StackColoring.cpp revision 261abf5f4011e5b1e8949d7404190a4f4eaff8d8
1//===-- StackColoring.cpp -------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements the stack-coloring optimization that looks for
11// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12// which represent the possible lifetime of stack slots. It attempts to
13// merge disjoint stack slots and reduce the used stack space.
14// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15//
16// TODO: In the future we plan to improve stack coloring in the following ways:
17// 1. Allow merging multiple small slots into a single larger slot at different
18//    offsets.
19// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20//    spill slots.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "stackcoloring"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/PostOrderIterator.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SparseSet.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/CodeGen/LiveInterval.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
38#include "llvm/CodeGen/MachineDominators.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineFunctionPass.h"
41#include "llvm/CodeGen/MachineLoopInfo.h"
42#include "llvm/CodeGen/MachineMemOperand.h"
43#include "llvm/CodeGen/MachineModuleInfo.h"
44#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/SlotIndexes.h"
46#include "llvm/DebugInfo.h"
47#include "llvm/IR/Function.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/Module.h"
50#include "llvm/MC/MCInstrItineraries.h"
51#include "llvm/Support/CommandLine.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetInstrInfo.h"
55#include "llvm/Target/TargetRegisterInfo.h"
56
57using namespace llvm;
58
59static cl::opt<bool>
60DisableColoring("no-stack-coloring",
61        cl::init(false), cl::Hidden,
62        cl::desc("Disable stack coloring"));
63
64/// The user may write code that uses allocas outside of the declared lifetime
65/// zone. This can happen when the user returns a reference to a local
66/// data-structure. We can detect these cases and decide not to optimize the
67/// code. If this flag is enabled, we try to save the user.
68static cl::opt<bool>
69ProtectFromEscapedAllocas("protect-from-escaped-allocas",
70        cl::init(false), cl::Hidden,
71        cl::desc("Do not optimize lifetime zones that are broken"));
72
73STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
74STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
75STATISTIC(StackSlotMerged, "Number of stack slot merged.");
76STATISTIC(EscapedAllocas,
77          "Number of allocas that escaped the lifetime region");
78
79//===----------------------------------------------------------------------===//
80//                           StackColoring Pass
81//===----------------------------------------------------------------------===//
82
83namespace {
84/// StackColoring - A machine pass for merging disjoint stack allocations,
85/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
86class StackColoring : public MachineFunctionPass {
87  MachineFrameInfo *MFI;
88  MachineFunction *MF;
89
90  /// A class representing liveness information for a single basic block.
91  /// Each bit in the BitVector represents the liveness property
92  /// for a different stack slot.
93  struct BlockLifetimeInfo {
94    /// Which slots BEGINs in each basic block.
95    BitVector Begin;
96    /// Which slots ENDs in each basic block.
97    BitVector End;
98    /// Which slots are marked as LIVE_IN, coming into each basic block.
99    BitVector LiveIn;
100    /// Which slots are marked as LIVE_OUT, coming out of each basic block.
101    BitVector LiveOut;
102  };
103
104  /// Maps active slots (per bit) for each basic block.
105  typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
106  LivenessMap BlockLiveness;
107
108  /// Maps serial numbers to basic blocks.
109  DenseMap<const MachineBasicBlock*, int> BasicBlocks;
110  /// Maps basic blocks to a serial number.
111  SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
112
113  /// Maps liveness intervals for each slot.
114  SmallVector<LiveInterval*, 16> Intervals;
115  /// VNInfo is used for the construction of LiveIntervals.
116  VNInfo::Allocator VNInfoAllocator;
117  /// SlotIndex analysis object.
118  SlotIndexes *Indexes;
119
120  /// The list of lifetime markers found. These markers are to be removed
121  /// once the coloring is done.
122  SmallVector<MachineInstr*, 8> Markers;
123
124  /// SlotSizeSorter - A Sort utility for arranging stack slots according
125  /// to their size.
126  struct SlotSizeSorter {
127    MachineFrameInfo *MFI;
128    SlotSizeSorter(MachineFrameInfo *mfi) : MFI(mfi) { }
129    bool operator()(int LHS, int RHS) {
130      // We use -1 to denote a uninteresting slot. Place these slots at the end.
131      if (LHS == -1) return false;
132      if (RHS == -1) return true;
133      // Sort according to size.
134      return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
135  }
136};
137
138public:
139  static char ID;
140  StackColoring() : MachineFunctionPass(ID) {
141    initializeStackColoringPass(*PassRegistry::getPassRegistry());
142  }
143  void getAnalysisUsage(AnalysisUsage &AU) const;
144  bool runOnMachineFunction(MachineFunction &MF);
145
146private:
147  /// Debug.
148  void dump() const;
149
150  /// Removes all of the lifetime marker instructions from the function.
151  /// \returns true if any markers were removed.
152  bool removeAllMarkers();
153
154  /// Scan the machine function and find all of the lifetime markers.
155  /// Record the findings in the BEGIN and END vectors.
156  /// \returns the number of markers found.
157  unsigned collectMarkers(unsigned NumSlot);
158
159  /// Perform the dataflow calculation and calculate the lifetime for each of
160  /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
161  /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
162  /// in and out blocks.
163  void calculateLocalLiveness();
164
165  /// Construct the LiveIntervals for the slots.
166  void calculateLiveIntervals(unsigned NumSlots);
167
168  /// Go over the machine function and change instructions which use stack
169  /// slots to use the joint slots.
170  void remapInstructions(DenseMap<int, int> &SlotRemap);
171
172  /// The input program may contain intructions which are not inside lifetime
173  /// markers. This can happen due to a bug in the compiler or due to a bug in
174  /// user code (for example, returning a reference to a local variable).
175  /// This procedure checks all of the instructions in the function and
176  /// invalidates lifetime ranges which do not contain all of the instructions
177  /// which access that frame slot.
178  void removeInvalidSlotRanges();
179
180  /// Map entries which point to other entries to their destination.
181  ///   A->B->C becomes A->C.
182   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
183};
184} // end anonymous namespace
185
186char StackColoring::ID = 0;
187char &llvm::StackColoringID = StackColoring::ID;
188
189INITIALIZE_PASS_BEGIN(StackColoring,
190                   "stack-coloring", "Merge disjoint stack slots", false, false)
191INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
192INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
193INITIALIZE_PASS_END(StackColoring,
194                   "stack-coloring", "Merge disjoint stack slots", false, false)
195
196void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
197  AU.addRequired<MachineDominatorTree>();
198  AU.addPreserved<MachineDominatorTree>();
199  AU.addRequired<SlotIndexes>();
200  MachineFunctionPass::getAnalysisUsage(AU);
201}
202
203void StackColoring::dump() const {
204  for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
205       FI != FE; ++FI) {
206    DEBUG(dbgs()<<"Inspecting block #"<<BasicBlocks.lookup(*FI)<<
207          " ["<<FI->getName()<<"]\n");
208
209    LivenessMap::const_iterator BI = BlockLiveness.find(*FI);
210    assert(BI != BlockLiveness.end() && "Block not found");
211    const BlockLifetimeInfo &BlockInfo = BI->second;
212
213    DEBUG(dbgs()<<"BEGIN  : {");
214    for (unsigned i=0; i < BlockInfo.Begin.size(); ++i)
215      DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" ");
216    DEBUG(dbgs()<<"}\n");
217
218    DEBUG(dbgs()<<"END    : {");
219    for (unsigned i=0; i < BlockInfo.End.size(); ++i)
220      DEBUG(dbgs()<<BlockInfo.End.test(i)<<" ");
221
222    DEBUG(dbgs()<<"}\n");
223
224    DEBUG(dbgs()<<"LIVE_IN: {");
225    for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i)
226      DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" ");
227
228    DEBUG(dbgs()<<"}\n");
229    DEBUG(dbgs()<<"LIVEOUT: {");
230    for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i)
231      DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" ");
232    DEBUG(dbgs()<<"}\n");
233  }
234}
235
236unsigned StackColoring::collectMarkers(unsigned NumSlot) {
237  unsigned MarkersFound = 0;
238  // Scan the function to find all lifetime markers.
239  // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a
240  // deterministic numbering, and because we'll need a post-order iteration
241  // later for solving the liveness dataflow problem.
242  for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
243       FI != FE; ++FI) {
244
245    // Assign a serial number to this basic block.
246    BasicBlocks[*FI] = BasicBlockNumbering.size();
247    BasicBlockNumbering.push_back(*FI);
248
249    // Keep a reference to avoid repeated lookups.
250    BlockLifetimeInfo &BlockInfo = BlockLiveness[*FI];
251
252    BlockInfo.Begin.resize(NumSlot);
253    BlockInfo.End.resize(NumSlot);
254
255    for (MachineBasicBlock::iterator BI = (*FI)->begin(), BE = (*FI)->end();
256         BI != BE; ++BI) {
257
258      if (BI->getOpcode() != TargetOpcode::LIFETIME_START &&
259          BI->getOpcode() != TargetOpcode::LIFETIME_END)
260        continue;
261
262      Markers.push_back(BI);
263
264      bool IsStart = BI->getOpcode() == TargetOpcode::LIFETIME_START;
265      const MachineOperand &MI = BI->getOperand(0);
266      unsigned Slot = MI.getIndex();
267
268      MarkersFound++;
269
270      const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
271      if (Allocation) {
272        DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
273              " with allocation: "<< Allocation->getName()<<"\n");
274      }
275
276      if (IsStart) {
277        BlockInfo.Begin.set(Slot);
278      } else {
279        if (BlockInfo.Begin.test(Slot)) {
280          // Allocas that start and end within a single block are handled
281          // specially when computing the LiveIntervals to avoid pessimizing
282          // the liveness propagation.
283          BlockInfo.Begin.reset(Slot);
284        } else {
285          BlockInfo.End.set(Slot);
286        }
287      }
288    }
289  }
290
291  // Update statistics.
292  NumMarkerSeen += MarkersFound;
293  return MarkersFound;
294}
295
296void StackColoring::calculateLocalLiveness() {
297  // Perform a standard reverse dataflow computation to solve for
298  // global liveness.  The BEGIN set here is equivalent to KILL in the standard
299  // formulation, and END is equivalent to GEN.  The result of this computation
300  // is a map from blocks to bitvectors where the bitvectors represent which
301  // allocas are live in/out of that block.
302  SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
303                                                 BasicBlockNumbering.end());
304  unsigned NumSSMIters = 0;
305  bool changed = true;
306  while (changed) {
307    changed = false;
308    ++NumSSMIters;
309
310    SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet;
311
312    for (SmallVector<const MachineBasicBlock*, 8>::iterator
313         PI = BasicBlockNumbering.begin(), PE = BasicBlockNumbering.end();
314         PI != PE; ++PI) {
315
316      const MachineBasicBlock *BB = *PI;
317      if (!BBSet.count(BB)) continue;
318
319      // Use an iterator to avoid repeated lookups.
320      LivenessMap::iterator BI = BlockLiveness.find(BB);
321      assert(BI != BlockLiveness.end() && "Block not found");
322      BlockLifetimeInfo &BlockInfo = BI->second;
323
324      BitVector LocalLiveIn;
325      BitVector LocalLiveOut;
326
327      // Forward propagation from begins to ends.
328      for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
329           PE = BB->pred_end(); PI != PE; ++PI) {
330        LivenessMap::const_iterator I = BlockLiveness.find(*PI);
331        assert(I != BlockLiveness.end() && "Predecessor not found");
332        LocalLiveIn |= I->second.LiveOut;
333      }
334      LocalLiveIn |= BlockInfo.End;
335      LocalLiveIn.reset(BlockInfo.Begin);
336
337      // Reverse propagation from ends to begins.
338      for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
339           SE = BB->succ_end(); SI != SE; ++SI) {
340        LivenessMap::const_iterator I = BlockLiveness.find(*SI);
341        assert(I != BlockLiveness.end() && "Successor not found");
342        LocalLiveOut |= I->second.LiveIn;
343      }
344      LocalLiveOut |= BlockInfo.Begin;
345      LocalLiveOut.reset(BlockInfo.End);
346
347      LocalLiveIn |= LocalLiveOut;
348      LocalLiveOut |= LocalLiveIn;
349
350      // After adopting the live bits, we need to turn-off the bits which
351      // are de-activated in this block.
352      LocalLiveOut.reset(BlockInfo.End);
353      LocalLiveIn.reset(BlockInfo.Begin);
354
355      // If we have both BEGIN and END markers in the same basic block then
356      // we know that the BEGIN marker comes after the END, because we already
357      // handle the case where the BEGIN comes before the END when collecting
358      // the markers (and building the BEGIN/END vectore).
359      // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
360      // BEGIN and END because it means that the value lives before and after
361      // this basic block.
362      BitVector LocalEndBegin = BlockInfo.End;
363      LocalEndBegin &= BlockInfo.Begin;
364      LocalLiveIn |= LocalEndBegin;
365      LocalLiveOut |= LocalEndBegin;
366
367      if (LocalLiveIn.test(BlockInfo.LiveIn)) {
368        changed = true;
369        BlockInfo.LiveIn |= LocalLiveIn;
370
371        for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
372             PE = BB->pred_end(); PI != PE; ++PI)
373          NextBBSet.insert(*PI);
374      }
375
376      if (LocalLiveOut.test(BlockInfo.LiveOut)) {
377        changed = true;
378        BlockInfo.LiveOut |= LocalLiveOut;
379
380        for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
381             SE = BB->succ_end(); SI != SE; ++SI)
382          NextBBSet.insert(*SI);
383      }
384    }
385
386    BBSet = NextBBSet;
387  }// while changed.
388}
389
390void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
391  SmallVector<SlotIndex, 16> Starts;
392  SmallVector<SlotIndex, 16> Finishes;
393
394  // For each block, find which slots are active within this block
395  // and update the live intervals.
396  for (MachineFunction::iterator MBB = MF->begin(), MBBe = MF->end();
397       MBB != MBBe; ++MBB) {
398    Starts.clear();
399    Starts.resize(NumSlots);
400    Finishes.clear();
401    Finishes.resize(NumSlots);
402
403    // Create the interval for the basic blocks with lifetime markers in them.
404    for (SmallVectorImpl<MachineInstr*>::const_iterator it = Markers.begin(),
405         e = Markers.end(); it != e; ++it) {
406      const MachineInstr *MI = *it;
407      if (MI->getParent() != MBB)
408        continue;
409
410      assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
411              MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
412             "Invalid Lifetime marker");
413
414      bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
415      const MachineOperand &Mo = MI->getOperand(0);
416      int Slot = Mo.getIndex();
417      assert(Slot >= 0 && "Invalid slot");
418
419      SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
420
421      if (IsStart) {
422        if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
423          Starts[Slot] = ThisIndex;
424      } else {
425        if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
426          Finishes[Slot] = ThisIndex;
427      }
428    }
429
430    // Create the interval of the blocks that we previously found to be 'alive'.
431    BitVector Alive = BlockLiveness[MBB].LiveIn;
432    Alive |= BlockLiveness[MBB].LiveOut;
433
434    if (Alive.any()) {
435      for (int pos = Alive.find_first(); pos != -1;
436           pos = Alive.find_next(pos)) {
437        if (!Starts[pos].isValid())
438          Starts[pos] = Indexes->getMBBStartIdx(MBB);
439        if (!Finishes[pos].isValid())
440          Finishes[pos] = Indexes->getMBBEndIdx(MBB);
441      }
442    }
443
444    for (unsigned i = 0; i < NumSlots; ++i) {
445      assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
446      if (!Starts[i].isValid())
447        continue;
448
449      assert(Starts[i] && Finishes[i] && "Invalid interval");
450      VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
451      SlotIndex S = Starts[i];
452      SlotIndex F = Finishes[i];
453      if (S < F) {
454        // We have a single consecutive region.
455        Intervals[i]->addRange(LiveRange(S, F, ValNum));
456      } else {
457        // We have two non consecutive regions. This happens when
458        // LIFETIME_START appears after the LIFETIME_END marker.
459        SlotIndex NewStart = Indexes->getMBBStartIdx(MBB);
460        SlotIndex NewFin = Indexes->getMBBEndIdx(MBB);
461        Intervals[i]->addRange(LiveRange(NewStart, F, ValNum));
462        Intervals[i]->addRange(LiveRange(S, NewFin, ValNum));
463      }
464    }
465  }
466}
467
468bool StackColoring::removeAllMarkers() {
469  unsigned Count = 0;
470  for (unsigned i = 0; i < Markers.size(); ++i) {
471    Markers[i]->eraseFromParent();
472    Count++;
473  }
474  Markers.clear();
475
476  DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
477  return Count;
478}
479
480void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
481  unsigned FixedInstr = 0;
482  unsigned FixedMemOp = 0;
483  unsigned FixedDbg = 0;
484  MachineModuleInfo *MMI = &MF->getMMI();
485
486  // Remap debug information that refers to stack slots.
487  MachineModuleInfo::VariableDbgInfoMapTy &VMap = MMI->getVariableDbgInfo();
488  for (MachineModuleInfo::VariableDbgInfoMapTy::iterator VI = VMap.begin(),
489       VE = VMap.end(); VI != VE; ++VI) {
490    const MDNode *Var = VI->first;
491    if (!Var) continue;
492    std::pair<unsigned, DebugLoc> &VP = VI->second;
493    if (SlotRemap.count(VP.first)) {
494      DEBUG(dbgs()<<"Remapping debug info for ["<<Var->getName()<<"].\n");
495      VP.first = SlotRemap[VP.first];
496      FixedDbg++;
497    }
498  }
499
500  // Keep a list of *allocas* which need to be remapped.
501  DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
502  for (DenseMap<int, int>::const_iterator it = SlotRemap.begin(),
503       e = SlotRemap.end(); it != e; ++it) {
504    const AllocaInst *From = MFI->getObjectAllocation(it->first);
505    const AllocaInst *To = MFI->getObjectAllocation(it->second);
506    assert(To && From && "Invalid allocation object");
507    Allocas[From] = To;
508  }
509
510  // Remap all instructions to the new stack slots.
511  MachineFunction::iterator BB, BBE;
512  MachineBasicBlock::iterator I, IE;
513  for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB)
514    for (I = BB->begin(), IE = BB->end(); I != IE; ++I) {
515
516      // Skip lifetime markers. We'll remove them soon.
517      if (I->getOpcode() == TargetOpcode::LIFETIME_START ||
518          I->getOpcode() == TargetOpcode::LIFETIME_END)
519        continue;
520
521      // Update the MachineMemOperand to use the new alloca.
522      for (MachineInstr::mmo_iterator MM = I->memoperands_begin(),
523           E = I->memoperands_end(); MM != E; ++MM) {
524        MachineMemOperand *MMO = *MM;
525
526        const Value *V = MMO->getValue();
527
528        if (!V)
529          continue;
530
531        // Climb up and find the original alloca.
532        V = GetUnderlyingObject(V);
533        // If we did not find one, or if the one that we found is not in our
534        // map, then move on.
535        if (!V || !isa<AllocaInst>(V)) {
536          // Clear mem operand since we don't know for sure that it doesn't
537          // alias a merged alloca.
538          MMO->setValue(0);
539          continue;
540        }
541        const AllocaInst *AI= cast<AllocaInst>(V);
542        if (!Allocas.count(AI))
543          continue;
544
545        MMO->setValue(Allocas[AI]);
546        FixedMemOp++;
547      }
548
549      // Update all of the machine instruction operands.
550      for (unsigned i = 0 ; i <  I->getNumOperands(); ++i) {
551        MachineOperand &MO = I->getOperand(i);
552
553        if (!MO.isFI())
554          continue;
555        int FromSlot = MO.getIndex();
556
557        // Don't touch arguments.
558        if (FromSlot<0)
559          continue;
560
561        // Only look at mapped slots.
562        if (!SlotRemap.count(FromSlot))
563          continue;
564
565        // In a debug build, check that the instruction that we are modifying is
566        // inside the expected live range. If the instruction is not inside
567        // the calculated range then it means that the alloca usage moved
568        // outside of the lifetime markers, or that the user has a bug.
569        // NOTE: Alloca address calculations which happen outside the lifetime
570        // zone are are okay, despite the fact that we don't have a good way
571        // for validating all of the usages of the calculation.
572#ifndef NDEBUG
573        bool TouchesMemory = I->mayLoad() || I->mayStore();
574        // If we *don't* protect the user from escaped allocas, don't bother
575        // validating the instructions.
576        if (!I->isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
577          SlotIndex Index = Indexes->getInstructionIndex(I);
578          LiveInterval *Interval = Intervals[FromSlot];
579          assert(Interval->find(Index) != Interval->end() &&
580               "Found instruction usage outside of live range.");
581        }
582#endif
583
584        // Fix the machine instructions.
585        int ToSlot = SlotRemap[FromSlot];
586        MO.setIndex(ToSlot);
587        FixedInstr++;
588      }
589    }
590
591  DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
592  DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
593  DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
594}
595
596void StackColoring::removeInvalidSlotRanges() {
597  MachineFunction::const_iterator BB, BBE;
598  MachineBasicBlock::const_iterator I, IE;
599  for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB)
600    for (I = BB->begin(), IE = BB->end(); I != IE; ++I) {
601
602      if (I->getOpcode() == TargetOpcode::LIFETIME_START ||
603          I->getOpcode() == TargetOpcode::LIFETIME_END || I->isDebugValue())
604        continue;
605
606      // Some intervals are suspicious! In some cases we find address
607      // calculations outside of the lifetime zone, but not actual memory
608      // read or write. Memory accesses outside of the lifetime zone are a clear
609      // violation, but address calculations are okay. This can happen when
610      // GEPs are hoisted outside of the lifetime zone.
611      // So, in here we only check instructions which can read or write memory.
612      if (!I->mayLoad() && !I->mayStore())
613        continue;
614
615      // Check all of the machine operands.
616      for (unsigned i = 0 ; i <  I->getNumOperands(); ++i) {
617        const MachineOperand &MO = I->getOperand(i);
618
619        if (!MO.isFI())
620          continue;
621
622        int Slot = MO.getIndex();
623
624        if (Slot<0)
625          continue;
626
627        if (Intervals[Slot]->empty())
628          continue;
629
630        // Check that the used slot is inside the calculated lifetime range.
631        // If it is not, warn about it and invalidate the range.
632        LiveInterval *Interval = Intervals[Slot];
633        SlotIndex Index = Indexes->getInstructionIndex(I);
634        if (Interval->find(Index) == Interval->end()) {
635          Intervals[Slot]->clear();
636          DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
637          EscapedAllocas++;
638        }
639      }
640    }
641}
642
643void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
644                                   unsigned NumSlots) {
645  // Expunge slot remap map.
646  for (unsigned i=0; i < NumSlots; ++i) {
647    // If we are remapping i
648    if (SlotRemap.count(i)) {
649      int Target = SlotRemap[i];
650      // As long as our target is mapped to something else, follow it.
651      while (SlotRemap.count(Target)) {
652        Target = SlotRemap[Target];
653        SlotRemap[i] = Target;
654      }
655    }
656  }
657}
658
659bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
660  DEBUG(dbgs() << "********** Stack Coloring **********\n"
661               << "********** Function: "
662               << ((const Value*)Func.getFunction())->getName() << '\n');
663  MF = &Func;
664  MFI = MF->getFrameInfo();
665  Indexes = &getAnalysis<SlotIndexes>();
666  BlockLiveness.clear();
667  BasicBlocks.clear();
668  BasicBlockNumbering.clear();
669  Markers.clear();
670  Intervals.clear();
671  VNInfoAllocator.Reset();
672
673  unsigned NumSlots = MFI->getObjectIndexEnd();
674
675  // If there are no stack slots then there are no markers to remove.
676  if (!NumSlots)
677    return false;
678
679  SmallVector<int, 8> SortedSlots;
680
681  SortedSlots.reserve(NumSlots);
682  Intervals.reserve(NumSlots);
683
684  unsigned NumMarkers = collectMarkers(NumSlots);
685
686  unsigned TotalSize = 0;
687  DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
688  DEBUG(dbgs()<<"Slot structure:\n");
689
690  for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
691    DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
692    TotalSize += MFI->getObjectSize(i);
693  }
694
695  DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
696
697  // Don't continue because there are not enough lifetime markers, or the
698  // stack is too small, or we are told not to optimize the slots.
699  if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
700    DEBUG(dbgs()<<"Will not try to merge slots.\n");
701    return removeAllMarkers();
702  }
703
704  for (unsigned i=0; i < NumSlots; ++i) {
705    LiveInterval *LI = new LiveInterval(i, 0);
706    Intervals.push_back(LI);
707    LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
708    SortedSlots.push_back(i);
709  }
710
711  // Calculate the liveness of each block.
712  calculateLocalLiveness();
713
714  // Propagate the liveness information.
715  calculateLiveIntervals(NumSlots);
716
717  // Search for allocas which are used outside of the declared lifetime
718  // markers.
719  if (ProtectFromEscapedAllocas)
720    removeInvalidSlotRanges();
721
722  // Maps old slots to new slots.
723  DenseMap<int, int> SlotRemap;
724  unsigned RemovedSlots = 0;
725  unsigned ReducedSize = 0;
726
727  // Do not bother looking at empty intervals.
728  for (unsigned I = 0; I < NumSlots; ++I) {
729    if (Intervals[SortedSlots[I]]->empty())
730      SortedSlots[I] = -1;
731  }
732
733  // This is a simple greedy algorithm for merging allocas. First, sort the
734  // slots, placing the largest slots first. Next, perform an n^2 scan and look
735  // for disjoint slots. When you find disjoint slots, merge the samller one
736  // into the bigger one and update the live interval. Remove the small alloca
737  // and continue.
738
739  // Sort the slots according to their size. Place unused slots at the end.
740  // Use stable sort to guarantee deterministic code generation.
741  std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
742                   SlotSizeSorter(MFI));
743
744  bool Chanded = true;
745  while (Chanded) {
746    Chanded = false;
747    for (unsigned I = 0; I < NumSlots; ++I) {
748      if (SortedSlots[I] == -1)
749        continue;
750
751      for (unsigned J=I+1; J < NumSlots; ++J) {
752        if (SortedSlots[J] == -1)
753          continue;
754
755        int FirstSlot = SortedSlots[I];
756        int SecondSlot = SortedSlots[J];
757        LiveInterval *First = Intervals[FirstSlot];
758        LiveInterval *Second = Intervals[SecondSlot];
759        assert (!First->empty() && !Second->empty() && "Found an empty range");
760
761        // Merge disjoint slots.
762        if (!First->overlaps(*Second)) {
763          Chanded = true;
764          First->MergeRangesInAsValue(*Second, First->getValNumInfo(0));
765          SlotRemap[SecondSlot] = FirstSlot;
766          SortedSlots[J] = -1;
767          DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
768                SecondSlot<<" together.\n");
769          unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
770                                           MFI->getObjectAlignment(SecondSlot));
771
772          assert(MFI->getObjectSize(FirstSlot) >=
773                 MFI->getObjectSize(SecondSlot) &&
774                 "Merging a small object into a larger one");
775
776          RemovedSlots+=1;
777          ReducedSize += MFI->getObjectSize(SecondSlot);
778          MFI->setObjectAlignment(FirstSlot, MaxAlignment);
779          MFI->RemoveStackObject(SecondSlot);
780        }
781      }
782    }
783  }// While changed.
784
785  // Record statistics.
786  StackSpaceSaved += ReducedSize;
787  StackSlotMerged += RemovedSlots;
788  DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
789        ReducedSize<<" bytes\n");
790
791  // Scan the entire function and update all machine operands that use frame
792  // indices to use the remapped frame index.
793  expungeSlotMap(SlotRemap, NumSlots);
794  remapInstructions(SlotRemap);
795
796  // Release the intervals.
797  for (unsigned I = 0; I < NumSlots; ++I) {
798    delete Intervals[I];
799  }
800
801  return removeAllMarkers();
802}
803