TargetLoweringBase.cpp revision 59d3ae6cdc4316ad338cd848251f33a236ccb36c
1//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLoweringBase class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/MC/MCAsmInfo.h"
26#include "llvm/MC/MCExpr.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetLoweringObjectFile.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include <cctype>
34using namespace llvm;
35
36/// InitLibcallNames - Set default libcall names.
37///
38static void InitLibcallNames(const char **Names, const TargetMachine &TM) {
39  Names[RTLIB::SHL_I16] = "__ashlhi3";
40  Names[RTLIB::SHL_I32] = "__ashlsi3";
41  Names[RTLIB::SHL_I64] = "__ashldi3";
42  Names[RTLIB::SHL_I128] = "__ashlti3";
43  Names[RTLIB::SRL_I16] = "__lshrhi3";
44  Names[RTLIB::SRL_I32] = "__lshrsi3";
45  Names[RTLIB::SRL_I64] = "__lshrdi3";
46  Names[RTLIB::SRL_I128] = "__lshrti3";
47  Names[RTLIB::SRA_I16] = "__ashrhi3";
48  Names[RTLIB::SRA_I32] = "__ashrsi3";
49  Names[RTLIB::SRA_I64] = "__ashrdi3";
50  Names[RTLIB::SRA_I128] = "__ashrti3";
51  Names[RTLIB::MUL_I8] = "__mulqi3";
52  Names[RTLIB::MUL_I16] = "__mulhi3";
53  Names[RTLIB::MUL_I32] = "__mulsi3";
54  Names[RTLIB::MUL_I64] = "__muldi3";
55  Names[RTLIB::MUL_I128] = "__multi3";
56  Names[RTLIB::MULO_I32] = "__mulosi4";
57  Names[RTLIB::MULO_I64] = "__mulodi4";
58  Names[RTLIB::MULO_I128] = "__muloti4";
59  Names[RTLIB::SDIV_I8] = "__divqi3";
60  Names[RTLIB::SDIV_I16] = "__divhi3";
61  Names[RTLIB::SDIV_I32] = "__divsi3";
62  Names[RTLIB::SDIV_I64] = "__divdi3";
63  Names[RTLIB::SDIV_I128] = "__divti3";
64  Names[RTLIB::UDIV_I8] = "__udivqi3";
65  Names[RTLIB::UDIV_I16] = "__udivhi3";
66  Names[RTLIB::UDIV_I32] = "__udivsi3";
67  Names[RTLIB::UDIV_I64] = "__udivdi3";
68  Names[RTLIB::UDIV_I128] = "__udivti3";
69  Names[RTLIB::SREM_I8] = "__modqi3";
70  Names[RTLIB::SREM_I16] = "__modhi3";
71  Names[RTLIB::SREM_I32] = "__modsi3";
72  Names[RTLIB::SREM_I64] = "__moddi3";
73  Names[RTLIB::SREM_I128] = "__modti3";
74  Names[RTLIB::UREM_I8] = "__umodqi3";
75  Names[RTLIB::UREM_I16] = "__umodhi3";
76  Names[RTLIB::UREM_I32] = "__umodsi3";
77  Names[RTLIB::UREM_I64] = "__umoddi3";
78  Names[RTLIB::UREM_I128] = "__umodti3";
79
80  // These are generally not available.
81  Names[RTLIB::SDIVREM_I8] = 0;
82  Names[RTLIB::SDIVREM_I16] = 0;
83  Names[RTLIB::SDIVREM_I32] = 0;
84  Names[RTLIB::SDIVREM_I64] = 0;
85  Names[RTLIB::SDIVREM_I128] = 0;
86  Names[RTLIB::UDIVREM_I8] = 0;
87  Names[RTLIB::UDIVREM_I16] = 0;
88  Names[RTLIB::UDIVREM_I32] = 0;
89  Names[RTLIB::UDIVREM_I64] = 0;
90  Names[RTLIB::UDIVREM_I128] = 0;
91
92  Names[RTLIB::NEG_I32] = "__negsi2";
93  Names[RTLIB::NEG_I64] = "__negdi2";
94  Names[RTLIB::ADD_F32] = "__addsf3";
95  Names[RTLIB::ADD_F64] = "__adddf3";
96  Names[RTLIB::ADD_F80] = "__addxf3";
97  Names[RTLIB::ADD_F128] = "__addtf3";
98  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
99  Names[RTLIB::SUB_F32] = "__subsf3";
100  Names[RTLIB::SUB_F64] = "__subdf3";
101  Names[RTLIB::SUB_F80] = "__subxf3";
102  Names[RTLIB::SUB_F128] = "__subtf3";
103  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
104  Names[RTLIB::MUL_F32] = "__mulsf3";
105  Names[RTLIB::MUL_F64] = "__muldf3";
106  Names[RTLIB::MUL_F80] = "__mulxf3";
107  Names[RTLIB::MUL_F128] = "__multf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_F128] = "__divtf3";
113  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
114  Names[RTLIB::REM_F32] = "fmodf";
115  Names[RTLIB::REM_F64] = "fmod";
116  Names[RTLIB::REM_F80] = "fmodl";
117  Names[RTLIB::REM_F128] = "fmodl";
118  Names[RTLIB::REM_PPCF128] = "fmodl";
119  Names[RTLIB::FMA_F32] = "fmaf";
120  Names[RTLIB::FMA_F64] = "fma";
121  Names[RTLIB::FMA_F80] = "fmal";
122  Names[RTLIB::FMA_F128] = "fmal";
123  Names[RTLIB::FMA_PPCF128] = "fmal";
124  Names[RTLIB::POWI_F32] = "__powisf2";
125  Names[RTLIB::POWI_F64] = "__powidf2";
126  Names[RTLIB::POWI_F80] = "__powixf2";
127  Names[RTLIB::POWI_F128] = "__powitf2";
128  Names[RTLIB::POWI_PPCF128] = "__powitf2";
129  Names[RTLIB::SQRT_F32] = "sqrtf";
130  Names[RTLIB::SQRT_F64] = "sqrt";
131  Names[RTLIB::SQRT_F80] = "sqrtl";
132  Names[RTLIB::SQRT_F128] = "sqrtl";
133  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
134  Names[RTLIB::LOG_F32] = "logf";
135  Names[RTLIB::LOG_F64] = "log";
136  Names[RTLIB::LOG_F80] = "logl";
137  Names[RTLIB::LOG_F128] = "logl";
138  Names[RTLIB::LOG_PPCF128] = "logl";
139  Names[RTLIB::LOG2_F32] = "log2f";
140  Names[RTLIB::LOG2_F64] = "log2";
141  Names[RTLIB::LOG2_F80] = "log2l";
142  Names[RTLIB::LOG2_F128] = "log2l";
143  Names[RTLIB::LOG2_PPCF128] = "log2l";
144  Names[RTLIB::LOG10_F32] = "log10f";
145  Names[RTLIB::LOG10_F64] = "log10";
146  Names[RTLIB::LOG10_F80] = "log10l";
147  Names[RTLIB::LOG10_F128] = "log10l";
148  Names[RTLIB::LOG10_PPCF128] = "log10l";
149  Names[RTLIB::EXP_F32] = "expf";
150  Names[RTLIB::EXP_F64] = "exp";
151  Names[RTLIB::EXP_F80] = "expl";
152  Names[RTLIB::EXP_F128] = "expl";
153  Names[RTLIB::EXP_PPCF128] = "expl";
154  Names[RTLIB::EXP2_F32] = "exp2f";
155  Names[RTLIB::EXP2_F64] = "exp2";
156  Names[RTLIB::EXP2_F80] = "exp2l";
157  Names[RTLIB::EXP2_F128] = "exp2l";
158  Names[RTLIB::EXP2_PPCF128] = "exp2l";
159  Names[RTLIB::SIN_F32] = "sinf";
160  Names[RTLIB::SIN_F64] = "sin";
161  Names[RTLIB::SIN_F80] = "sinl";
162  Names[RTLIB::SIN_F128] = "sinl";
163  Names[RTLIB::SIN_PPCF128] = "sinl";
164  Names[RTLIB::COS_F32] = "cosf";
165  Names[RTLIB::COS_F64] = "cos";
166  Names[RTLIB::COS_F80] = "cosl";
167  Names[RTLIB::COS_F128] = "cosl";
168  Names[RTLIB::COS_PPCF128] = "cosl";
169  Names[RTLIB::POW_F32] = "powf";
170  Names[RTLIB::POW_F64] = "pow";
171  Names[RTLIB::POW_F80] = "powl";
172  Names[RTLIB::POW_F128] = "powl";
173  Names[RTLIB::POW_PPCF128] = "powl";
174  Names[RTLIB::CEIL_F32] = "ceilf";
175  Names[RTLIB::CEIL_F64] = "ceil";
176  Names[RTLIB::CEIL_F80] = "ceill";
177  Names[RTLIB::CEIL_F128] = "ceill";
178  Names[RTLIB::CEIL_PPCF128] = "ceill";
179  Names[RTLIB::TRUNC_F32] = "truncf";
180  Names[RTLIB::TRUNC_F64] = "trunc";
181  Names[RTLIB::TRUNC_F80] = "truncl";
182  Names[RTLIB::TRUNC_F128] = "truncl";
183  Names[RTLIB::TRUNC_PPCF128] = "truncl";
184  Names[RTLIB::RINT_F32] = "rintf";
185  Names[RTLIB::RINT_F64] = "rint";
186  Names[RTLIB::RINT_F80] = "rintl";
187  Names[RTLIB::RINT_F128] = "rintl";
188  Names[RTLIB::RINT_PPCF128] = "rintl";
189  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
190  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
191  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
192  Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
193  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
194  Names[RTLIB::ROUND_F32] = "roundf";
195  Names[RTLIB::ROUND_F64] = "round";
196  Names[RTLIB::ROUND_F80] = "roundl";
197  Names[RTLIB::ROUND_F128] = "roundl";
198  Names[RTLIB::ROUND_PPCF128] = "roundl";
199  Names[RTLIB::FLOOR_F32] = "floorf";
200  Names[RTLIB::FLOOR_F64] = "floor";
201  Names[RTLIB::FLOOR_F80] = "floorl";
202  Names[RTLIB::FLOOR_F128] = "floorl";
203  Names[RTLIB::FLOOR_PPCF128] = "floorl";
204  Names[RTLIB::COPYSIGN_F32] = "copysignf";
205  Names[RTLIB::COPYSIGN_F64] = "copysign";
206  Names[RTLIB::COPYSIGN_F80] = "copysignl";
207  Names[RTLIB::COPYSIGN_F128] = "copysignl";
208  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
209  Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
210  Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
211  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
212  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
213  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
214  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
215  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
216  Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
217  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
218  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
219  Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
220  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
221  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
222  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
223  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
224  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
225  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
226  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
227  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
228  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
229  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
230  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
231  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
232  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
233  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
234  Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
235  Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
236  Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
237  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
238  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
239  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
240  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
241  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
242  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
243  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
244  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
245  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
246  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
247  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
248  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
249  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
250  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
251  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
252  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
253  Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
254  Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
255  Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
256  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
257  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
258  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
259  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
260  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
261  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
262  Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
263  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
264  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
265  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
266  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
267  Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
268  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
269  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
270  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
271  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
272  Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
273  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
274  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
275  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
276  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
277  Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
278  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
279  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
280  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
281  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
282  Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
283  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
284  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
285  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
286  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
287  Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
288  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
289  Names[RTLIB::OEQ_F32] = "__eqsf2";
290  Names[RTLIB::OEQ_F64] = "__eqdf2";
291  Names[RTLIB::OEQ_F128] = "__eqtf2";
292  Names[RTLIB::UNE_F32] = "__nesf2";
293  Names[RTLIB::UNE_F64] = "__nedf2";
294  Names[RTLIB::UNE_F128] = "__netf2";
295  Names[RTLIB::OGE_F32] = "__gesf2";
296  Names[RTLIB::OGE_F64] = "__gedf2";
297  Names[RTLIB::OGE_F128] = "__getf2";
298  Names[RTLIB::OLT_F32] = "__ltsf2";
299  Names[RTLIB::OLT_F64] = "__ltdf2";
300  Names[RTLIB::OLT_F128] = "__lttf2";
301  Names[RTLIB::OLE_F32] = "__lesf2";
302  Names[RTLIB::OLE_F64] = "__ledf2";
303  Names[RTLIB::OLE_F128] = "__letf2";
304  Names[RTLIB::OGT_F32] = "__gtsf2";
305  Names[RTLIB::OGT_F64] = "__gtdf2";
306  Names[RTLIB::OGT_F128] = "__gttf2";
307  Names[RTLIB::UO_F32] = "__unordsf2";
308  Names[RTLIB::UO_F64] = "__unorddf2";
309  Names[RTLIB::UO_F128] = "__unordtf2";
310  Names[RTLIB::O_F32] = "__unordsf2";
311  Names[RTLIB::O_F64] = "__unorddf2";
312  Names[RTLIB::O_F128] = "__unordtf2";
313  Names[RTLIB::MEMCPY] = "memcpy";
314  Names[RTLIB::MEMMOVE] = "memmove";
315  Names[RTLIB::MEMSET] = "memset";
316  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
317  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
318  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
319  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
320  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
321  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
322  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
323  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
324  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
325  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
326  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
327  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
328  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
329  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
330  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
331  Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
332  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
333  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
334  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
335  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
336  Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
337  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
338  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
339  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
340  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
341  Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
342  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
343  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
344  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
345  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
346  Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
347  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
348  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
349  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
350  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
351  Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
352  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
353  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
354  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
355  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
356  Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
357  Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
358  Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
359  Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
360  Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
361  Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
362  Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
363  Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
364  Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
365  Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
366  Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
367  Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
368  Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
369  Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
370  Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
371  Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
372  Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
373  Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
374  Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
375  Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
376  Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
377
378  if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) {
379    Names[RTLIB::SINCOS_F32] = "sincosf";
380    Names[RTLIB::SINCOS_F64] = "sincos";
381    Names[RTLIB::SINCOS_F80] = "sincosl";
382    Names[RTLIB::SINCOS_F128] = "sincosl";
383    Names[RTLIB::SINCOS_PPCF128] = "sincosl";
384  } else {
385    // These are generally not available.
386    Names[RTLIB::SINCOS_F32] = 0;
387    Names[RTLIB::SINCOS_F64] = 0;
388    Names[RTLIB::SINCOS_F80] = 0;
389    Names[RTLIB::SINCOS_F128] = 0;
390    Names[RTLIB::SINCOS_PPCF128] = 0;
391  }
392
393  if (Triple(TM.getTargetTriple()).getOS() != Triple::OpenBSD) {
394    Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
395  } else {
396    // These are generally not available.
397    Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = 0;
398  }
399}
400
401/// InitLibcallCallingConvs - Set default libcall CallingConvs.
402///
403static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
404  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
405    CCs[i] = CallingConv::C;
406  }
407}
408
409/// getFPEXT - Return the FPEXT_*_* value for the given types, or
410/// UNKNOWN_LIBCALL if there is none.
411RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
412  if (OpVT == MVT::f32) {
413    if (RetVT == MVT::f64)
414      return FPEXT_F32_F64;
415    if (RetVT == MVT::f128)
416      return FPEXT_F32_F128;
417  } else if (OpVT == MVT::f64) {
418    if (RetVT == MVT::f128)
419      return FPEXT_F64_F128;
420  }
421
422  return UNKNOWN_LIBCALL;
423}
424
425/// getFPROUND - Return the FPROUND_*_* value for the given types, or
426/// UNKNOWN_LIBCALL if there is none.
427RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
428  if (RetVT == MVT::f32) {
429    if (OpVT == MVT::f64)
430      return FPROUND_F64_F32;
431    if (OpVT == MVT::f80)
432      return FPROUND_F80_F32;
433    if (OpVT == MVT::f128)
434      return FPROUND_F128_F32;
435    if (OpVT == MVT::ppcf128)
436      return FPROUND_PPCF128_F32;
437  } else if (RetVT == MVT::f64) {
438    if (OpVT == MVT::f80)
439      return FPROUND_F80_F64;
440    if (OpVT == MVT::f128)
441      return FPROUND_F128_F64;
442    if (OpVT == MVT::ppcf128)
443      return FPROUND_PPCF128_F64;
444  }
445
446  return UNKNOWN_LIBCALL;
447}
448
449/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
450/// UNKNOWN_LIBCALL if there is none.
451RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
452  if (OpVT == MVT::f32) {
453    if (RetVT == MVT::i8)
454      return FPTOSINT_F32_I8;
455    if (RetVT == MVT::i16)
456      return FPTOSINT_F32_I16;
457    if (RetVT == MVT::i32)
458      return FPTOSINT_F32_I32;
459    if (RetVT == MVT::i64)
460      return FPTOSINT_F32_I64;
461    if (RetVT == MVT::i128)
462      return FPTOSINT_F32_I128;
463  } else if (OpVT == MVT::f64) {
464    if (RetVT == MVT::i8)
465      return FPTOSINT_F64_I8;
466    if (RetVT == MVT::i16)
467      return FPTOSINT_F64_I16;
468    if (RetVT == MVT::i32)
469      return FPTOSINT_F64_I32;
470    if (RetVT == MVT::i64)
471      return FPTOSINT_F64_I64;
472    if (RetVT == MVT::i128)
473      return FPTOSINT_F64_I128;
474  } else if (OpVT == MVT::f80) {
475    if (RetVT == MVT::i32)
476      return FPTOSINT_F80_I32;
477    if (RetVT == MVT::i64)
478      return FPTOSINT_F80_I64;
479    if (RetVT == MVT::i128)
480      return FPTOSINT_F80_I128;
481  } else if (OpVT == MVT::f128) {
482    if (RetVT == MVT::i32)
483      return FPTOSINT_F128_I32;
484    if (RetVT == MVT::i64)
485      return FPTOSINT_F128_I64;
486    if (RetVT == MVT::i128)
487      return FPTOSINT_F128_I128;
488  } else if (OpVT == MVT::ppcf128) {
489    if (RetVT == MVT::i32)
490      return FPTOSINT_PPCF128_I32;
491    if (RetVT == MVT::i64)
492      return FPTOSINT_PPCF128_I64;
493    if (RetVT == MVT::i128)
494      return FPTOSINT_PPCF128_I128;
495  }
496  return UNKNOWN_LIBCALL;
497}
498
499/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
500/// UNKNOWN_LIBCALL if there is none.
501RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
502  if (OpVT == MVT::f32) {
503    if (RetVT == MVT::i8)
504      return FPTOUINT_F32_I8;
505    if (RetVT == MVT::i16)
506      return FPTOUINT_F32_I16;
507    if (RetVT == MVT::i32)
508      return FPTOUINT_F32_I32;
509    if (RetVT == MVT::i64)
510      return FPTOUINT_F32_I64;
511    if (RetVT == MVT::i128)
512      return FPTOUINT_F32_I128;
513  } else if (OpVT == MVT::f64) {
514    if (RetVT == MVT::i8)
515      return FPTOUINT_F64_I8;
516    if (RetVT == MVT::i16)
517      return FPTOUINT_F64_I16;
518    if (RetVT == MVT::i32)
519      return FPTOUINT_F64_I32;
520    if (RetVT == MVT::i64)
521      return FPTOUINT_F64_I64;
522    if (RetVT == MVT::i128)
523      return FPTOUINT_F64_I128;
524  } else if (OpVT == MVT::f80) {
525    if (RetVT == MVT::i32)
526      return FPTOUINT_F80_I32;
527    if (RetVT == MVT::i64)
528      return FPTOUINT_F80_I64;
529    if (RetVT == MVT::i128)
530      return FPTOUINT_F80_I128;
531  } else if (OpVT == MVT::f128) {
532    if (RetVT == MVT::i32)
533      return FPTOUINT_F128_I32;
534    if (RetVT == MVT::i64)
535      return FPTOUINT_F128_I64;
536    if (RetVT == MVT::i128)
537      return FPTOUINT_F128_I128;
538  } else if (OpVT == MVT::ppcf128) {
539    if (RetVT == MVT::i32)
540      return FPTOUINT_PPCF128_I32;
541    if (RetVT == MVT::i64)
542      return FPTOUINT_PPCF128_I64;
543    if (RetVT == MVT::i128)
544      return FPTOUINT_PPCF128_I128;
545  }
546  return UNKNOWN_LIBCALL;
547}
548
549/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
550/// UNKNOWN_LIBCALL if there is none.
551RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
552  if (OpVT == MVT::i32) {
553    if (RetVT == MVT::f32)
554      return SINTTOFP_I32_F32;
555    if (RetVT == MVT::f64)
556      return SINTTOFP_I32_F64;
557    if (RetVT == MVT::f80)
558      return SINTTOFP_I32_F80;
559    if (RetVT == MVT::f128)
560      return SINTTOFP_I32_F128;
561    if (RetVT == MVT::ppcf128)
562      return SINTTOFP_I32_PPCF128;
563  } else if (OpVT == MVT::i64) {
564    if (RetVT == MVT::f32)
565      return SINTTOFP_I64_F32;
566    if (RetVT == MVT::f64)
567      return SINTTOFP_I64_F64;
568    if (RetVT == MVT::f80)
569      return SINTTOFP_I64_F80;
570    if (RetVT == MVT::f128)
571      return SINTTOFP_I64_F128;
572    if (RetVT == MVT::ppcf128)
573      return SINTTOFP_I64_PPCF128;
574  } else if (OpVT == MVT::i128) {
575    if (RetVT == MVT::f32)
576      return SINTTOFP_I128_F32;
577    if (RetVT == MVT::f64)
578      return SINTTOFP_I128_F64;
579    if (RetVT == MVT::f80)
580      return SINTTOFP_I128_F80;
581    if (RetVT == MVT::f128)
582      return SINTTOFP_I128_F128;
583    if (RetVT == MVT::ppcf128)
584      return SINTTOFP_I128_PPCF128;
585  }
586  return UNKNOWN_LIBCALL;
587}
588
589/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
590/// UNKNOWN_LIBCALL if there is none.
591RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
592  if (OpVT == MVT::i32) {
593    if (RetVT == MVT::f32)
594      return UINTTOFP_I32_F32;
595    if (RetVT == MVT::f64)
596      return UINTTOFP_I32_F64;
597    if (RetVT == MVT::f80)
598      return UINTTOFP_I32_F80;
599    if (RetVT == MVT::f128)
600      return UINTTOFP_I32_F128;
601    if (RetVT == MVT::ppcf128)
602      return UINTTOFP_I32_PPCF128;
603  } else if (OpVT == MVT::i64) {
604    if (RetVT == MVT::f32)
605      return UINTTOFP_I64_F32;
606    if (RetVT == MVT::f64)
607      return UINTTOFP_I64_F64;
608    if (RetVT == MVT::f80)
609      return UINTTOFP_I64_F80;
610    if (RetVT == MVT::f128)
611      return UINTTOFP_I64_F128;
612    if (RetVT == MVT::ppcf128)
613      return UINTTOFP_I64_PPCF128;
614  } else if (OpVT == MVT::i128) {
615    if (RetVT == MVT::f32)
616      return UINTTOFP_I128_F32;
617    if (RetVT == MVT::f64)
618      return UINTTOFP_I128_F64;
619    if (RetVT == MVT::f80)
620      return UINTTOFP_I128_F80;
621    if (RetVT == MVT::f128)
622      return UINTTOFP_I128_F128;
623    if (RetVT == MVT::ppcf128)
624      return UINTTOFP_I128_PPCF128;
625  }
626  return UNKNOWN_LIBCALL;
627}
628
629/// InitCmpLibcallCCs - Set default comparison libcall CC.
630///
631static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
632  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
633  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
634  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
635  CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
636  CCs[RTLIB::UNE_F32] = ISD::SETNE;
637  CCs[RTLIB::UNE_F64] = ISD::SETNE;
638  CCs[RTLIB::UNE_F128] = ISD::SETNE;
639  CCs[RTLIB::OGE_F32] = ISD::SETGE;
640  CCs[RTLIB::OGE_F64] = ISD::SETGE;
641  CCs[RTLIB::OGE_F128] = ISD::SETGE;
642  CCs[RTLIB::OLT_F32] = ISD::SETLT;
643  CCs[RTLIB::OLT_F64] = ISD::SETLT;
644  CCs[RTLIB::OLT_F128] = ISD::SETLT;
645  CCs[RTLIB::OLE_F32] = ISD::SETLE;
646  CCs[RTLIB::OLE_F64] = ISD::SETLE;
647  CCs[RTLIB::OLE_F128] = ISD::SETLE;
648  CCs[RTLIB::OGT_F32] = ISD::SETGT;
649  CCs[RTLIB::OGT_F64] = ISD::SETGT;
650  CCs[RTLIB::OGT_F128] = ISD::SETGT;
651  CCs[RTLIB::UO_F32] = ISD::SETNE;
652  CCs[RTLIB::UO_F64] = ISD::SETNE;
653  CCs[RTLIB::UO_F128] = ISD::SETNE;
654  CCs[RTLIB::O_F32] = ISD::SETEQ;
655  CCs[RTLIB::O_F64] = ISD::SETEQ;
656  CCs[RTLIB::O_F128] = ISD::SETEQ;
657}
658
659/// NOTE: The constructor takes ownership of TLOF.
660TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
661                                       const TargetLoweringObjectFile *tlof)
662  : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
663  initActions();
664
665  // Perform these initializations only once.
666  IsLittleEndian = TD->isLittleEndian();
667  MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
668  MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
669    = MaxStoresPerMemmoveOptSize = 4;
670  UseUnderscoreSetJmp = false;
671  UseUnderscoreLongJmp = false;
672  SelectIsExpensive = false;
673  IntDivIsCheap = false;
674  Pow2DivIsCheap = false;
675  JumpIsExpensive = false;
676  PredictableSelectIsExpensive = false;
677  StackPointerRegisterToSaveRestore = 0;
678  ExceptionPointerRegister = 0;
679  ExceptionSelectorRegister = 0;
680  BooleanContents = UndefinedBooleanContent;
681  BooleanVectorContents = UndefinedBooleanContent;
682  SchedPreferenceInfo = Sched::ILP;
683  JumpBufSize = 0;
684  JumpBufAlignment = 0;
685  MinFunctionAlignment = 0;
686  PrefFunctionAlignment = 0;
687  PrefLoopAlignment = 0;
688  MinStackArgumentAlignment = 1;
689  InsertFencesForAtomic = false;
690  SupportJumpTables = true;
691  MinimumJumpTableEntries = 4;
692
693  InitLibcallNames(LibcallRoutineNames, TM);
694  InitCmpLibcallCCs(CmpLibcallCCs);
695  InitLibcallCallingConvs(LibcallCallingConvs);
696}
697
698TargetLoweringBase::~TargetLoweringBase() {
699  delete &TLOF;
700}
701
702void TargetLoweringBase::initActions() {
703  // All operations default to being supported.
704  memset(OpActions, 0, sizeof(OpActions));
705  memset(LoadExtActions, 0, sizeof(LoadExtActions));
706  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
707  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
708  memset(CondCodeActions, 0, sizeof(CondCodeActions));
709  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
710  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
711
712  // Set default actions for various operations.
713  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
714    // Default all indexed load / store to expand.
715    for (unsigned IM = (unsigned)ISD::PRE_INC;
716         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
717      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
718      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
719    }
720
721    // These operations default to expand.
722    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
724
725    // These library functions default to expand.
726    setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand);
727
728    // These operations default to expand for vector types.
729    if (VT >= MVT::FIRST_VECTOR_VALUETYPE &&
730        VT <= MVT::LAST_VECTOR_VALUETYPE)
731      setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
732  }
733
734  // Most targets ignore the @llvm.prefetch intrinsic.
735  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
736
737  // ConstantFP nodes default to expand.  Targets can either change this to
738  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
739  // to optimize expansions for certain constants.
740  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
741  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
742  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
743  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
744  setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
745
746  // These library functions default to expand.
747  setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
748  setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
749  setOperationAction(ISD::FLOG10, MVT::f16, Expand);
750  setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
751  setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
752  setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
753  setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
754  setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
755  setOperationAction(ISD::FRINT,  MVT::f16, Expand);
756  setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
757  setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
758  setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
759  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
760  setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
761  setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
762  setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
763  setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
764  setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
765  setOperationAction(ISD::FRINT,  MVT::f32, Expand);
766  setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
767  setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
768  setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
769  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
770  setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
771  setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
772  setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
773  setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
774  setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
775  setOperationAction(ISD::FRINT,  MVT::f64, Expand);
776  setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
777  setOperationAction(ISD::FLOG ,  MVT::f128, Expand);
778  setOperationAction(ISD::FLOG2,  MVT::f128, Expand);
779  setOperationAction(ISD::FLOG10, MVT::f128, Expand);
780  setOperationAction(ISD::FEXP ,  MVT::f128, Expand);
781  setOperationAction(ISD::FEXP2,  MVT::f128, Expand);
782  setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
783  setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
784  setOperationAction(ISD::FCEIL,  MVT::f128, Expand);
785  setOperationAction(ISD::FRINT,  MVT::f128, Expand);
786  setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
787
788  // Default ISD::TRAP to expand (which turns it into abort).
789  setOperationAction(ISD::TRAP, MVT::Other, Expand);
790
791  // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
792  // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
793  //
794  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
795}
796
797MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
798  return MVT::getIntegerVT(getPointerSizeInBits(AS));
799}
800
801unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
802  return TD->getPointerSizeInBits(AS);
803}
804
805unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
806  assert(Ty->isPointerTy());
807  return getPointerSizeInBits(Ty->getPointerAddressSpace());
808}
809
810MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
811  return MVT::getIntegerVT(8*TD->getPointerSize(0));
812}
813
814EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
815  assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
816  if (LHSTy.isVector())
817    return LHSTy;
818  return getScalarShiftAmountTy(LHSTy);
819}
820
821/// canOpTrap - Returns true if the operation can trap for the value type.
822/// VT must be a legal type.
823bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
824  assert(isTypeLegal(VT));
825  switch (Op) {
826  default:
827    return false;
828  case ISD::FDIV:
829  case ISD::FREM:
830  case ISD::SDIV:
831  case ISD::UDIV:
832  case ISD::SREM:
833  case ISD::UREM:
834    return true;
835  }
836}
837
838
839static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
840                                          unsigned &NumIntermediates,
841                                          MVT &RegisterVT,
842                                          TargetLoweringBase *TLI) {
843  // Figure out the right, legal destination reg to copy into.
844  unsigned NumElts = VT.getVectorNumElements();
845  MVT EltTy = VT.getVectorElementType();
846
847  unsigned NumVectorRegs = 1;
848
849  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
850  // could break down into LHS/RHS like LegalizeDAG does.
851  if (!isPowerOf2_32(NumElts)) {
852    NumVectorRegs = NumElts;
853    NumElts = 1;
854  }
855
856  // Divide the input until we get to a supported size.  This will always
857  // end with a scalar if the target doesn't support vectors.
858  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
859    NumElts >>= 1;
860    NumVectorRegs <<= 1;
861  }
862
863  NumIntermediates = NumVectorRegs;
864
865  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
866  if (!TLI->isTypeLegal(NewVT))
867    NewVT = EltTy;
868  IntermediateVT = NewVT;
869
870  unsigned NewVTSize = NewVT.getSizeInBits();
871
872  // Convert sizes such as i33 to i64.
873  if (!isPowerOf2_32(NewVTSize))
874    NewVTSize = NextPowerOf2(NewVTSize);
875
876  MVT DestVT = TLI->getRegisterType(NewVT);
877  RegisterVT = DestVT;
878  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
879    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
880
881  // Otherwise, promotion or legal types use the same number of registers as
882  // the vector decimated to the appropriate level.
883  return NumVectorRegs;
884}
885
886/// isLegalRC - Return true if the value types that can be represented by the
887/// specified register class are all legal.
888bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
889  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
890       I != E; ++I) {
891    if (isTypeLegal(*I))
892      return true;
893  }
894  return false;
895}
896
897/// findRepresentativeClass - Return the largest legal super-reg register class
898/// of the register class for the specified type and its associated "cost".
899std::pair<const TargetRegisterClass*, uint8_t>
900TargetLoweringBase::findRepresentativeClass(MVT VT) const {
901  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
902  const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
903  if (!RC)
904    return std::make_pair(RC, 0);
905
906  // Compute the set of all super-register classes.
907  BitVector SuperRegRC(TRI->getNumRegClasses());
908  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
909    SuperRegRC.setBitsInMask(RCI.getMask());
910
911  // Find the first legal register class with the largest spill size.
912  const TargetRegisterClass *BestRC = RC;
913  for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
914    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
915    // We want the largest possible spill size.
916    if (SuperRC->getSize() <= BestRC->getSize())
917      continue;
918    if (!isLegalRC(SuperRC))
919      continue;
920    BestRC = SuperRC;
921  }
922  return std::make_pair(BestRC, 1);
923}
924
925/// computeRegisterProperties - Once all of the register classes are added,
926/// this allows us to compute derived properties we expose.
927void TargetLoweringBase::computeRegisterProperties() {
928  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
929         "Too many value types for ValueTypeActions to hold!");
930
931  // Everything defaults to needing one register.
932  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
933    NumRegistersForVT[i] = 1;
934    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
935  }
936  // ...except isVoid, which doesn't need any registers.
937  NumRegistersForVT[MVT::isVoid] = 0;
938
939  // Find the largest integer register class.
940  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
941  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
942    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
943
944  // Every integer value type larger than this largest register takes twice as
945  // many registers to represent as the previous ValueType.
946  for (unsigned ExpandedReg = LargestIntReg + 1;
947       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
948    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
949    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
950    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
951    ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
952                                   TypeExpandInteger);
953  }
954
955  // Inspect all of the ValueType's smaller than the largest integer
956  // register to see which ones need promotion.
957  unsigned LegalIntReg = LargestIntReg;
958  for (unsigned IntReg = LargestIntReg - 1;
959       IntReg >= (unsigned)MVT::i1; --IntReg) {
960    MVT IVT = (MVT::SimpleValueType)IntReg;
961    if (isTypeLegal(IVT)) {
962      LegalIntReg = IntReg;
963    } else {
964      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
965        (const MVT::SimpleValueType)LegalIntReg;
966      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
967    }
968  }
969
970  // ppcf128 type is really two f64's.
971  if (!isTypeLegal(MVT::ppcf128)) {
972    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
973    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
974    TransformToType[MVT::ppcf128] = MVT::f64;
975    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
976  }
977
978  // Decide how to handle f128. If the target does not have native f128 support,
979  // expand it to i128 and we will be generating soft float library calls.
980  if (!isTypeLegal(MVT::f128)) {
981    NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
982    RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
983    TransformToType[MVT::f128] = MVT::i128;
984    ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
985  }
986
987  // Decide how to handle f64. If the target does not have native f64 support,
988  // expand it to i64 and we will be generating soft float library calls.
989  if (!isTypeLegal(MVT::f64)) {
990    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
991    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
992    TransformToType[MVT::f64] = MVT::i64;
993    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
994  }
995
996  // Decide how to handle f32. If the target does not have native support for
997  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
998  if (!isTypeLegal(MVT::f32)) {
999    if (isTypeLegal(MVT::f64)) {
1000      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
1001      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
1002      TransformToType[MVT::f32] = MVT::f64;
1003      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
1004    } else {
1005      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1006      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1007      TransformToType[MVT::f32] = MVT::i32;
1008      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1009    }
1010  }
1011
1012  // Loop over all of the vector value types to see which need transformations.
1013  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1014       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1015    MVT VT = (MVT::SimpleValueType)i;
1016    if (isTypeLegal(VT)) continue;
1017
1018    // Determine if there is a legal wider type.  If so, we should promote to
1019    // that wider vector type.
1020    MVT EltVT = VT.getVectorElementType();
1021    unsigned NElts = VT.getVectorNumElements();
1022    if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
1023      bool IsLegalWiderType = false;
1024      // First try to promote the elements of integer vectors. If no legal
1025      // promotion was found, fallback to the widen-vector method.
1026      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1027        MVT SVT = (MVT::SimpleValueType)nVT;
1028        // Promote vectors of integers to vectors with the same number
1029        // of elements, with a wider element type.
1030        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
1031            && SVT.getVectorNumElements() == NElts &&
1032            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
1033          TransformToType[i] = SVT;
1034          RegisterTypeForVT[i] = SVT;
1035          NumRegistersForVT[i] = 1;
1036          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1037          IsLegalWiderType = true;
1038          break;
1039        }
1040      }
1041
1042      if (IsLegalWiderType) continue;
1043
1044      // Try to widen the vector.
1045      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1046        MVT SVT = (MVT::SimpleValueType)nVT;
1047        if (SVT.getVectorElementType() == EltVT &&
1048            SVT.getVectorNumElements() > NElts &&
1049            isTypeLegal(SVT)) {
1050          TransformToType[i] = SVT;
1051          RegisterTypeForVT[i] = SVT;
1052          NumRegistersForVT[i] = 1;
1053          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1054          IsLegalWiderType = true;
1055          break;
1056        }
1057      }
1058      if (IsLegalWiderType) continue;
1059    }
1060
1061    MVT IntermediateVT;
1062    MVT RegisterVT;
1063    unsigned NumIntermediates;
1064    NumRegistersForVT[i] =
1065      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
1066                                RegisterVT, this);
1067    RegisterTypeForVT[i] = RegisterVT;
1068
1069    MVT NVT = VT.getPow2VectorType();
1070    if (NVT == VT) {
1071      // Type is already a power of 2.  The default action is to split.
1072      TransformToType[i] = MVT::Other;
1073      unsigned NumElts = VT.getVectorNumElements();
1074      ValueTypeActions.setTypeAction(VT,
1075            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
1076    } else {
1077      TransformToType[i] = NVT;
1078      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1079    }
1080  }
1081
1082  // Determine the 'representative' register class for each value type.
1083  // An representative register class is the largest (meaning one which is
1084  // not a sub-register class / subreg register class) legal register class for
1085  // a group of value types. For example, on i386, i8, i16, and i32
1086  // representative would be GR32; while on x86_64 it's GR64.
1087  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1088    const TargetRegisterClass* RRC;
1089    uint8_t Cost;
1090    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
1091    RepRegClassForVT[i] = RRC;
1092    RepRegClassCostForVT[i] = Cost;
1093  }
1094}
1095
1096EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
1097  assert(!VT.isVector() && "No default SetCC type for vectors!");
1098  return getPointerTy(0).SimpleTy;
1099}
1100
1101MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1102  return MVT::i32; // return the default value
1103}
1104
1105/// getVectorTypeBreakdown - Vector types are broken down into some number of
1106/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1107/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1108/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1109///
1110/// This method returns the number of registers needed, and the VT for each
1111/// register.  It also returns the VT and quantity of the intermediate values
1112/// before they are promoted/expanded.
1113///
1114unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1115                                                EVT &IntermediateVT,
1116                                                unsigned &NumIntermediates,
1117                                                MVT &RegisterVT) const {
1118  unsigned NumElts = VT.getVectorNumElements();
1119
1120  // If there is a wider vector type with the same element type as this one,
1121  // or a promoted vector type that has the same number of elements which
1122  // are wider, then we should convert to that legal vector type.
1123  // This handles things like <2 x float> -> <4 x float> and
1124  // <4 x i1> -> <4 x i32>.
1125  LegalizeTypeAction TA = getTypeAction(Context, VT);
1126  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1127    EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1128    if (isTypeLegal(RegisterEVT)) {
1129      IntermediateVT = RegisterEVT;
1130      RegisterVT = RegisterEVT.getSimpleVT();
1131      NumIntermediates = 1;
1132      return 1;
1133    }
1134  }
1135
1136  // Figure out the right, legal destination reg to copy into.
1137  EVT EltTy = VT.getVectorElementType();
1138
1139  unsigned NumVectorRegs = 1;
1140
1141  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1142  // could break down into LHS/RHS like LegalizeDAG does.
1143  if (!isPowerOf2_32(NumElts)) {
1144    NumVectorRegs = NumElts;
1145    NumElts = 1;
1146  }
1147
1148  // Divide the input until we get to a supported size.  This will always
1149  // end with a scalar if the target doesn't support vectors.
1150  while (NumElts > 1 && !isTypeLegal(
1151                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
1152    NumElts >>= 1;
1153    NumVectorRegs <<= 1;
1154  }
1155
1156  NumIntermediates = NumVectorRegs;
1157
1158  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1159  if (!isTypeLegal(NewVT))
1160    NewVT = EltTy;
1161  IntermediateVT = NewVT;
1162
1163  MVT DestVT = getRegisterType(Context, NewVT);
1164  RegisterVT = DestVT;
1165  unsigned NewVTSize = NewVT.getSizeInBits();
1166
1167  // Convert sizes such as i33 to i64.
1168  if (!isPowerOf2_32(NewVTSize))
1169    NewVTSize = NextPowerOf2(NewVTSize);
1170
1171  if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1172    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1173
1174  // Otherwise, promotion or legal types use the same number of registers as
1175  // the vector decimated to the appropriate level.
1176  return NumVectorRegs;
1177}
1178
1179/// Get the EVTs and ArgFlags collections that represent the legalized return
1180/// type of the given function.  This does not require a DAG or a return value,
1181/// and is suitable for use before any DAGs for the function are constructed.
1182/// TODO: Move this out of TargetLowering.cpp.
1183void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
1184                         SmallVectorImpl<ISD::OutputArg> &Outs,
1185                         const TargetLowering &TLI) {
1186  SmallVector<EVT, 4> ValueVTs;
1187  ComputeValueVTs(TLI, ReturnType, ValueVTs);
1188  unsigned NumValues = ValueVTs.size();
1189  if (NumValues == 0) return;
1190
1191  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1192    EVT VT = ValueVTs[j];
1193    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1194
1195    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1196      ExtendKind = ISD::SIGN_EXTEND;
1197    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1198      ExtendKind = ISD::ZERO_EXTEND;
1199
1200    // FIXME: C calling convention requires the return type to be promoted to
1201    // at least 32-bit. But this is not necessary for non-C calling
1202    // conventions. The frontend should mark functions whose return values
1203    // require promoting with signext or zeroext attributes.
1204    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1205      MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1206      if (VT.bitsLT(MinVT))
1207        VT = MinVT;
1208    }
1209
1210    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1211    MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1212
1213    // 'inreg' on function refers to return value
1214    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1215    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1216      Flags.setInReg();
1217
1218    // Propagate extension type if any
1219    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1220      Flags.setSExt();
1221    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1222      Flags.setZExt();
1223
1224    for (unsigned i = 0; i < NumParts; ++i)
1225      Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1226  }
1227}
1228
1229/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1230/// function arguments in the caller parameter area.  This is the actual
1231/// alignment, not its logarithm.
1232unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
1233  return TD->getCallFrameTypeAlignment(Ty);
1234}
1235
1236//===----------------------------------------------------------------------===//
1237//  TargetTransformInfo Helpers
1238//===----------------------------------------------------------------------===//
1239
1240int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1241  enum InstructionOpcodes {
1242#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1243#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1244#include "llvm/IR/Instruction.def"
1245  };
1246  switch (static_cast<InstructionOpcodes>(Opcode)) {
1247  case Ret:            return 0;
1248  case Br:             return 0;
1249  case Switch:         return 0;
1250  case IndirectBr:     return 0;
1251  case Invoke:         return 0;
1252  case Resume:         return 0;
1253  case Unreachable:    return 0;
1254  case Add:            return ISD::ADD;
1255  case FAdd:           return ISD::FADD;
1256  case Sub:            return ISD::SUB;
1257  case FSub:           return ISD::FSUB;
1258  case Mul:            return ISD::MUL;
1259  case FMul:           return ISD::FMUL;
1260  case UDiv:           return ISD::UDIV;
1261  case SDiv:           return ISD::UDIV;
1262  case FDiv:           return ISD::FDIV;
1263  case URem:           return ISD::UREM;
1264  case SRem:           return ISD::SREM;
1265  case FRem:           return ISD::FREM;
1266  case Shl:            return ISD::SHL;
1267  case LShr:           return ISD::SRL;
1268  case AShr:           return ISD::SRA;
1269  case And:            return ISD::AND;
1270  case Or:             return ISD::OR;
1271  case Xor:            return ISD::XOR;
1272  case Alloca:         return 0;
1273  case Load:           return ISD::LOAD;
1274  case Store:          return ISD::STORE;
1275  case GetElementPtr:  return 0;
1276  case Fence:          return 0;
1277  case AtomicCmpXchg:  return 0;
1278  case AtomicRMW:      return 0;
1279  case Trunc:          return ISD::TRUNCATE;
1280  case ZExt:           return ISD::ZERO_EXTEND;
1281  case SExt:           return ISD::SIGN_EXTEND;
1282  case FPToUI:         return ISD::FP_TO_UINT;
1283  case FPToSI:         return ISD::FP_TO_SINT;
1284  case UIToFP:         return ISD::UINT_TO_FP;
1285  case SIToFP:         return ISD::SINT_TO_FP;
1286  case FPTrunc:        return ISD::FP_ROUND;
1287  case FPExt:          return ISD::FP_EXTEND;
1288  case PtrToInt:       return ISD::BITCAST;
1289  case IntToPtr:       return ISD::BITCAST;
1290  case BitCast:        return ISD::BITCAST;
1291  case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1292  case ICmp:           return ISD::SETCC;
1293  case FCmp:           return ISD::SETCC;
1294  case PHI:            return 0;
1295  case Call:           return 0;
1296  case Select:         return ISD::SELECT;
1297  case UserOp1:        return 0;
1298  case UserOp2:        return 0;
1299  case VAArg:          return 0;
1300  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1301  case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1302  case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1303  case ExtractValue:   return ISD::MERGE_VALUES;
1304  case InsertValue:    return ISD::MERGE_VALUES;
1305  case LandingPad:     return 0;
1306  }
1307
1308  llvm_unreachable("Unknown instruction type encountered!");
1309}
1310
1311std::pair<unsigned, MVT>
1312TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
1313  LLVMContext &C = Ty->getContext();
1314  EVT MTy = getValueType(Ty);
1315
1316  unsigned Cost = 1;
1317  // We keep legalizing the type until we find a legal kind. We assume that
1318  // the only operation that costs anything is the split. After splitting
1319  // we need to handle two types.
1320  while (true) {
1321    LegalizeKind LK = getTypeConversion(C, MTy);
1322
1323    if (LK.first == TypeLegal)
1324      return std::make_pair(Cost, MTy.getSimpleVT());
1325
1326    if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1327      Cost *= 2;
1328
1329    // Keep legalizing the type.
1330    MTy = LK.second;
1331  }
1332}
1333
1334//===----------------------------------------------------------------------===//
1335//  Loop Strength Reduction hooks
1336//===----------------------------------------------------------------------===//
1337
1338/// isLegalAddressingMode - Return true if the addressing mode represented
1339/// by AM is legal for this target, for a load/store of the specified type.
1340bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
1341                                           Type *Ty) const {
1342  // The default implementation of this implements a conservative RISCy, r+r and
1343  // r+i addr mode.
1344
1345  // Allows a sign-extended 16-bit immediate field.
1346  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1347    return false;
1348
1349  // No global is ever allowed as a base.
1350  if (AM.BaseGV)
1351    return false;
1352
1353  // Only support r+r,
1354  switch (AM.Scale) {
1355  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1356    break;
1357  case 1:
1358    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1359      return false;
1360    // Otherwise we have r+r or r+i.
1361    break;
1362  case 2:
1363    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1364      return false;
1365    // Allow 2*r as r+r.
1366    break;
1367  }
1368
1369  return true;
1370}
1371