TargetLoweringBase.cpp revision 41418d17cced656f91038b2482bc9d173b4974b0
1//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLoweringBase class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/MC/MCAsmInfo.h"
26#include "llvm/MC/MCExpr.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetLoweringObjectFile.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include <cctype>
34using namespace llvm;
35
36/// InitLibcallNames - Set default libcall names.
37///
38static void InitLibcallNames(const char **Names, const TargetMachine &TM) {
39  Names[RTLIB::SHL_I16] = "__ashlhi3";
40  Names[RTLIB::SHL_I32] = "__ashlsi3";
41  Names[RTLIB::SHL_I64] = "__ashldi3";
42  Names[RTLIB::SHL_I128] = "__ashlti3";
43  Names[RTLIB::SRL_I16] = "__lshrhi3";
44  Names[RTLIB::SRL_I32] = "__lshrsi3";
45  Names[RTLIB::SRL_I64] = "__lshrdi3";
46  Names[RTLIB::SRL_I128] = "__lshrti3";
47  Names[RTLIB::SRA_I16] = "__ashrhi3";
48  Names[RTLIB::SRA_I32] = "__ashrsi3";
49  Names[RTLIB::SRA_I64] = "__ashrdi3";
50  Names[RTLIB::SRA_I128] = "__ashrti3";
51  Names[RTLIB::MUL_I8] = "__mulqi3";
52  Names[RTLIB::MUL_I16] = "__mulhi3";
53  Names[RTLIB::MUL_I32] = "__mulsi3";
54  Names[RTLIB::MUL_I64] = "__muldi3";
55  Names[RTLIB::MUL_I128] = "__multi3";
56  Names[RTLIB::MULO_I32] = "__mulosi4";
57  Names[RTLIB::MULO_I64] = "__mulodi4";
58  Names[RTLIB::MULO_I128] = "__muloti4";
59  Names[RTLIB::SDIV_I8] = "__divqi3";
60  Names[RTLIB::SDIV_I16] = "__divhi3";
61  Names[RTLIB::SDIV_I32] = "__divsi3";
62  Names[RTLIB::SDIV_I64] = "__divdi3";
63  Names[RTLIB::SDIV_I128] = "__divti3";
64  Names[RTLIB::UDIV_I8] = "__udivqi3";
65  Names[RTLIB::UDIV_I16] = "__udivhi3";
66  Names[RTLIB::UDIV_I32] = "__udivsi3";
67  Names[RTLIB::UDIV_I64] = "__udivdi3";
68  Names[RTLIB::UDIV_I128] = "__udivti3";
69  Names[RTLIB::SREM_I8] = "__modqi3";
70  Names[RTLIB::SREM_I16] = "__modhi3";
71  Names[RTLIB::SREM_I32] = "__modsi3";
72  Names[RTLIB::SREM_I64] = "__moddi3";
73  Names[RTLIB::SREM_I128] = "__modti3";
74  Names[RTLIB::UREM_I8] = "__umodqi3";
75  Names[RTLIB::UREM_I16] = "__umodhi3";
76  Names[RTLIB::UREM_I32] = "__umodsi3";
77  Names[RTLIB::UREM_I64] = "__umoddi3";
78  Names[RTLIB::UREM_I128] = "__umodti3";
79
80  // These are generally not available.
81  Names[RTLIB::SDIVREM_I8] = 0;
82  Names[RTLIB::SDIVREM_I16] = 0;
83  Names[RTLIB::SDIVREM_I32] = 0;
84  Names[RTLIB::SDIVREM_I64] = 0;
85  Names[RTLIB::SDIVREM_I128] = 0;
86  Names[RTLIB::UDIVREM_I8] = 0;
87  Names[RTLIB::UDIVREM_I16] = 0;
88  Names[RTLIB::UDIVREM_I32] = 0;
89  Names[RTLIB::UDIVREM_I64] = 0;
90  Names[RTLIB::UDIVREM_I128] = 0;
91
92  Names[RTLIB::NEG_I32] = "__negsi2";
93  Names[RTLIB::NEG_I64] = "__negdi2";
94  Names[RTLIB::ADD_F32] = "__addsf3";
95  Names[RTLIB::ADD_F64] = "__adddf3";
96  Names[RTLIB::ADD_F80] = "__addxf3";
97  Names[RTLIB::ADD_F128] = "__addtf3";
98  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
99  Names[RTLIB::SUB_F32] = "__subsf3";
100  Names[RTLIB::SUB_F64] = "__subdf3";
101  Names[RTLIB::SUB_F80] = "__subxf3";
102  Names[RTLIB::SUB_F128] = "__subtf3";
103  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
104  Names[RTLIB::MUL_F32] = "__mulsf3";
105  Names[RTLIB::MUL_F64] = "__muldf3";
106  Names[RTLIB::MUL_F80] = "__mulxf3";
107  Names[RTLIB::MUL_F128] = "__multf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_F128] = "__divtf3";
113  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
114  Names[RTLIB::REM_F32] = "fmodf";
115  Names[RTLIB::REM_F64] = "fmod";
116  Names[RTLIB::REM_F80] = "fmodl";
117  Names[RTLIB::REM_F128] = "fmodl";
118  Names[RTLIB::REM_PPCF128] = "fmodl";
119  Names[RTLIB::FMA_F32] = "fmaf";
120  Names[RTLIB::FMA_F64] = "fma";
121  Names[RTLIB::FMA_F80] = "fmal";
122  Names[RTLIB::FMA_F128] = "fmal";
123  Names[RTLIB::FMA_PPCF128] = "fmal";
124  Names[RTLIB::POWI_F32] = "__powisf2";
125  Names[RTLIB::POWI_F64] = "__powidf2";
126  Names[RTLIB::POWI_F80] = "__powixf2";
127  Names[RTLIB::POWI_F128] = "__powitf2";
128  Names[RTLIB::POWI_PPCF128] = "__powitf2";
129  Names[RTLIB::SQRT_F32] = "sqrtf";
130  Names[RTLIB::SQRT_F64] = "sqrt";
131  Names[RTLIB::SQRT_F80] = "sqrtl";
132  Names[RTLIB::SQRT_F128] = "sqrtl";
133  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
134  Names[RTLIB::LOG_F32] = "logf";
135  Names[RTLIB::LOG_F64] = "log";
136  Names[RTLIB::LOG_F80] = "logl";
137  Names[RTLIB::LOG_F128] = "logl";
138  Names[RTLIB::LOG_PPCF128] = "logl";
139  Names[RTLIB::LOG2_F32] = "log2f";
140  Names[RTLIB::LOG2_F64] = "log2";
141  Names[RTLIB::LOG2_F80] = "log2l";
142  Names[RTLIB::LOG2_F128] = "log2l";
143  Names[RTLIB::LOG2_PPCF128] = "log2l";
144  Names[RTLIB::LOG10_F32] = "log10f";
145  Names[RTLIB::LOG10_F64] = "log10";
146  Names[RTLIB::LOG10_F80] = "log10l";
147  Names[RTLIB::LOG10_F128] = "log10l";
148  Names[RTLIB::LOG10_PPCF128] = "log10l";
149  Names[RTLIB::EXP_F32] = "expf";
150  Names[RTLIB::EXP_F64] = "exp";
151  Names[RTLIB::EXP_F80] = "expl";
152  Names[RTLIB::EXP_F128] = "expl";
153  Names[RTLIB::EXP_PPCF128] = "expl";
154  Names[RTLIB::EXP2_F32] = "exp2f";
155  Names[RTLIB::EXP2_F64] = "exp2";
156  Names[RTLIB::EXP2_F80] = "exp2l";
157  Names[RTLIB::EXP2_F128] = "exp2l";
158  Names[RTLIB::EXP2_PPCF128] = "exp2l";
159  Names[RTLIB::SIN_F32] = "sinf";
160  Names[RTLIB::SIN_F64] = "sin";
161  Names[RTLIB::SIN_F80] = "sinl";
162  Names[RTLIB::SIN_F128] = "sinl";
163  Names[RTLIB::SIN_PPCF128] = "sinl";
164  Names[RTLIB::COS_F32] = "cosf";
165  Names[RTLIB::COS_F64] = "cos";
166  Names[RTLIB::COS_F80] = "cosl";
167  Names[RTLIB::COS_F128] = "cosl";
168  Names[RTLIB::COS_PPCF128] = "cosl";
169  Names[RTLIB::POW_F32] = "powf";
170  Names[RTLIB::POW_F64] = "pow";
171  Names[RTLIB::POW_F80] = "powl";
172  Names[RTLIB::POW_F128] = "powl";
173  Names[RTLIB::POW_PPCF128] = "powl";
174  Names[RTLIB::CEIL_F32] = "ceilf";
175  Names[RTLIB::CEIL_F64] = "ceil";
176  Names[RTLIB::CEIL_F80] = "ceill";
177  Names[RTLIB::CEIL_F128] = "ceill";
178  Names[RTLIB::CEIL_PPCF128] = "ceill";
179  Names[RTLIB::TRUNC_F32] = "truncf";
180  Names[RTLIB::TRUNC_F64] = "trunc";
181  Names[RTLIB::TRUNC_F80] = "truncl";
182  Names[RTLIB::TRUNC_F128] = "truncl";
183  Names[RTLIB::TRUNC_PPCF128] = "truncl";
184  Names[RTLIB::RINT_F32] = "rintf";
185  Names[RTLIB::RINT_F64] = "rint";
186  Names[RTLIB::RINT_F80] = "rintl";
187  Names[RTLIB::RINT_F128] = "rintl";
188  Names[RTLIB::RINT_PPCF128] = "rintl";
189  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
190  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
191  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
192  Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
193  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
194  Names[RTLIB::ROUND_F32] = "roundf";
195  Names[RTLIB::ROUND_F64] = "round";
196  Names[RTLIB::ROUND_F80] = "roundl";
197  Names[RTLIB::ROUND_F128] = "roundl";
198  Names[RTLIB::ROUND_PPCF128] = "roundl";
199  Names[RTLIB::FLOOR_F32] = "floorf";
200  Names[RTLIB::FLOOR_F64] = "floor";
201  Names[RTLIB::FLOOR_F80] = "floorl";
202  Names[RTLIB::FLOOR_F128] = "floorl";
203  Names[RTLIB::FLOOR_PPCF128] = "floorl";
204  Names[RTLIB::COPYSIGN_F32] = "copysignf";
205  Names[RTLIB::COPYSIGN_F64] = "copysign";
206  Names[RTLIB::COPYSIGN_F80] = "copysignl";
207  Names[RTLIB::COPYSIGN_F128] = "copysignl";
208  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
209  Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
210  Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
211  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
212  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
213  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
214  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
215  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
216  Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
217  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
218  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
219  Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
220  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
221  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
222  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
223  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
224  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
225  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
226  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
227  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
228  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
229  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
230  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
231  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
232  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
233  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
234  Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
235  Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
236  Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
237  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
238  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
239  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
240  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
241  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
242  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
243  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
244  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
245  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
246  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
247  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
248  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
249  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
250  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
251  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
252  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
253  Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
254  Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
255  Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
256  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
257  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
258  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
259  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
260  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
261  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
262  Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
263  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
264  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
265  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
266  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
267  Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
268  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
269  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
270  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
271  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
272  Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
273  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
274  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
275  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
276  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
277  Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
278  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
279  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
280  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
281  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
282  Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
283  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
284  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
285  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
286  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
287  Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
288  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
289  Names[RTLIB::OEQ_F32] = "__eqsf2";
290  Names[RTLIB::OEQ_F64] = "__eqdf2";
291  Names[RTLIB::OEQ_F128] = "__eqtf2";
292  Names[RTLIB::UNE_F32] = "__nesf2";
293  Names[RTLIB::UNE_F64] = "__nedf2";
294  Names[RTLIB::UNE_F128] = "__netf2";
295  Names[RTLIB::OGE_F32] = "__gesf2";
296  Names[RTLIB::OGE_F64] = "__gedf2";
297  Names[RTLIB::OGE_F128] = "__getf2";
298  Names[RTLIB::OLT_F32] = "__ltsf2";
299  Names[RTLIB::OLT_F64] = "__ltdf2";
300  Names[RTLIB::OLT_F128] = "__lttf2";
301  Names[RTLIB::OLE_F32] = "__lesf2";
302  Names[RTLIB::OLE_F64] = "__ledf2";
303  Names[RTLIB::OLE_F128] = "__letf2";
304  Names[RTLIB::OGT_F32] = "__gtsf2";
305  Names[RTLIB::OGT_F64] = "__gtdf2";
306  Names[RTLIB::OGT_F128] = "__gttf2";
307  Names[RTLIB::UO_F32] = "__unordsf2";
308  Names[RTLIB::UO_F64] = "__unorddf2";
309  Names[RTLIB::UO_F128] = "__unordtf2";
310  Names[RTLIB::O_F32] = "__unordsf2";
311  Names[RTLIB::O_F64] = "__unorddf2";
312  Names[RTLIB::O_F128] = "__unordtf2";
313  Names[RTLIB::MEMCPY] = "memcpy";
314  Names[RTLIB::MEMMOVE] = "memmove";
315  Names[RTLIB::MEMSET] = "memset";
316  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
317  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
318  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
319  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
320  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
321  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
322  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
323  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
324  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
325  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
326  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
327  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
328  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
329  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
330  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
331  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
332  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
333  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
334  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
335  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
336  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
337  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
338  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
339  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
340  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
341  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
342  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
343  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
344  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
345  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
346  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
347  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
348  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
349
350  if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) {
351    Names[RTLIB::SINCOS_F32] = "sincosf";
352    Names[RTLIB::SINCOS_F64] = "sincos";
353    Names[RTLIB::SINCOS_F80] = "sincosl";
354    Names[RTLIB::SINCOS_F128] = "sincosl";
355    Names[RTLIB::SINCOS_PPCF128] = "sincosl";
356  } else {
357    // These are generally not available.
358    Names[RTLIB::SINCOS_F32] = 0;
359    Names[RTLIB::SINCOS_F64] = 0;
360    Names[RTLIB::SINCOS_F80] = 0;
361    Names[RTLIB::SINCOS_F128] = 0;
362    Names[RTLIB::SINCOS_PPCF128] = 0;
363  }
364}
365
366/// InitLibcallCallingConvs - Set default libcall CallingConvs.
367///
368static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
369  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
370    CCs[i] = CallingConv::C;
371  }
372}
373
374/// getFPEXT - Return the FPEXT_*_* value for the given types, or
375/// UNKNOWN_LIBCALL if there is none.
376RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
377  if (OpVT == MVT::f32) {
378    if (RetVT == MVT::f64)
379      return FPEXT_F32_F64;
380    if (RetVT == MVT::f128)
381      return FPEXT_F32_F128;
382  } else if (OpVT == MVT::f64) {
383    if (RetVT == MVT::f128)
384      return FPEXT_F64_F128;
385  }
386
387  return UNKNOWN_LIBCALL;
388}
389
390/// getFPROUND - Return the FPROUND_*_* value for the given types, or
391/// UNKNOWN_LIBCALL if there is none.
392RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
393  if (RetVT == MVT::f32) {
394    if (OpVT == MVT::f64)
395      return FPROUND_F64_F32;
396    if (OpVT == MVT::f80)
397      return FPROUND_F80_F32;
398    if (OpVT == MVT::f128)
399      return FPROUND_F128_F32;
400    if (OpVT == MVT::ppcf128)
401      return FPROUND_PPCF128_F32;
402  } else if (RetVT == MVT::f64) {
403    if (OpVT == MVT::f80)
404      return FPROUND_F80_F64;
405    if (OpVT == MVT::f128)
406      return FPROUND_F128_F64;
407    if (OpVT == MVT::ppcf128)
408      return FPROUND_PPCF128_F64;
409  }
410
411  return UNKNOWN_LIBCALL;
412}
413
414/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
415/// UNKNOWN_LIBCALL if there is none.
416RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
417  if (OpVT == MVT::f32) {
418    if (RetVT == MVT::i8)
419      return FPTOSINT_F32_I8;
420    if (RetVT == MVT::i16)
421      return FPTOSINT_F32_I16;
422    if (RetVT == MVT::i32)
423      return FPTOSINT_F32_I32;
424    if (RetVT == MVT::i64)
425      return FPTOSINT_F32_I64;
426    if (RetVT == MVT::i128)
427      return FPTOSINT_F32_I128;
428  } else if (OpVT == MVT::f64) {
429    if (RetVT == MVT::i8)
430      return FPTOSINT_F64_I8;
431    if (RetVT == MVT::i16)
432      return FPTOSINT_F64_I16;
433    if (RetVT == MVT::i32)
434      return FPTOSINT_F64_I32;
435    if (RetVT == MVT::i64)
436      return FPTOSINT_F64_I64;
437    if (RetVT == MVT::i128)
438      return FPTOSINT_F64_I128;
439  } else if (OpVT == MVT::f80) {
440    if (RetVT == MVT::i32)
441      return FPTOSINT_F80_I32;
442    if (RetVT == MVT::i64)
443      return FPTOSINT_F80_I64;
444    if (RetVT == MVT::i128)
445      return FPTOSINT_F80_I128;
446  } else if (OpVT == MVT::f128) {
447    if (RetVT == MVT::i32)
448      return FPTOSINT_F128_I32;
449    if (RetVT == MVT::i64)
450      return FPTOSINT_F128_I64;
451    if (RetVT == MVT::i128)
452      return FPTOSINT_F128_I128;
453  } else if (OpVT == MVT::ppcf128) {
454    if (RetVT == MVT::i32)
455      return FPTOSINT_PPCF128_I32;
456    if (RetVT == MVT::i64)
457      return FPTOSINT_PPCF128_I64;
458    if (RetVT == MVT::i128)
459      return FPTOSINT_PPCF128_I128;
460  }
461  return UNKNOWN_LIBCALL;
462}
463
464/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
465/// UNKNOWN_LIBCALL if there is none.
466RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
467  if (OpVT == MVT::f32) {
468    if (RetVT == MVT::i8)
469      return FPTOUINT_F32_I8;
470    if (RetVT == MVT::i16)
471      return FPTOUINT_F32_I16;
472    if (RetVT == MVT::i32)
473      return FPTOUINT_F32_I32;
474    if (RetVT == MVT::i64)
475      return FPTOUINT_F32_I64;
476    if (RetVT == MVT::i128)
477      return FPTOUINT_F32_I128;
478  } else if (OpVT == MVT::f64) {
479    if (RetVT == MVT::i8)
480      return FPTOUINT_F64_I8;
481    if (RetVT == MVT::i16)
482      return FPTOUINT_F64_I16;
483    if (RetVT == MVT::i32)
484      return FPTOUINT_F64_I32;
485    if (RetVT == MVT::i64)
486      return FPTOUINT_F64_I64;
487    if (RetVT == MVT::i128)
488      return FPTOUINT_F64_I128;
489  } else if (OpVT == MVT::f80) {
490    if (RetVT == MVT::i32)
491      return FPTOUINT_F80_I32;
492    if (RetVT == MVT::i64)
493      return FPTOUINT_F80_I64;
494    if (RetVT == MVT::i128)
495      return FPTOUINT_F80_I128;
496  } else if (OpVT == MVT::f128) {
497    if (RetVT == MVT::i32)
498      return FPTOUINT_F128_I32;
499    if (RetVT == MVT::i64)
500      return FPTOUINT_F128_I64;
501    if (RetVT == MVT::i128)
502      return FPTOUINT_F128_I128;
503  } else if (OpVT == MVT::ppcf128) {
504    if (RetVT == MVT::i32)
505      return FPTOUINT_PPCF128_I32;
506    if (RetVT == MVT::i64)
507      return FPTOUINT_PPCF128_I64;
508    if (RetVT == MVT::i128)
509      return FPTOUINT_PPCF128_I128;
510  }
511  return UNKNOWN_LIBCALL;
512}
513
514/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
515/// UNKNOWN_LIBCALL if there is none.
516RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
517  if (OpVT == MVT::i32) {
518    if (RetVT == MVT::f32)
519      return SINTTOFP_I32_F32;
520    if (RetVT == MVT::f64)
521      return SINTTOFP_I32_F64;
522    if (RetVT == MVT::f80)
523      return SINTTOFP_I32_F80;
524    if (RetVT == MVT::f128)
525      return SINTTOFP_I32_F128;
526    if (RetVT == MVT::ppcf128)
527      return SINTTOFP_I32_PPCF128;
528  } else if (OpVT == MVT::i64) {
529    if (RetVT == MVT::f32)
530      return SINTTOFP_I64_F32;
531    if (RetVT == MVT::f64)
532      return SINTTOFP_I64_F64;
533    if (RetVT == MVT::f80)
534      return SINTTOFP_I64_F80;
535    if (RetVT == MVT::f128)
536      return SINTTOFP_I64_F128;
537    if (RetVT == MVT::ppcf128)
538      return SINTTOFP_I64_PPCF128;
539  } else if (OpVT == MVT::i128) {
540    if (RetVT == MVT::f32)
541      return SINTTOFP_I128_F32;
542    if (RetVT == MVT::f64)
543      return SINTTOFP_I128_F64;
544    if (RetVT == MVT::f80)
545      return SINTTOFP_I128_F80;
546    if (RetVT == MVT::f128)
547      return SINTTOFP_I128_F128;
548    if (RetVT == MVT::ppcf128)
549      return SINTTOFP_I128_PPCF128;
550  }
551  return UNKNOWN_LIBCALL;
552}
553
554/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
555/// UNKNOWN_LIBCALL if there is none.
556RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
557  if (OpVT == MVT::i32) {
558    if (RetVT == MVT::f32)
559      return UINTTOFP_I32_F32;
560    if (RetVT == MVT::f64)
561      return UINTTOFP_I32_F64;
562    if (RetVT == MVT::f80)
563      return UINTTOFP_I32_F80;
564    if (RetVT == MVT::f128)
565      return UINTTOFP_I32_F128;
566    if (RetVT == MVT::ppcf128)
567      return UINTTOFP_I32_PPCF128;
568  } else if (OpVT == MVT::i64) {
569    if (RetVT == MVT::f32)
570      return UINTTOFP_I64_F32;
571    if (RetVT == MVT::f64)
572      return UINTTOFP_I64_F64;
573    if (RetVT == MVT::f80)
574      return UINTTOFP_I64_F80;
575    if (RetVT == MVT::f128)
576      return UINTTOFP_I64_F128;
577    if (RetVT == MVT::ppcf128)
578      return UINTTOFP_I64_PPCF128;
579  } else if (OpVT == MVT::i128) {
580    if (RetVT == MVT::f32)
581      return UINTTOFP_I128_F32;
582    if (RetVT == MVT::f64)
583      return UINTTOFP_I128_F64;
584    if (RetVT == MVT::f80)
585      return UINTTOFP_I128_F80;
586    if (RetVT == MVT::f128)
587      return UINTTOFP_I128_F128;
588    if (RetVT == MVT::ppcf128)
589      return UINTTOFP_I128_PPCF128;
590  }
591  return UNKNOWN_LIBCALL;
592}
593
594/// InitCmpLibcallCCs - Set default comparison libcall CC.
595///
596static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
597  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
598  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
599  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
600  CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
601  CCs[RTLIB::UNE_F32] = ISD::SETNE;
602  CCs[RTLIB::UNE_F64] = ISD::SETNE;
603  CCs[RTLIB::UNE_F128] = ISD::SETNE;
604  CCs[RTLIB::OGE_F32] = ISD::SETGE;
605  CCs[RTLIB::OGE_F64] = ISD::SETGE;
606  CCs[RTLIB::OGE_F128] = ISD::SETGE;
607  CCs[RTLIB::OLT_F32] = ISD::SETLT;
608  CCs[RTLIB::OLT_F64] = ISD::SETLT;
609  CCs[RTLIB::OLT_F128] = ISD::SETLT;
610  CCs[RTLIB::OLE_F32] = ISD::SETLE;
611  CCs[RTLIB::OLE_F64] = ISD::SETLE;
612  CCs[RTLIB::OLE_F128] = ISD::SETLE;
613  CCs[RTLIB::OGT_F32] = ISD::SETGT;
614  CCs[RTLIB::OGT_F64] = ISD::SETGT;
615  CCs[RTLIB::OGT_F128] = ISD::SETGT;
616  CCs[RTLIB::UO_F32] = ISD::SETNE;
617  CCs[RTLIB::UO_F64] = ISD::SETNE;
618  CCs[RTLIB::UO_F128] = ISD::SETNE;
619  CCs[RTLIB::O_F32] = ISD::SETEQ;
620  CCs[RTLIB::O_F64] = ISD::SETEQ;
621  CCs[RTLIB::O_F128] = ISD::SETEQ;
622}
623
624/// NOTE: The constructor takes ownership of TLOF.
625TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
626                                       const TargetLoweringObjectFile *tlof)
627  : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
628  initActions();
629
630  // Perform these initializations only once.
631  IsLittleEndian = TD->isLittleEndian();
632  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0));
633  MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
634  MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
635    = MaxStoresPerMemmoveOptSize = 4;
636  UseUnderscoreSetJmp = false;
637  UseUnderscoreLongJmp = false;
638  SelectIsExpensive = false;
639  IntDivIsCheap = false;
640  Pow2DivIsCheap = false;
641  JumpIsExpensive = false;
642  PredictableSelectIsExpensive = false;
643  StackPointerRegisterToSaveRestore = 0;
644  ExceptionPointerRegister = 0;
645  ExceptionSelectorRegister = 0;
646  BooleanContents = UndefinedBooleanContent;
647  BooleanVectorContents = UndefinedBooleanContent;
648  SchedPreferenceInfo = Sched::ILP;
649  JumpBufSize = 0;
650  JumpBufAlignment = 0;
651  MinFunctionAlignment = 0;
652  PrefFunctionAlignment = 0;
653  PrefLoopAlignment = 0;
654  MinStackArgumentAlignment = 1;
655  InsertFencesForAtomic = false;
656  SupportJumpTables = true;
657  MinimumJumpTableEntries = 4;
658
659  InitLibcallNames(LibcallRoutineNames, TM);
660  InitCmpLibcallCCs(CmpLibcallCCs);
661  InitLibcallCallingConvs(LibcallCallingConvs);
662}
663
664TargetLoweringBase::~TargetLoweringBase() {
665  delete &TLOF;
666}
667
668void TargetLoweringBase::initActions() {
669  // All operations default to being supported.
670  memset(OpActions, 0, sizeof(OpActions));
671  memset(LoadExtActions, 0, sizeof(LoadExtActions));
672  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
673  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
674  memset(CondCodeActions, 0, sizeof(CondCodeActions));
675  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
676  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
677
678  // Set default actions for various operations.
679  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
680    // Default all indexed load / store to expand.
681    for (unsigned IM = (unsigned)ISD::PRE_INC;
682         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
683      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
684      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
685    }
686
687    // These operations default to expand.
688    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
690  }
691
692  // Most targets ignore the @llvm.prefetch intrinsic.
693  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
694
695  // ConstantFP nodes default to expand.  Targets can either change this to
696  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
697  // to optimize expansions for certain constants.
698  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
699  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
700  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
701  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
702  setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
703
704  // These library functions default to expand.
705  setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
706  setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
707  setOperationAction(ISD::FLOG10, MVT::f16, Expand);
708  setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
709  setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
710  setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
711  setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
712  setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
713  setOperationAction(ISD::FRINT,  MVT::f16, Expand);
714  setOperationAction(ISD::FROUND, MVT::f16, Expand);
715  setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
716  setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
717  setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
718  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
719  setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
720  setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
721  setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
722  setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
723  setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
724  setOperationAction(ISD::FRINT,  MVT::f32, Expand);
725  setOperationAction(ISD::FROUND, MVT::f32, Expand);
726  setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
727  setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
728  setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
729  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
730  setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
731  setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
732  setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
733  setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
734  setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
735  setOperationAction(ISD::FRINT,  MVT::f64, Expand);
736  setOperationAction(ISD::FROUND, MVT::f64, Expand);
737  setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
738  setOperationAction(ISD::FLOG ,  MVT::f128, Expand);
739  setOperationAction(ISD::FLOG2,  MVT::f128, Expand);
740  setOperationAction(ISD::FLOG10, MVT::f128, Expand);
741  setOperationAction(ISD::FEXP ,  MVT::f128, Expand);
742  setOperationAction(ISD::FEXP2,  MVT::f128, Expand);
743  setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
744  setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
745  setOperationAction(ISD::FCEIL,  MVT::f128, Expand);
746  setOperationAction(ISD::FRINT,  MVT::f128, Expand);
747  setOperationAction(ISD::FROUND, MVT::f128, Expand);
748  setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
749
750  // Default ISD::TRAP to expand (which turns it into abort).
751  setOperationAction(ISD::TRAP, MVT::Other, Expand);
752
753  // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
754  // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
755  //
756  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
757}
758
759MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
760  return MVT::getIntegerVT(8*TD->getPointerSize(0));
761}
762
763EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
764  assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
765  if (LHSTy.isVector())
766    return LHSTy;
767  return getScalarShiftAmountTy(LHSTy);
768}
769
770/// canOpTrap - Returns true if the operation can trap for the value type.
771/// VT must be a legal type.
772bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
773  assert(isTypeLegal(VT));
774  switch (Op) {
775  default:
776    return false;
777  case ISD::FDIV:
778  case ISD::FREM:
779  case ISD::SDIV:
780  case ISD::UDIV:
781  case ISD::SREM:
782  case ISD::UREM:
783    return true;
784  }
785}
786
787
788static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
789                                          unsigned &NumIntermediates,
790                                          MVT &RegisterVT,
791                                          TargetLoweringBase *TLI) {
792  // Figure out the right, legal destination reg to copy into.
793  unsigned NumElts = VT.getVectorNumElements();
794  MVT EltTy = VT.getVectorElementType();
795
796  unsigned NumVectorRegs = 1;
797
798  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
799  // could break down into LHS/RHS like LegalizeDAG does.
800  if (!isPowerOf2_32(NumElts)) {
801    NumVectorRegs = NumElts;
802    NumElts = 1;
803  }
804
805  // Divide the input until we get to a supported size.  This will always
806  // end with a scalar if the target doesn't support vectors.
807  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
808    NumElts >>= 1;
809    NumVectorRegs <<= 1;
810  }
811
812  NumIntermediates = NumVectorRegs;
813
814  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
815  if (!TLI->isTypeLegal(NewVT))
816    NewVT = EltTy;
817  IntermediateVT = NewVT;
818
819  unsigned NewVTSize = NewVT.getSizeInBits();
820
821  // Convert sizes such as i33 to i64.
822  if (!isPowerOf2_32(NewVTSize))
823    NewVTSize = NextPowerOf2(NewVTSize);
824
825  MVT DestVT = TLI->getRegisterType(NewVT);
826  RegisterVT = DestVT;
827  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
828    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
829
830  // Otherwise, promotion or legal types use the same number of registers as
831  // the vector decimated to the appropriate level.
832  return NumVectorRegs;
833}
834
835/// isLegalRC - Return true if the value types that can be represented by the
836/// specified register class are all legal.
837bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
838  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
839       I != E; ++I) {
840    if (isTypeLegal(*I))
841      return true;
842  }
843  return false;
844}
845
846/// findRepresentativeClass - Return the largest legal super-reg register class
847/// of the register class for the specified type and its associated "cost".
848std::pair<const TargetRegisterClass*, uint8_t>
849TargetLoweringBase::findRepresentativeClass(MVT VT) const {
850  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
851  const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
852  if (!RC)
853    return std::make_pair(RC, 0);
854
855  // Compute the set of all super-register classes.
856  BitVector SuperRegRC(TRI->getNumRegClasses());
857  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
858    SuperRegRC.setBitsInMask(RCI.getMask());
859
860  // Find the first legal register class with the largest spill size.
861  const TargetRegisterClass *BestRC = RC;
862  for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
863    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
864    // We want the largest possible spill size.
865    if (SuperRC->getSize() <= BestRC->getSize())
866      continue;
867    if (!isLegalRC(SuperRC))
868      continue;
869    BestRC = SuperRC;
870  }
871  return std::make_pair(BestRC, 1);
872}
873
874/// computeRegisterProperties - Once all of the register classes are added,
875/// this allows us to compute derived properties we expose.
876void TargetLoweringBase::computeRegisterProperties() {
877  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
878         "Too many value types for ValueTypeActions to hold!");
879
880  // Everything defaults to needing one register.
881  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
882    NumRegistersForVT[i] = 1;
883    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
884  }
885  // ...except isVoid, which doesn't need any registers.
886  NumRegistersForVT[MVT::isVoid] = 0;
887
888  // Find the largest integer register class.
889  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
890  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
891    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
892
893  // Every integer value type larger than this largest register takes twice as
894  // many registers to represent as the previous ValueType.
895  for (unsigned ExpandedReg = LargestIntReg + 1;
896       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
897    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
898    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
899    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
900    ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
901                                   TypeExpandInteger);
902  }
903
904  // Inspect all of the ValueType's smaller than the largest integer
905  // register to see which ones need promotion.
906  unsigned LegalIntReg = LargestIntReg;
907  for (unsigned IntReg = LargestIntReg - 1;
908       IntReg >= (unsigned)MVT::i1; --IntReg) {
909    MVT IVT = (MVT::SimpleValueType)IntReg;
910    if (isTypeLegal(IVT)) {
911      LegalIntReg = IntReg;
912    } else {
913      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
914        (const MVT::SimpleValueType)LegalIntReg;
915      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
916    }
917  }
918
919  // ppcf128 type is really two f64's.
920  if (!isTypeLegal(MVT::ppcf128)) {
921    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
922    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
923    TransformToType[MVT::ppcf128] = MVT::f64;
924    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
925  }
926
927  // Decide how to handle f128. If the target does not have native f128 support,
928  // expand it to i128 and we will be generating soft float library calls.
929  if (!isTypeLegal(MVT::f128)) {
930    NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
931    RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
932    TransformToType[MVT::f128] = MVT::i128;
933    ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
934  }
935
936  // Decide how to handle f64. If the target does not have native f64 support,
937  // expand it to i64 and we will be generating soft float library calls.
938  if (!isTypeLegal(MVT::f64)) {
939    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
940    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
941    TransformToType[MVT::f64] = MVT::i64;
942    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
943  }
944
945  // Decide how to handle f32. If the target does not have native support for
946  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
947  if (!isTypeLegal(MVT::f32)) {
948    if (isTypeLegal(MVT::f64)) {
949      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
950      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
951      TransformToType[MVT::f32] = MVT::f64;
952      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
953    } else {
954      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
955      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
956      TransformToType[MVT::f32] = MVT::i32;
957      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
958    }
959  }
960
961  // Loop over all of the vector value types to see which need transformations.
962  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
963       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
964    MVT VT = (MVT::SimpleValueType)i;
965    if (isTypeLegal(VT)) continue;
966
967    // Determine if there is a legal wider type.  If so, we should promote to
968    // that wider vector type.
969    MVT EltVT = VT.getVectorElementType();
970    unsigned NElts = VT.getVectorNumElements();
971    if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
972      bool IsLegalWiderType = false;
973      // First try to promote the elements of integer vectors. If no legal
974      // promotion was found, fallback to the widen-vector method.
975      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
976        MVT SVT = (MVT::SimpleValueType)nVT;
977        // Promote vectors of integers to vectors with the same number
978        // of elements, with a wider element type.
979        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
980            && SVT.getVectorNumElements() == NElts &&
981            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
982          TransformToType[i] = SVT;
983          RegisterTypeForVT[i] = SVT;
984          NumRegistersForVT[i] = 1;
985          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
986          IsLegalWiderType = true;
987          break;
988        }
989      }
990
991      if (IsLegalWiderType) continue;
992
993      // Try to widen the vector.
994      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
995        MVT SVT = (MVT::SimpleValueType)nVT;
996        if (SVT.getVectorElementType() == EltVT &&
997            SVT.getVectorNumElements() > NElts &&
998            isTypeLegal(SVT)) {
999          TransformToType[i] = SVT;
1000          RegisterTypeForVT[i] = SVT;
1001          NumRegistersForVT[i] = 1;
1002          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1003          IsLegalWiderType = true;
1004          break;
1005        }
1006      }
1007      if (IsLegalWiderType) continue;
1008    }
1009
1010    MVT IntermediateVT;
1011    MVT RegisterVT;
1012    unsigned NumIntermediates;
1013    NumRegistersForVT[i] =
1014      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
1015                                RegisterVT, this);
1016    RegisterTypeForVT[i] = RegisterVT;
1017
1018    MVT NVT = VT.getPow2VectorType();
1019    if (NVT == VT) {
1020      // Type is already a power of 2.  The default action is to split.
1021      TransformToType[i] = MVT::Other;
1022      unsigned NumElts = VT.getVectorNumElements();
1023      ValueTypeActions.setTypeAction(VT,
1024            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
1025    } else {
1026      TransformToType[i] = NVT;
1027      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1028    }
1029  }
1030
1031  // Determine the 'representative' register class for each value type.
1032  // An representative register class is the largest (meaning one which is
1033  // not a sub-register class / subreg register class) legal register class for
1034  // a group of value types. For example, on i386, i8, i16, and i32
1035  // representative would be GR32; while on x86_64 it's GR64.
1036  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1037    const TargetRegisterClass* RRC;
1038    uint8_t Cost;
1039    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
1040    RepRegClassForVT[i] = RRC;
1041    RepRegClassCostForVT[i] = Cost;
1042  }
1043}
1044
1045EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
1046  assert(!VT.isVector() && "No default SetCC type for vectors!");
1047  return getPointerTy(0).SimpleTy;
1048}
1049
1050MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1051  return MVT::i32; // return the default value
1052}
1053
1054/// getVectorTypeBreakdown - Vector types are broken down into some number of
1055/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1056/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1057/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1058///
1059/// This method returns the number of registers needed, and the VT for each
1060/// register.  It also returns the VT and quantity of the intermediate values
1061/// before they are promoted/expanded.
1062///
1063unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1064                                                EVT &IntermediateVT,
1065                                                unsigned &NumIntermediates,
1066                                                MVT &RegisterVT) const {
1067  unsigned NumElts = VT.getVectorNumElements();
1068
1069  // If there is a wider vector type with the same element type as this one,
1070  // or a promoted vector type that has the same number of elements which
1071  // are wider, then we should convert to that legal vector type.
1072  // This handles things like <2 x float> -> <4 x float> and
1073  // <4 x i1> -> <4 x i32>.
1074  LegalizeTypeAction TA = getTypeAction(Context, VT);
1075  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1076    EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1077    if (isTypeLegal(RegisterEVT)) {
1078      IntermediateVT = RegisterEVT;
1079      RegisterVT = RegisterEVT.getSimpleVT();
1080      NumIntermediates = 1;
1081      return 1;
1082    }
1083  }
1084
1085  // Figure out the right, legal destination reg to copy into.
1086  EVT EltTy = VT.getVectorElementType();
1087
1088  unsigned NumVectorRegs = 1;
1089
1090  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1091  // could break down into LHS/RHS like LegalizeDAG does.
1092  if (!isPowerOf2_32(NumElts)) {
1093    NumVectorRegs = NumElts;
1094    NumElts = 1;
1095  }
1096
1097  // Divide the input until we get to a supported size.  This will always
1098  // end with a scalar if the target doesn't support vectors.
1099  while (NumElts > 1 && !isTypeLegal(
1100                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
1101    NumElts >>= 1;
1102    NumVectorRegs <<= 1;
1103  }
1104
1105  NumIntermediates = NumVectorRegs;
1106
1107  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1108  if (!isTypeLegal(NewVT))
1109    NewVT = EltTy;
1110  IntermediateVT = NewVT;
1111
1112  MVT DestVT = getRegisterType(Context, NewVT);
1113  RegisterVT = DestVT;
1114  unsigned NewVTSize = NewVT.getSizeInBits();
1115
1116  // Convert sizes such as i33 to i64.
1117  if (!isPowerOf2_32(NewVTSize))
1118    NewVTSize = NextPowerOf2(NewVTSize);
1119
1120  if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1121    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1122
1123  // Otherwise, promotion or legal types use the same number of registers as
1124  // the vector decimated to the appropriate level.
1125  return NumVectorRegs;
1126}
1127
1128/// Get the EVTs and ArgFlags collections that represent the legalized return
1129/// type of the given function.  This does not require a DAG or a return value,
1130/// and is suitable for use before any DAGs for the function are constructed.
1131/// TODO: Move this out of TargetLowering.cpp.
1132void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
1133                         SmallVectorImpl<ISD::OutputArg> &Outs,
1134                         const TargetLowering &TLI) {
1135  SmallVector<EVT, 4> ValueVTs;
1136  ComputeValueVTs(TLI, ReturnType, ValueVTs);
1137  unsigned NumValues = ValueVTs.size();
1138  if (NumValues == 0) return;
1139
1140  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1141    EVT VT = ValueVTs[j];
1142    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1143
1144    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1145      ExtendKind = ISD::SIGN_EXTEND;
1146    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1147      ExtendKind = ISD::ZERO_EXTEND;
1148
1149    // FIXME: C calling convention requires the return type to be promoted to
1150    // at least 32-bit. But this is not necessary for non-C calling
1151    // conventions. The frontend should mark functions whose return values
1152    // require promoting with signext or zeroext attributes.
1153    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1154      MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1155      if (VT.bitsLT(MinVT))
1156        VT = MinVT;
1157    }
1158
1159    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1160    MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1161
1162    // 'inreg' on function refers to return value
1163    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1164    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1165      Flags.setInReg();
1166
1167    // Propagate extension type if any
1168    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1169      Flags.setSExt();
1170    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1171      Flags.setZExt();
1172
1173    for (unsigned i = 0; i < NumParts; ++i)
1174      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0));
1175  }
1176}
1177
1178/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1179/// function arguments in the caller parameter area.  This is the actual
1180/// alignment, not its logarithm.
1181unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
1182  return TD->getCallFrameTypeAlignment(Ty);
1183}
1184
1185//===----------------------------------------------------------------------===//
1186//  TargetTransformInfo Helpers
1187//===----------------------------------------------------------------------===//
1188
1189int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1190  enum InstructionOpcodes {
1191#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1192#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1193#include "llvm/IR/Instruction.def"
1194  };
1195  switch (static_cast<InstructionOpcodes>(Opcode)) {
1196  case Ret:            return 0;
1197  case Br:             return 0;
1198  case Switch:         return 0;
1199  case IndirectBr:     return 0;
1200  case Invoke:         return 0;
1201  case Resume:         return 0;
1202  case Unreachable:    return 0;
1203  case Add:            return ISD::ADD;
1204  case FAdd:           return ISD::FADD;
1205  case Sub:            return ISD::SUB;
1206  case FSub:           return ISD::FSUB;
1207  case Mul:            return ISD::MUL;
1208  case FMul:           return ISD::FMUL;
1209  case UDiv:           return ISD::UDIV;
1210  case SDiv:           return ISD::UDIV;
1211  case FDiv:           return ISD::FDIV;
1212  case URem:           return ISD::UREM;
1213  case SRem:           return ISD::SREM;
1214  case FRem:           return ISD::FREM;
1215  case Shl:            return ISD::SHL;
1216  case LShr:           return ISD::SRL;
1217  case AShr:           return ISD::SRA;
1218  case And:            return ISD::AND;
1219  case Or:             return ISD::OR;
1220  case Xor:            return ISD::XOR;
1221  case Alloca:         return 0;
1222  case Load:           return ISD::LOAD;
1223  case Store:          return ISD::STORE;
1224  case GetElementPtr:  return 0;
1225  case Fence:          return 0;
1226  case AtomicCmpXchg:  return 0;
1227  case AtomicRMW:      return 0;
1228  case Trunc:          return ISD::TRUNCATE;
1229  case ZExt:           return ISD::ZERO_EXTEND;
1230  case SExt:           return ISD::SIGN_EXTEND;
1231  case FPToUI:         return ISD::FP_TO_UINT;
1232  case FPToSI:         return ISD::FP_TO_SINT;
1233  case UIToFP:         return ISD::UINT_TO_FP;
1234  case SIToFP:         return ISD::SINT_TO_FP;
1235  case FPTrunc:        return ISD::FP_ROUND;
1236  case FPExt:          return ISD::FP_EXTEND;
1237  case PtrToInt:       return ISD::BITCAST;
1238  case IntToPtr:       return ISD::BITCAST;
1239  case BitCast:        return ISD::BITCAST;
1240  case ICmp:           return ISD::SETCC;
1241  case FCmp:           return ISD::SETCC;
1242  case PHI:            return 0;
1243  case Call:           return 0;
1244  case Select:         return ISD::SELECT;
1245  case UserOp1:        return 0;
1246  case UserOp2:        return 0;
1247  case VAArg:          return 0;
1248  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1249  case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1250  case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1251  case ExtractValue:   return ISD::MERGE_VALUES;
1252  case InsertValue:    return ISD::MERGE_VALUES;
1253  case LandingPad:     return 0;
1254  }
1255
1256  llvm_unreachable("Unknown instruction type encountered!");
1257}
1258
1259std::pair<unsigned, MVT>
1260TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
1261  LLVMContext &C = Ty->getContext();
1262  EVT MTy = getValueType(Ty);
1263
1264  unsigned Cost = 1;
1265  // We keep legalizing the type until we find a legal kind. We assume that
1266  // the only operation that costs anything is the split. After splitting
1267  // we need to handle two types.
1268  while (true) {
1269    LegalizeKind LK = getTypeConversion(C, MTy);
1270
1271    if (LK.first == TypeLegal)
1272      return std::make_pair(Cost, MTy.getSimpleVT());
1273
1274    if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1275      Cost *= 2;
1276
1277    // Keep legalizing the type.
1278    MTy = LK.second;
1279  }
1280}
1281
1282//===----------------------------------------------------------------------===//
1283//  Loop Strength Reduction hooks
1284//===----------------------------------------------------------------------===//
1285
1286/// isLegalAddressingMode - Return true if the addressing mode represented
1287/// by AM is legal for this target, for a load/store of the specified type.
1288bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
1289                                           Type *Ty) const {
1290  // The default implementation of this implements a conservative RISCy, r+r and
1291  // r+i addr mode.
1292
1293  // Allows a sign-extended 16-bit immediate field.
1294  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1295    return false;
1296
1297  // No global is ever allowed as a base.
1298  if (AM.BaseGV)
1299    return false;
1300
1301  // Only support r+r,
1302  switch (AM.Scale) {
1303  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1304    break;
1305  case 1:
1306    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1307      return false;
1308    // Otherwise we have r+r or r+i.
1309    break;
1310  case 2:
1311    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1312      return false;
1313    // Allow 2*r as r+r.
1314    break;
1315  }
1316
1317  return true;
1318}
1319