StackColoring.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- StackColoring.cpp -------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements the stack-coloring optimization that looks for
11// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12// which represent the possible lifetime of stack slots. It attempts to
13// merge disjoint stack slots and reduce the used stack space.
14// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15//
16// TODO: In the future we plan to improve stack coloring in the following ways:
17// 1. Allow merging multiple small slots into a single larger slot at different
18//    offsets.
19// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20//    spill slots.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "stackcoloring"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/DepthFirstIterator.h"
28#include "llvm/ADT/PostOrderIterator.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SparseSet.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/CodeGen/LiveInterval.h"
35#include "llvm/CodeGen/MachineBasicBlock.h"
36#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
37#include "llvm/CodeGen/MachineDominators.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/MachineLoopInfo.h"
41#include "llvm/CodeGen/MachineMemOperand.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SlotIndexes.h"
46#include "llvm/CodeGen/StackProtector.h"
47#include "llvm/IR/DebugInfo.h"
48#include "llvm/IR/Dominators.h"
49#include "llvm/IR/Function.h"
50#include "llvm/IR/Instructions.h"
51#include "llvm/IR/Module.h"
52#include "llvm/MC/MCInstrItineraries.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetRegisterInfo.h"
58
59using namespace llvm;
60
61static cl::opt<bool>
62DisableColoring("no-stack-coloring",
63        cl::init(false), cl::Hidden,
64        cl::desc("Disable stack coloring"));
65
66/// The user may write code that uses allocas outside of the declared lifetime
67/// zone. This can happen when the user returns a reference to a local
68/// data-structure. We can detect these cases and decide not to optimize the
69/// code. If this flag is enabled, we try to save the user.
70static cl::opt<bool>
71ProtectFromEscapedAllocas("protect-from-escaped-allocas",
72                          cl::init(false), cl::Hidden,
73                          cl::desc("Do not optimize lifetime zones that "
74                                   "are broken"));
75
76STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
77STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
78STATISTIC(StackSlotMerged, "Number of stack slot merged.");
79STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
80
81//===----------------------------------------------------------------------===//
82//                           StackColoring Pass
83//===----------------------------------------------------------------------===//
84
85namespace {
86/// StackColoring - A machine pass for merging disjoint stack allocations,
87/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
88class StackColoring : public MachineFunctionPass {
89  MachineFrameInfo *MFI;
90  MachineFunction *MF;
91
92  /// A class representing liveness information for a single basic block.
93  /// Each bit in the BitVector represents the liveness property
94  /// for a different stack slot.
95  struct BlockLifetimeInfo {
96    /// Which slots BEGINs in each basic block.
97    BitVector Begin;
98    /// Which slots ENDs in each basic block.
99    BitVector End;
100    /// Which slots are marked as LIVE_IN, coming into each basic block.
101    BitVector LiveIn;
102    /// Which slots are marked as LIVE_OUT, coming out of each basic block.
103    BitVector LiveOut;
104  };
105
106  /// Maps active slots (per bit) for each basic block.
107  typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
108  LivenessMap BlockLiveness;
109
110  /// Maps serial numbers to basic blocks.
111  DenseMap<const MachineBasicBlock*, int> BasicBlocks;
112  /// Maps basic blocks to a serial number.
113  SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
114
115  /// Maps liveness intervals for each slot.
116  SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
117  /// VNInfo is used for the construction of LiveIntervals.
118  VNInfo::Allocator VNInfoAllocator;
119  /// SlotIndex analysis object.
120  SlotIndexes *Indexes;
121  /// The stack protector object.
122  StackProtector *SP;
123
124  /// The list of lifetime markers found. These markers are to be removed
125  /// once the coloring is done.
126  SmallVector<MachineInstr*, 8> Markers;
127
128public:
129  static char ID;
130  StackColoring() : MachineFunctionPass(ID) {
131    initializeStackColoringPass(*PassRegistry::getPassRegistry());
132  }
133  void getAnalysisUsage(AnalysisUsage &AU) const override;
134  bool runOnMachineFunction(MachineFunction &MF) override;
135
136private:
137  /// Debug.
138  void dump() const;
139
140  /// Removes all of the lifetime marker instructions from the function.
141  /// \returns true if any markers were removed.
142  bool removeAllMarkers();
143
144  /// Scan the machine function and find all of the lifetime markers.
145  /// Record the findings in the BEGIN and END vectors.
146  /// \returns the number of markers found.
147  unsigned collectMarkers(unsigned NumSlot);
148
149  /// Perform the dataflow calculation and calculate the lifetime for each of
150  /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
151  /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
152  /// in and out blocks.
153  void calculateLocalLiveness();
154
155  /// Construct the LiveIntervals for the slots.
156  void calculateLiveIntervals(unsigned NumSlots);
157
158  /// Go over the machine function and change instructions which use stack
159  /// slots to use the joint slots.
160  void remapInstructions(DenseMap<int, int> &SlotRemap);
161
162  /// The input program may contain instructions which are not inside lifetime
163  /// markers. This can happen due to a bug in the compiler or due to a bug in
164  /// user code (for example, returning a reference to a local variable).
165  /// This procedure checks all of the instructions in the function and
166  /// invalidates lifetime ranges which do not contain all of the instructions
167  /// which access that frame slot.
168  void removeInvalidSlotRanges();
169
170  /// Map entries which point to other entries to their destination.
171  ///   A->B->C becomes A->C.
172   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
173};
174} // end anonymous namespace
175
176char StackColoring::ID = 0;
177char &llvm::StackColoringID = StackColoring::ID;
178
179INITIALIZE_PASS_BEGIN(StackColoring,
180                   "stack-coloring", "Merge disjoint stack slots", false, false)
181INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
182INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
183INITIALIZE_PASS_DEPENDENCY(StackProtector)
184INITIALIZE_PASS_END(StackColoring,
185                   "stack-coloring", "Merge disjoint stack slots", false, false)
186
187void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<MachineDominatorTree>();
189  AU.addPreserved<MachineDominatorTree>();
190  AU.addRequired<SlotIndexes>();
191  AU.addRequired<StackProtector>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195void StackColoring::dump() const {
196  for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
197       FI != FE; ++FI) {
198    DEBUG(dbgs()<<"Inspecting block #"<<BasicBlocks.lookup(*FI)<<
199          " ["<<FI->getName()<<"]\n");
200
201    LivenessMap::const_iterator BI = BlockLiveness.find(*FI);
202    assert(BI != BlockLiveness.end() && "Block not found");
203    const BlockLifetimeInfo &BlockInfo = BI->second;
204
205    DEBUG(dbgs()<<"BEGIN  : {");
206    for (unsigned i=0; i < BlockInfo.Begin.size(); ++i)
207      DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" ");
208    DEBUG(dbgs()<<"}\n");
209
210    DEBUG(dbgs()<<"END    : {");
211    for (unsigned i=0; i < BlockInfo.End.size(); ++i)
212      DEBUG(dbgs()<<BlockInfo.End.test(i)<<" ");
213
214    DEBUG(dbgs()<<"}\n");
215
216    DEBUG(dbgs()<<"LIVE_IN: {");
217    for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i)
218      DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" ");
219
220    DEBUG(dbgs()<<"}\n");
221    DEBUG(dbgs()<<"LIVEOUT: {");
222    for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i)
223      DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" ");
224    DEBUG(dbgs()<<"}\n");
225  }
226}
227
228unsigned StackColoring::collectMarkers(unsigned NumSlot) {
229  unsigned MarkersFound = 0;
230  // Scan the function to find all lifetime markers.
231  // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a
232  // deterministic numbering, and because we'll need a post-order iteration
233  // later for solving the liveness dataflow problem.
234  for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
235       FI != FE; ++FI) {
236
237    // Assign a serial number to this basic block.
238    BasicBlocks[*FI] = BasicBlockNumbering.size();
239    BasicBlockNumbering.push_back(*FI);
240
241    // Keep a reference to avoid repeated lookups.
242    BlockLifetimeInfo &BlockInfo = BlockLiveness[*FI];
243
244    BlockInfo.Begin.resize(NumSlot);
245    BlockInfo.End.resize(NumSlot);
246
247    for (MachineInstr &MI : **FI) {
248      if (MI.getOpcode() != TargetOpcode::LIFETIME_START &&
249          MI.getOpcode() != TargetOpcode::LIFETIME_END)
250        continue;
251
252      Markers.push_back(&MI);
253
254      bool IsStart = MI.getOpcode() == TargetOpcode::LIFETIME_START;
255      const MachineOperand &MO = MI.getOperand(0);
256      unsigned Slot = MO.getIndex();
257
258      MarkersFound++;
259
260      const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
261      if (Allocation) {
262        DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
263              " with allocation: "<< Allocation->getName()<<"\n");
264      }
265
266      if (IsStart) {
267        BlockInfo.Begin.set(Slot);
268      } else {
269        if (BlockInfo.Begin.test(Slot)) {
270          // Allocas that start and end within a single block are handled
271          // specially when computing the LiveIntervals to avoid pessimizing
272          // the liveness propagation.
273          BlockInfo.Begin.reset(Slot);
274        } else {
275          BlockInfo.End.set(Slot);
276        }
277      }
278    }
279  }
280
281  // Update statistics.
282  NumMarkerSeen += MarkersFound;
283  return MarkersFound;
284}
285
286void StackColoring::calculateLocalLiveness() {
287  // Perform a standard reverse dataflow computation to solve for
288  // global liveness.  The BEGIN set here is equivalent to KILL in the standard
289  // formulation, and END is equivalent to GEN.  The result of this computation
290  // is a map from blocks to bitvectors where the bitvectors represent which
291  // allocas are live in/out of that block.
292  SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
293                                                 BasicBlockNumbering.end());
294  unsigned NumSSMIters = 0;
295  bool changed = true;
296  while (changed) {
297    changed = false;
298    ++NumSSMIters;
299
300    SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet;
301
302    for (const MachineBasicBlock *BB : BasicBlockNumbering) {
303      if (!BBSet.count(BB)) continue;
304
305      // Use an iterator to avoid repeated lookups.
306      LivenessMap::iterator BI = BlockLiveness.find(BB);
307      assert(BI != BlockLiveness.end() && "Block not found");
308      BlockLifetimeInfo &BlockInfo = BI->second;
309
310      BitVector LocalLiveIn;
311      BitVector LocalLiveOut;
312
313      // Forward propagation from begins to ends.
314      for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
315           PE = BB->pred_end(); PI != PE; ++PI) {
316        LivenessMap::const_iterator I = BlockLiveness.find(*PI);
317        assert(I != BlockLiveness.end() && "Predecessor not found");
318        LocalLiveIn |= I->second.LiveOut;
319      }
320      LocalLiveIn |= BlockInfo.End;
321      LocalLiveIn.reset(BlockInfo.Begin);
322
323      // Reverse propagation from ends to begins.
324      for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
325           SE = BB->succ_end(); SI != SE; ++SI) {
326        LivenessMap::const_iterator I = BlockLiveness.find(*SI);
327        assert(I != BlockLiveness.end() && "Successor not found");
328        LocalLiveOut |= I->second.LiveIn;
329      }
330      LocalLiveOut |= BlockInfo.Begin;
331      LocalLiveOut.reset(BlockInfo.End);
332
333      LocalLiveIn |= LocalLiveOut;
334      LocalLiveOut |= LocalLiveIn;
335
336      // After adopting the live bits, we need to turn-off the bits which
337      // are de-activated in this block.
338      LocalLiveOut.reset(BlockInfo.End);
339      LocalLiveIn.reset(BlockInfo.Begin);
340
341      // If we have both BEGIN and END markers in the same basic block then
342      // we know that the BEGIN marker comes after the END, because we already
343      // handle the case where the BEGIN comes before the END when collecting
344      // the markers (and building the BEGIN/END vectore).
345      // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
346      // BEGIN and END because it means that the value lives before and after
347      // this basic block.
348      BitVector LocalEndBegin = BlockInfo.End;
349      LocalEndBegin &= BlockInfo.Begin;
350      LocalLiveIn |= LocalEndBegin;
351      LocalLiveOut |= LocalEndBegin;
352
353      if (LocalLiveIn.test(BlockInfo.LiveIn)) {
354        changed = true;
355        BlockInfo.LiveIn |= LocalLiveIn;
356
357        NextBBSet.insert(BB->pred_begin(), BB->pred_end());
358      }
359
360      if (LocalLiveOut.test(BlockInfo.LiveOut)) {
361        changed = true;
362        BlockInfo.LiveOut |= LocalLiveOut;
363
364        NextBBSet.insert(BB->succ_begin(), BB->succ_end());
365      }
366    }
367
368    BBSet = NextBBSet;
369  }// while changed.
370}
371
372void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
373  SmallVector<SlotIndex, 16> Starts;
374  SmallVector<SlotIndex, 16> Finishes;
375
376  // For each block, find which slots are active within this block
377  // and update the live intervals.
378  for (const MachineBasicBlock &MBB : *MF) {
379    Starts.clear();
380    Starts.resize(NumSlots);
381    Finishes.clear();
382    Finishes.resize(NumSlots);
383
384    // Create the interval for the basic blocks with lifetime markers in them.
385    for (const MachineInstr *MI : Markers) {
386      if (MI->getParent() != &MBB)
387        continue;
388
389      assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
390              MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
391             "Invalid Lifetime marker");
392
393      bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
394      const MachineOperand &Mo = MI->getOperand(0);
395      int Slot = Mo.getIndex();
396      assert(Slot >= 0 && "Invalid slot");
397
398      SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
399
400      if (IsStart) {
401        if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
402          Starts[Slot] = ThisIndex;
403      } else {
404        if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
405          Finishes[Slot] = ThisIndex;
406      }
407    }
408
409    // Create the interval of the blocks that we previously found to be 'alive'.
410    BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
411    for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
412         pos = MBBLiveness.LiveIn.find_next(pos)) {
413      Starts[pos] = Indexes->getMBBStartIdx(&MBB);
414    }
415    for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
416         pos = MBBLiveness.LiveOut.find_next(pos)) {
417      Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
418    }
419
420    for (unsigned i = 0; i < NumSlots; ++i) {
421      assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
422      if (!Starts[i].isValid())
423        continue;
424
425      assert(Starts[i] && Finishes[i] && "Invalid interval");
426      VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
427      SlotIndex S = Starts[i];
428      SlotIndex F = Finishes[i];
429      if (S < F) {
430        // We have a single consecutive region.
431        Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
432      } else {
433        // We have two non-consecutive regions. This happens when
434        // LIFETIME_START appears after the LIFETIME_END marker.
435        SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
436        SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
437        Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
438        Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
439      }
440    }
441  }
442}
443
444bool StackColoring::removeAllMarkers() {
445  unsigned Count = 0;
446  for (MachineInstr *MI : Markers) {
447    MI->eraseFromParent();
448    Count++;
449  }
450  Markers.clear();
451
452  DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
453  return Count;
454}
455
456void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
457  unsigned FixedInstr = 0;
458  unsigned FixedMemOp = 0;
459  unsigned FixedDbg = 0;
460  MachineModuleInfo *MMI = &MF->getMMI();
461
462  // Remap debug information that refers to stack slots.
463  for (auto &VI : MMI->getVariableDbgInfo()) {
464    if (!VI.Var)
465      continue;
466    if (SlotRemap.count(VI.Slot)) {
467      DEBUG(dbgs()<<"Remapping debug info for ["<<VI.Var->getName()<<"].\n");
468      VI.Slot = SlotRemap[VI.Slot];
469      FixedDbg++;
470    }
471  }
472
473  // Keep a list of *allocas* which need to be remapped.
474  DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
475  for (const std::pair<int, int> &SI : SlotRemap) {
476    const AllocaInst *From = MFI->getObjectAllocation(SI.first);
477    const AllocaInst *To = MFI->getObjectAllocation(SI.second);
478    assert(To && From && "Invalid allocation object");
479    Allocas[From] = To;
480
481    // AA might be used later for instruction scheduling, and we need it to be
482    // able to deduce the correct aliasing releationships between pointers
483    // derived from the alloca being remapped and the target of that remapping.
484    // The only safe way, without directly informing AA about the remapping
485    // somehow, is to directly update the IR to reflect the change being made
486    // here.
487    Instruction *Inst = const_cast<AllocaInst *>(To);
488    if (From->getType() != To->getType()) {
489      BitCastInst *Cast = new BitCastInst(Inst, From->getType());
490      Cast->insertAfter(Inst);
491      Inst = Cast;
492    }
493
494    // Allow the stack protector to adjust its value map to account for the
495    // upcoming replacement.
496    SP->adjustForColoring(From, To);
497
498    // Note that this will not replace uses in MMOs (which we'll update below),
499    // or anywhere else (which is why we won't delete the original
500    // instruction).
501    const_cast<AllocaInst *>(From)->replaceAllUsesWith(Inst);
502  }
503
504  // Remap all instructions to the new stack slots.
505  for (MachineBasicBlock &BB : *MF)
506    for (MachineInstr &I : BB) {
507      // Skip lifetime markers. We'll remove them soon.
508      if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
509          I.getOpcode() == TargetOpcode::LIFETIME_END)
510        continue;
511
512      // Update the MachineMemOperand to use the new alloca.
513      for (MachineMemOperand *MMO : I.memoperands()) {
514        const Value *V = MMO->getValue();
515
516        if (!V)
517          continue;
518
519        // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
520        // we'll also need to update the TBAA nodes in MMOs with values
521        // derived from the merged allocas. When doing this, we'll need to use
522        // the same variant of GetUnderlyingObjects that is used by the
523        // instruction scheduler (that can look through ptrtoint/inttoptr
524        // pairs).
525
526        // We've replaced IR-level uses of the remapped allocas, so we only
527        // need to replace direct uses here.
528        if (!isa<AllocaInst>(V))
529          continue;
530
531        const AllocaInst *AI= cast<AllocaInst>(V);
532        if (!Allocas.count(AI))
533          continue;
534
535        MMO->setValue(Allocas[AI]);
536        FixedMemOp++;
537      }
538
539      // Update all of the machine instruction operands.
540      for (MachineOperand &MO : I.operands()) {
541        if (!MO.isFI())
542          continue;
543        int FromSlot = MO.getIndex();
544
545        // Don't touch arguments.
546        if (FromSlot<0)
547          continue;
548
549        // Only look at mapped slots.
550        if (!SlotRemap.count(FromSlot))
551          continue;
552
553        // In a debug build, check that the instruction that we are modifying is
554        // inside the expected live range. If the instruction is not inside
555        // the calculated range then it means that the alloca usage moved
556        // outside of the lifetime markers, or that the user has a bug.
557        // NOTE: Alloca address calculations which happen outside the lifetime
558        // zone are are okay, despite the fact that we don't have a good way
559        // for validating all of the usages of the calculation.
560#ifndef NDEBUG
561        bool TouchesMemory = I.mayLoad() || I.mayStore();
562        // If we *don't* protect the user from escaped allocas, don't bother
563        // validating the instructions.
564        if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
565          SlotIndex Index = Indexes->getInstructionIndex(&I);
566          const LiveInterval *Interval = &*Intervals[FromSlot];
567          assert(Interval->find(Index) != Interval->end() &&
568                 "Found instruction usage outside of live range.");
569        }
570#endif
571
572        // Fix the machine instructions.
573        int ToSlot = SlotRemap[FromSlot];
574        MO.setIndex(ToSlot);
575        FixedInstr++;
576      }
577    }
578
579  DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
580  DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
581  DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
582}
583
584void StackColoring::removeInvalidSlotRanges() {
585  for (MachineBasicBlock &BB : *MF)
586    for (MachineInstr &I : BB) {
587      if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
588          I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
589        continue;
590
591      // Some intervals are suspicious! In some cases we find address
592      // calculations outside of the lifetime zone, but not actual memory
593      // read or write. Memory accesses outside of the lifetime zone are a clear
594      // violation, but address calculations are okay. This can happen when
595      // GEPs are hoisted outside of the lifetime zone.
596      // So, in here we only check instructions which can read or write memory.
597      if (!I.mayLoad() && !I.mayStore())
598        continue;
599
600      // Check all of the machine operands.
601      for (const MachineOperand &MO : I.operands()) {
602        if (!MO.isFI())
603          continue;
604
605        int Slot = MO.getIndex();
606
607        if (Slot<0)
608          continue;
609
610        if (Intervals[Slot]->empty())
611          continue;
612
613        // Check that the used slot is inside the calculated lifetime range.
614        // If it is not, warn about it and invalidate the range.
615        LiveInterval *Interval = &*Intervals[Slot];
616        SlotIndex Index = Indexes->getInstructionIndex(&I);
617        if (Interval->find(Index) == Interval->end()) {
618          Interval->clear();
619          DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
620          EscapedAllocas++;
621        }
622      }
623    }
624}
625
626void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
627                                   unsigned NumSlots) {
628  // Expunge slot remap map.
629  for (unsigned i=0; i < NumSlots; ++i) {
630    // If we are remapping i
631    if (SlotRemap.count(i)) {
632      int Target = SlotRemap[i];
633      // As long as our target is mapped to something else, follow it.
634      while (SlotRemap.count(Target)) {
635        Target = SlotRemap[Target];
636        SlotRemap[i] = Target;
637      }
638    }
639  }
640}
641
642bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
643  if (skipOptnoneFunction(*Func.getFunction()))
644    return false;
645
646  DEBUG(dbgs() << "********** Stack Coloring **********\n"
647               << "********** Function: "
648               << ((const Value*)Func.getFunction())->getName() << '\n');
649  MF = &Func;
650  MFI = MF->getFrameInfo();
651  Indexes = &getAnalysis<SlotIndexes>();
652  SP = &getAnalysis<StackProtector>();
653  BlockLiveness.clear();
654  BasicBlocks.clear();
655  BasicBlockNumbering.clear();
656  Markers.clear();
657  Intervals.clear();
658  VNInfoAllocator.Reset();
659
660  unsigned NumSlots = MFI->getObjectIndexEnd();
661
662  // If there are no stack slots then there are no markers to remove.
663  if (!NumSlots)
664    return false;
665
666  SmallVector<int, 8> SortedSlots;
667
668  SortedSlots.reserve(NumSlots);
669  Intervals.reserve(NumSlots);
670
671  unsigned NumMarkers = collectMarkers(NumSlots);
672
673  unsigned TotalSize = 0;
674  DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
675  DEBUG(dbgs()<<"Slot structure:\n");
676
677  for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
678    DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
679    TotalSize += MFI->getObjectSize(i);
680  }
681
682  DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
683
684  // Don't continue because there are not enough lifetime markers, or the
685  // stack is too small, or we are told not to optimize the slots.
686  if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
687    DEBUG(dbgs()<<"Will not try to merge slots.\n");
688    return removeAllMarkers();
689  }
690
691  for (unsigned i=0; i < NumSlots; ++i) {
692    std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
693    LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
694    Intervals.push_back(std::move(LI));
695    SortedSlots.push_back(i);
696  }
697
698  // Calculate the liveness of each block.
699  calculateLocalLiveness();
700
701  // Propagate the liveness information.
702  calculateLiveIntervals(NumSlots);
703
704  // Search for allocas which are used outside of the declared lifetime
705  // markers.
706  if (ProtectFromEscapedAllocas)
707    removeInvalidSlotRanges();
708
709  // Maps old slots to new slots.
710  DenseMap<int, int> SlotRemap;
711  unsigned RemovedSlots = 0;
712  unsigned ReducedSize = 0;
713
714  // Do not bother looking at empty intervals.
715  for (unsigned I = 0; I < NumSlots; ++I) {
716    if (Intervals[SortedSlots[I]]->empty())
717      SortedSlots[I] = -1;
718  }
719
720  // This is a simple greedy algorithm for merging allocas. First, sort the
721  // slots, placing the largest slots first. Next, perform an n^2 scan and look
722  // for disjoint slots. When you find disjoint slots, merge the samller one
723  // into the bigger one and update the live interval. Remove the small alloca
724  // and continue.
725
726  // Sort the slots according to their size. Place unused slots at the end.
727  // Use stable sort to guarantee deterministic code generation.
728  std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
729                   [this](int LHS, int RHS) {
730    // We use -1 to denote a uninteresting slot. Place these slots at the end.
731    if (LHS == -1) return false;
732    if (RHS == -1) return true;
733    // Sort according to size.
734    return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
735  });
736
737  bool Changed = true;
738  while (Changed) {
739    Changed = false;
740    for (unsigned I = 0; I < NumSlots; ++I) {
741      if (SortedSlots[I] == -1)
742        continue;
743
744      for (unsigned J=I+1; J < NumSlots; ++J) {
745        if (SortedSlots[J] == -1)
746          continue;
747
748        int FirstSlot = SortedSlots[I];
749        int SecondSlot = SortedSlots[J];
750        LiveInterval *First = &*Intervals[FirstSlot];
751        LiveInterval *Second = &*Intervals[SecondSlot];
752        assert (!First->empty() && !Second->empty() && "Found an empty range");
753
754        // Merge disjoint slots.
755        if (!First->overlaps(*Second)) {
756          Changed = true;
757          First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
758          SlotRemap[SecondSlot] = FirstSlot;
759          SortedSlots[J] = -1;
760          DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
761                SecondSlot<<" together.\n");
762          unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
763                                           MFI->getObjectAlignment(SecondSlot));
764
765          assert(MFI->getObjectSize(FirstSlot) >=
766                 MFI->getObjectSize(SecondSlot) &&
767                 "Merging a small object into a larger one");
768
769          RemovedSlots+=1;
770          ReducedSize += MFI->getObjectSize(SecondSlot);
771          MFI->setObjectAlignment(FirstSlot, MaxAlignment);
772          MFI->RemoveStackObject(SecondSlot);
773        }
774      }
775    }
776  }// While changed.
777
778  // Record statistics.
779  StackSpaceSaved += ReducedSize;
780  StackSlotMerged += RemovedSlots;
781  DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
782        ReducedSize<<" bytes\n");
783
784  // Scan the entire function and update all machine operands that use frame
785  // indices to use the remapped frame index.
786  expungeSlotMap(SlotRemap, NumSlots);
787  remapInstructions(SlotRemap);
788
789  return removeAllMarkers();
790}
791