StackColoring.cpp revision 331de11a0acc6a095b98914b5f05ff242c9d7819
1//===-- StackColoring.cpp -------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements the stack-coloring optimization that looks for
11// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12// which represent the possible lifetime of stack slots. It attempts to
13// merge disjoint stack slots and reduce the used stack space.
14// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15//
16// TODO: In the future we plan to improve stack coloring in the following ways:
17// 1. Allow merging multiple small slots into a single larger slot at different
18//    offsets.
19// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20//    spill slots.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "stackcoloring"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/PostOrderIterator.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SparseSet.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/CodeGen/LiveInterval.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
38#include "llvm/CodeGen/MachineDominators.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineFunctionPass.h"
41#include "llvm/CodeGen/MachineLoopInfo.h"
42#include "llvm/CodeGen/MachineMemOperand.h"
43#include "llvm/CodeGen/MachineModuleInfo.h"
44#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/PseudoSourceValue.h"
46#include "llvm/CodeGen/SlotIndexes.h"
47#include "llvm/DebugInfo.h"
48#include "llvm/IR/Function.h"
49#include "llvm/IR/Instructions.h"
50#include "llvm/IR/Module.h"
51#include "llvm/MC/MCInstrItineraries.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetRegisterInfo.h"
57
58using namespace llvm;
59
60static cl::opt<bool>
61DisableColoring("no-stack-coloring",
62        cl::init(false), cl::Hidden,
63        cl::desc("Disable stack coloring"));
64
65/// The user may write code that uses allocas outside of the declared lifetime
66/// zone. This can happen when the user returns a reference to a local
67/// data-structure. We can detect these cases and decide not to optimize the
68/// code. If this flag is enabled, we try to save the user.
69static cl::opt<bool>
70ProtectFromEscapedAllocas("protect-from-escaped-allocas",
71                          cl::init(false), cl::Hidden,
72                          cl::desc("Do not optimize lifetime zones that "
73                                   "are broken"));
74
75STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
76STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
77STATISTIC(StackSlotMerged, "Number of stack slot merged.");
78STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
79
80//===----------------------------------------------------------------------===//
81//                           StackColoring Pass
82//===----------------------------------------------------------------------===//
83
84namespace {
85/// StackColoring - A machine pass for merging disjoint stack allocations,
86/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
87class StackColoring : public MachineFunctionPass {
88  MachineFrameInfo *MFI;
89  MachineFunction *MF;
90
91  /// A class representing liveness information for a single basic block.
92  /// Each bit in the BitVector represents the liveness property
93  /// for a different stack slot.
94  struct BlockLifetimeInfo {
95    /// Which slots BEGINs in each basic block.
96    BitVector Begin;
97    /// Which slots ENDs in each basic block.
98    BitVector End;
99    /// Which slots are marked as LIVE_IN, coming into each basic block.
100    BitVector LiveIn;
101    /// Which slots are marked as LIVE_OUT, coming out of each basic block.
102    BitVector LiveOut;
103  };
104
105  /// Maps active slots (per bit) for each basic block.
106  typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
107  LivenessMap BlockLiveness;
108
109  /// Maps serial numbers to basic blocks.
110  DenseMap<const MachineBasicBlock*, int> BasicBlocks;
111  /// Maps basic blocks to a serial number.
112  SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
113
114  /// Maps liveness intervals for each slot.
115  SmallVector<LiveInterval*, 16> Intervals;
116  /// VNInfo is used for the construction of LiveIntervals.
117  VNInfo::Allocator VNInfoAllocator;
118  /// SlotIndex analysis object.
119  SlotIndexes *Indexes;
120
121  /// The list of lifetime markers found. These markers are to be removed
122  /// once the coloring is done.
123  SmallVector<MachineInstr*, 8> Markers;
124
125  /// SlotSizeSorter - A Sort utility for arranging stack slots according
126  /// to their size.
127  struct SlotSizeSorter {
128    MachineFrameInfo *MFI;
129    SlotSizeSorter(MachineFrameInfo *mfi) : MFI(mfi) { }
130    bool operator()(int LHS, int RHS) {
131      // We use -1 to denote a uninteresting slot. Place these slots at the end.
132      if (LHS == -1) return false;
133      if (RHS == -1) return true;
134      // Sort according to size.
135      return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
136  }
137};
138
139public:
140  static char ID;
141  StackColoring() : MachineFunctionPass(ID) {
142    initializeStackColoringPass(*PassRegistry::getPassRegistry());
143  }
144  void getAnalysisUsage(AnalysisUsage &AU) const;
145  bool runOnMachineFunction(MachineFunction &MF);
146
147private:
148  /// Debug.
149  void dump() const;
150
151  /// Removes all of the lifetime marker instructions from the function.
152  /// \returns true if any markers were removed.
153  bool removeAllMarkers();
154
155  /// Scan the machine function and find all of the lifetime markers.
156  /// Record the findings in the BEGIN and END vectors.
157  /// \returns the number of markers found.
158  unsigned collectMarkers(unsigned NumSlot);
159
160  /// Perform the dataflow calculation and calculate the lifetime for each of
161  /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
162  /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
163  /// in and out blocks.
164  void calculateLocalLiveness();
165
166  /// Construct the LiveIntervals for the slots.
167  void calculateLiveIntervals(unsigned NumSlots);
168
169  /// Go over the machine function and change instructions which use stack
170  /// slots to use the joint slots.
171  void remapInstructions(DenseMap<int, int> &SlotRemap);
172
173  /// The input program may contain instructions which are not inside lifetime
174  /// markers. This can happen due to a bug in the compiler or due to a bug in
175  /// user code (for example, returning a reference to a local variable).
176  /// This procedure checks all of the instructions in the function and
177  /// invalidates lifetime ranges which do not contain all of the instructions
178  /// which access that frame slot.
179  void removeInvalidSlotRanges();
180
181  /// Map entries which point to other entries to their destination.
182  ///   A->B->C becomes A->C.
183   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
184};
185} // end anonymous namespace
186
187char StackColoring::ID = 0;
188char &llvm::StackColoringID = StackColoring::ID;
189
190INITIALIZE_PASS_BEGIN(StackColoring,
191                   "stack-coloring", "Merge disjoint stack slots", false, false)
192INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
193INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
194INITIALIZE_PASS_END(StackColoring,
195                   "stack-coloring", "Merge disjoint stack slots", false, false)
196
197void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
198  AU.addRequired<MachineDominatorTree>();
199  AU.addPreserved<MachineDominatorTree>();
200  AU.addRequired<SlotIndexes>();
201  MachineFunctionPass::getAnalysisUsage(AU);
202}
203
204void StackColoring::dump() const {
205  for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
206       FI != FE; ++FI) {
207    DEBUG(dbgs()<<"Inspecting block #"<<BasicBlocks.lookup(*FI)<<
208          " ["<<FI->getName()<<"]\n");
209
210    LivenessMap::const_iterator BI = BlockLiveness.find(*FI);
211    assert(BI != BlockLiveness.end() && "Block not found");
212    const BlockLifetimeInfo &BlockInfo = BI->second;
213
214    DEBUG(dbgs()<<"BEGIN  : {");
215    for (unsigned i=0; i < BlockInfo.Begin.size(); ++i)
216      DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" ");
217    DEBUG(dbgs()<<"}\n");
218
219    DEBUG(dbgs()<<"END    : {");
220    for (unsigned i=0; i < BlockInfo.End.size(); ++i)
221      DEBUG(dbgs()<<BlockInfo.End.test(i)<<" ");
222
223    DEBUG(dbgs()<<"}\n");
224
225    DEBUG(dbgs()<<"LIVE_IN: {");
226    for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i)
227      DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" ");
228
229    DEBUG(dbgs()<<"}\n");
230    DEBUG(dbgs()<<"LIVEOUT: {");
231    for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i)
232      DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" ");
233    DEBUG(dbgs()<<"}\n");
234  }
235}
236
237unsigned StackColoring::collectMarkers(unsigned NumSlot) {
238  unsigned MarkersFound = 0;
239  // Scan the function to find all lifetime markers.
240  // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a
241  // deterministic numbering, and because we'll need a post-order iteration
242  // later for solving the liveness dataflow problem.
243  for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
244       FI != FE; ++FI) {
245
246    // Assign a serial number to this basic block.
247    BasicBlocks[*FI] = BasicBlockNumbering.size();
248    BasicBlockNumbering.push_back(*FI);
249
250    // Keep a reference to avoid repeated lookups.
251    BlockLifetimeInfo &BlockInfo = BlockLiveness[*FI];
252
253    BlockInfo.Begin.resize(NumSlot);
254    BlockInfo.End.resize(NumSlot);
255
256    for (MachineBasicBlock::iterator BI = (*FI)->begin(), BE = (*FI)->end();
257         BI != BE; ++BI) {
258
259      if (BI->getOpcode() != TargetOpcode::LIFETIME_START &&
260          BI->getOpcode() != TargetOpcode::LIFETIME_END)
261        continue;
262
263      Markers.push_back(BI);
264
265      bool IsStart = BI->getOpcode() == TargetOpcode::LIFETIME_START;
266      const MachineOperand &MI = BI->getOperand(0);
267      unsigned Slot = MI.getIndex();
268
269      MarkersFound++;
270
271      const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
272      if (Allocation) {
273        DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
274              " with allocation: "<< Allocation->getName()<<"\n");
275      }
276
277      if (IsStart) {
278        BlockInfo.Begin.set(Slot);
279      } else {
280        if (BlockInfo.Begin.test(Slot)) {
281          // Allocas that start and end within a single block are handled
282          // specially when computing the LiveIntervals to avoid pessimizing
283          // the liveness propagation.
284          BlockInfo.Begin.reset(Slot);
285        } else {
286          BlockInfo.End.set(Slot);
287        }
288      }
289    }
290  }
291
292  // Update statistics.
293  NumMarkerSeen += MarkersFound;
294  return MarkersFound;
295}
296
297void StackColoring::calculateLocalLiveness() {
298  // Perform a standard reverse dataflow computation to solve for
299  // global liveness.  The BEGIN set here is equivalent to KILL in the standard
300  // formulation, and END is equivalent to GEN.  The result of this computation
301  // is a map from blocks to bitvectors where the bitvectors represent which
302  // allocas are live in/out of that block.
303  SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
304                                                 BasicBlockNumbering.end());
305  unsigned NumSSMIters = 0;
306  bool changed = true;
307  while (changed) {
308    changed = false;
309    ++NumSSMIters;
310
311    SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet;
312
313    for (SmallVectorImpl<const MachineBasicBlock *>::iterator
314           PI = BasicBlockNumbering.begin(), PE = BasicBlockNumbering.end();
315           PI != PE; ++PI) {
316
317      const MachineBasicBlock *BB = *PI;
318      if (!BBSet.count(BB)) continue;
319
320      // Use an iterator to avoid repeated lookups.
321      LivenessMap::iterator BI = BlockLiveness.find(BB);
322      assert(BI != BlockLiveness.end() && "Block not found");
323      BlockLifetimeInfo &BlockInfo = BI->second;
324
325      BitVector LocalLiveIn;
326      BitVector LocalLiveOut;
327
328      // Forward propagation from begins to ends.
329      for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
330           PE = BB->pred_end(); PI != PE; ++PI) {
331        LivenessMap::const_iterator I = BlockLiveness.find(*PI);
332        assert(I != BlockLiveness.end() && "Predecessor not found");
333        LocalLiveIn |= I->second.LiveOut;
334      }
335      LocalLiveIn |= BlockInfo.End;
336      LocalLiveIn.reset(BlockInfo.Begin);
337
338      // Reverse propagation from ends to begins.
339      for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
340           SE = BB->succ_end(); SI != SE; ++SI) {
341        LivenessMap::const_iterator I = BlockLiveness.find(*SI);
342        assert(I != BlockLiveness.end() && "Successor not found");
343        LocalLiveOut |= I->second.LiveIn;
344      }
345      LocalLiveOut |= BlockInfo.Begin;
346      LocalLiveOut.reset(BlockInfo.End);
347
348      LocalLiveIn |= LocalLiveOut;
349      LocalLiveOut |= LocalLiveIn;
350
351      // After adopting the live bits, we need to turn-off the bits which
352      // are de-activated in this block.
353      LocalLiveOut.reset(BlockInfo.End);
354      LocalLiveIn.reset(BlockInfo.Begin);
355
356      // If we have both BEGIN and END markers in the same basic block then
357      // we know that the BEGIN marker comes after the END, because we already
358      // handle the case where the BEGIN comes before the END when collecting
359      // the markers (and building the BEGIN/END vectore).
360      // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
361      // BEGIN and END because it means that the value lives before and after
362      // this basic block.
363      BitVector LocalEndBegin = BlockInfo.End;
364      LocalEndBegin &= BlockInfo.Begin;
365      LocalLiveIn |= LocalEndBegin;
366      LocalLiveOut |= LocalEndBegin;
367
368      if (LocalLiveIn.test(BlockInfo.LiveIn)) {
369        changed = true;
370        BlockInfo.LiveIn |= LocalLiveIn;
371
372        for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
373             PE = BB->pred_end(); PI != PE; ++PI)
374          NextBBSet.insert(*PI);
375      }
376
377      if (LocalLiveOut.test(BlockInfo.LiveOut)) {
378        changed = true;
379        BlockInfo.LiveOut |= LocalLiveOut;
380
381        for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
382             SE = BB->succ_end(); SI != SE; ++SI)
383          NextBBSet.insert(*SI);
384      }
385    }
386
387    BBSet = NextBBSet;
388  }// while changed.
389}
390
391void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
392  SmallVector<SlotIndex, 16> Starts;
393  SmallVector<SlotIndex, 16> Finishes;
394
395  // For each block, find which slots are active within this block
396  // and update the live intervals.
397  for (MachineFunction::iterator MBB = MF->begin(), MBBe = MF->end();
398       MBB != MBBe; ++MBB) {
399    Starts.clear();
400    Starts.resize(NumSlots);
401    Finishes.clear();
402    Finishes.resize(NumSlots);
403
404    // Create the interval for the basic blocks with lifetime markers in them.
405    for (SmallVectorImpl<MachineInstr*>::const_iterator it = Markers.begin(),
406         e = Markers.end(); it != e; ++it) {
407      const MachineInstr *MI = *it;
408      if (MI->getParent() != MBB)
409        continue;
410
411      assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
412              MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
413             "Invalid Lifetime marker");
414
415      bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
416      const MachineOperand &Mo = MI->getOperand(0);
417      int Slot = Mo.getIndex();
418      assert(Slot >= 0 && "Invalid slot");
419
420      SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
421
422      if (IsStart) {
423        if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
424          Starts[Slot] = ThisIndex;
425      } else {
426        if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
427          Finishes[Slot] = ThisIndex;
428      }
429    }
430
431    // Create the interval of the blocks that we previously found to be 'alive'.
432    BlockLifetimeInfo &MBBLiveness = BlockLiveness[MBB];
433    for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
434         pos = MBBLiveness.LiveIn.find_next(pos)) {
435      Starts[pos] = Indexes->getMBBStartIdx(MBB);
436    }
437    for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
438         pos = MBBLiveness.LiveOut.find_next(pos)) {
439      Finishes[pos] = Indexes->getMBBEndIdx(MBB);
440    }
441
442    for (unsigned i = 0; i < NumSlots; ++i) {
443      assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
444      if (!Starts[i].isValid())
445        continue;
446
447      assert(Starts[i] && Finishes[i] && "Invalid interval");
448      VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
449      SlotIndex S = Starts[i];
450      SlotIndex F = Finishes[i];
451      if (S < F) {
452        // We have a single consecutive region.
453        Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
454      } else {
455        // We have two non consecutive regions. This happens when
456        // LIFETIME_START appears after the LIFETIME_END marker.
457        SlotIndex NewStart = Indexes->getMBBStartIdx(MBB);
458        SlotIndex NewFin = Indexes->getMBBEndIdx(MBB);
459        Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
460        Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
461      }
462    }
463  }
464}
465
466bool StackColoring::removeAllMarkers() {
467  unsigned Count = 0;
468  for (unsigned i = 0; i < Markers.size(); ++i) {
469    Markers[i]->eraseFromParent();
470    Count++;
471  }
472  Markers.clear();
473
474  DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
475  return Count;
476}
477
478void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
479  unsigned FixedInstr = 0;
480  unsigned FixedMemOp = 0;
481  unsigned FixedDbg = 0;
482  MachineModuleInfo *MMI = &MF->getMMI();
483
484  // Remap debug information that refers to stack slots.
485  MachineModuleInfo::VariableDbgInfoMapTy &VMap = MMI->getVariableDbgInfo();
486  for (MachineModuleInfo::VariableDbgInfoMapTy::iterator VI = VMap.begin(),
487       VE = VMap.end(); VI != VE; ++VI) {
488    const MDNode *Var = VI->first;
489    if (!Var) continue;
490    std::pair<unsigned, DebugLoc> &VP = VI->second;
491    if (SlotRemap.count(VP.first)) {
492      DEBUG(dbgs()<<"Remapping debug info for ["<<Var->getName()<<"].\n");
493      VP.first = SlotRemap[VP.first];
494      FixedDbg++;
495    }
496  }
497
498  // Keep a list of *allocas* which need to be remapped.
499  DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
500  for (DenseMap<int, int>::const_iterator it = SlotRemap.begin(),
501       e = SlotRemap.end(); it != e; ++it) {
502    const AllocaInst *From = MFI->getObjectAllocation(it->first);
503    const AllocaInst *To = MFI->getObjectAllocation(it->second);
504    assert(To && From && "Invalid allocation object");
505    Allocas[From] = To;
506  }
507
508  // Remap all instructions to the new stack slots.
509  MachineFunction::iterator BB, BBE;
510  MachineBasicBlock::iterator I, IE;
511  for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB)
512    for (I = BB->begin(), IE = BB->end(); I != IE; ++I) {
513
514      // Skip lifetime markers. We'll remove them soon.
515      if (I->getOpcode() == TargetOpcode::LIFETIME_START ||
516          I->getOpcode() == TargetOpcode::LIFETIME_END)
517        continue;
518
519      // Update the MachineMemOperand to use the new alloca.
520      for (MachineInstr::mmo_iterator MM = I->memoperands_begin(),
521           E = I->memoperands_end(); MM != E; ++MM) {
522        MachineMemOperand *MMO = *MM;
523
524        const Value *V = MMO->getValue();
525
526        if (!V)
527          continue;
528
529        const PseudoSourceValue *PSV = dyn_cast<const PseudoSourceValue>(V);
530        if (PSV && PSV->isConstant(MFI))
531          continue;
532
533        // Climb up and find the original alloca.
534        V = GetUnderlyingObject(V);
535        // If we did not find one, or if the one that we found is not in our
536        // map, then move on.
537        if (!V || !isa<AllocaInst>(V)) {
538          // Clear mem operand since we don't know for sure that it doesn't
539          // alias a merged alloca.
540          MMO->setValue(0);
541          continue;
542        }
543        const AllocaInst *AI= cast<AllocaInst>(V);
544        if (!Allocas.count(AI))
545          continue;
546
547        MMO->setValue(Allocas[AI]);
548        FixedMemOp++;
549      }
550
551      // Update all of the machine instruction operands.
552      for (unsigned i = 0 ; i <  I->getNumOperands(); ++i) {
553        MachineOperand &MO = I->getOperand(i);
554
555        if (!MO.isFI())
556          continue;
557        int FromSlot = MO.getIndex();
558
559        // Don't touch arguments.
560        if (FromSlot<0)
561          continue;
562
563        // Only look at mapped slots.
564        if (!SlotRemap.count(FromSlot))
565          continue;
566
567        // In a debug build, check that the instruction that we are modifying is
568        // inside the expected live range. If the instruction is not inside
569        // the calculated range then it means that the alloca usage moved
570        // outside of the lifetime markers, or that the user has a bug.
571        // NOTE: Alloca address calculations which happen outside the lifetime
572        // zone are are okay, despite the fact that we don't have a good way
573        // for validating all of the usages of the calculation.
574#ifndef NDEBUG
575        bool TouchesMemory = I->mayLoad() || I->mayStore();
576        // If we *don't* protect the user from escaped allocas, don't bother
577        // validating the instructions.
578        if (!I->isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
579          SlotIndex Index = Indexes->getInstructionIndex(I);
580          LiveInterval *Interval = Intervals[FromSlot];
581          assert(Interval->find(Index) != Interval->end() &&
582                 "Found instruction usage outside of live range.");
583        }
584#endif
585
586        // Fix the machine instructions.
587        int ToSlot = SlotRemap[FromSlot];
588        MO.setIndex(ToSlot);
589        FixedInstr++;
590      }
591    }
592
593  DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
594  DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
595  DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
596}
597
598void StackColoring::removeInvalidSlotRanges() {
599  MachineFunction::const_iterator BB, BBE;
600  MachineBasicBlock::const_iterator I, IE;
601  for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB)
602    for (I = BB->begin(), IE = BB->end(); I != IE; ++I) {
603
604      if (I->getOpcode() == TargetOpcode::LIFETIME_START ||
605          I->getOpcode() == TargetOpcode::LIFETIME_END || I->isDebugValue())
606        continue;
607
608      // Some intervals are suspicious! In some cases we find address
609      // calculations outside of the lifetime zone, but not actual memory
610      // read or write. Memory accesses outside of the lifetime zone are a clear
611      // violation, but address calculations are okay. This can happen when
612      // GEPs are hoisted outside of the lifetime zone.
613      // So, in here we only check instructions which can read or write memory.
614      if (!I->mayLoad() && !I->mayStore())
615        continue;
616
617      // Check all of the machine operands.
618      for (unsigned i = 0 ; i <  I->getNumOperands(); ++i) {
619        const MachineOperand &MO = I->getOperand(i);
620
621        if (!MO.isFI())
622          continue;
623
624        int Slot = MO.getIndex();
625
626        if (Slot<0)
627          continue;
628
629        if (Intervals[Slot]->empty())
630          continue;
631
632        // Check that the used slot is inside the calculated lifetime range.
633        // If it is not, warn about it and invalidate the range.
634        LiveInterval *Interval = Intervals[Slot];
635        SlotIndex Index = Indexes->getInstructionIndex(I);
636        if (Interval->find(Index) == Interval->end()) {
637          Intervals[Slot]->clear();
638          DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
639          EscapedAllocas++;
640        }
641      }
642    }
643}
644
645void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
646                                   unsigned NumSlots) {
647  // Expunge slot remap map.
648  for (unsigned i=0; i < NumSlots; ++i) {
649    // If we are remapping i
650    if (SlotRemap.count(i)) {
651      int Target = SlotRemap[i];
652      // As long as our target is mapped to something else, follow it.
653      while (SlotRemap.count(Target)) {
654        Target = SlotRemap[Target];
655        SlotRemap[i] = Target;
656      }
657    }
658  }
659}
660
661bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
662  DEBUG(dbgs() << "********** Stack Coloring **********\n"
663               << "********** Function: "
664               << ((const Value*)Func.getFunction())->getName() << '\n');
665  MF = &Func;
666  MFI = MF->getFrameInfo();
667  Indexes = &getAnalysis<SlotIndexes>();
668  BlockLiveness.clear();
669  BasicBlocks.clear();
670  BasicBlockNumbering.clear();
671  Markers.clear();
672  Intervals.clear();
673  VNInfoAllocator.Reset();
674
675  unsigned NumSlots = MFI->getObjectIndexEnd();
676
677  // If there are no stack slots then there are no markers to remove.
678  if (!NumSlots)
679    return false;
680
681  SmallVector<int, 8> SortedSlots;
682
683  SortedSlots.reserve(NumSlots);
684  Intervals.reserve(NumSlots);
685
686  unsigned NumMarkers = collectMarkers(NumSlots);
687
688  unsigned TotalSize = 0;
689  DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
690  DEBUG(dbgs()<<"Slot structure:\n");
691
692  for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
693    DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
694    TotalSize += MFI->getObjectSize(i);
695  }
696
697  DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
698
699  // Don't continue because there are not enough lifetime markers, or the
700  // stack is too small, or we are told not to optimize the slots.
701  if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
702    DEBUG(dbgs()<<"Will not try to merge slots.\n");
703    return removeAllMarkers();
704  }
705
706  for (unsigned i=0; i < NumSlots; ++i) {
707    LiveInterval *LI = new LiveInterval(i, 0);
708    Intervals.push_back(LI);
709    LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
710    SortedSlots.push_back(i);
711  }
712
713  // Calculate the liveness of each block.
714  calculateLocalLiveness();
715
716  // Propagate the liveness information.
717  calculateLiveIntervals(NumSlots);
718
719  // Search for allocas which are used outside of the declared lifetime
720  // markers.
721  if (ProtectFromEscapedAllocas)
722    removeInvalidSlotRanges();
723
724  // Maps old slots to new slots.
725  DenseMap<int, int> SlotRemap;
726  unsigned RemovedSlots = 0;
727  unsigned ReducedSize = 0;
728
729  // Do not bother looking at empty intervals.
730  for (unsigned I = 0; I < NumSlots; ++I) {
731    if (Intervals[SortedSlots[I]]->empty())
732      SortedSlots[I] = -1;
733  }
734
735  // This is a simple greedy algorithm for merging allocas. First, sort the
736  // slots, placing the largest slots first. Next, perform an n^2 scan and look
737  // for disjoint slots. When you find disjoint slots, merge the samller one
738  // into the bigger one and update the live interval. Remove the small alloca
739  // and continue.
740
741  // Sort the slots according to their size. Place unused slots at the end.
742  // Use stable sort to guarantee deterministic code generation.
743  std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
744                   SlotSizeSorter(MFI));
745
746  bool Changed = true;
747  while (Changed) {
748    Changed = false;
749    for (unsigned I = 0; I < NumSlots; ++I) {
750      if (SortedSlots[I] == -1)
751        continue;
752
753      for (unsigned J=I+1; J < NumSlots; ++J) {
754        if (SortedSlots[J] == -1)
755          continue;
756
757        int FirstSlot = SortedSlots[I];
758        int SecondSlot = SortedSlots[J];
759        LiveInterval *First = Intervals[FirstSlot];
760        LiveInterval *Second = Intervals[SecondSlot];
761        assert (!First->empty() && !Second->empty() && "Found an empty range");
762
763        // Merge disjoint slots.
764        if (!First->overlaps(*Second)) {
765          Changed = true;
766          First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
767          SlotRemap[SecondSlot] = FirstSlot;
768          SortedSlots[J] = -1;
769          DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
770                SecondSlot<<" together.\n");
771          unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
772                                           MFI->getObjectAlignment(SecondSlot));
773
774          assert(MFI->getObjectSize(FirstSlot) >=
775                 MFI->getObjectSize(SecondSlot) &&
776                 "Merging a small object into a larger one");
777
778          RemovedSlots+=1;
779          ReducedSize += MFI->getObjectSize(SecondSlot);
780          MFI->setObjectAlignment(FirstSlot, MaxAlignment);
781          MFI->RemoveStackObject(SecondSlot);
782        }
783      }
784    }
785  }// While changed.
786
787  // Record statistics.
788  StackSpaceSaved += ReducedSize;
789  StackSlotMerged += RemovedSlots;
790  DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
791        ReducedSize<<" bytes\n");
792
793  // Scan the entire function and update all machine operands that use frame
794  // indices to use the remapped frame index.
795  expungeSlotMap(SlotRemap, NumSlots);
796  remapInstructions(SlotRemap);
797
798  // Release the intervals.
799  for (unsigned I = 0; I < NumSlots; ++I) {
800    delete Intervals[I];
801  }
802
803  return removeAllMarkers();
804}
805