MFI->getObjectSize(SecondSlot);
760          MFI->setObjectAlignment(FirstSlot, MaxAlignment);
761          MFI->RemoveStackObject(SecondSlot);
762        }
763      }
764    }
765  }// While changed.
766
767  // Record statistics.
768  StackSpaceSaved += ReducedSize;
769  StackSlotMerged += RemovedSlots;
770  DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
771        ReducedSize<<" bytes\n");
772
773  // Scan the entire function and update all machine operands that use frame
774  // indices to use the remapped frame index.
775  expungeSlotMap(SlotRemap, NumSlots);
776  remapInstructions(SlotRemap);
777
778  // Release the intervals.
779  for (unsigned I = 0; I < NumSlots; ++I) {
780    delete Intervals[I];
781  }
782
783  return removeAllMarkers();
784}
785