TargetLoweringBase.cpp revision 86cdbc9c29a572d422815f55fd89ff7510d1e3e8
1//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLoweringBase class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/CodeGen/Analysis.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineJumpTableInfo.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/MC/MCAsmInfo.h"
26#include "llvm/MC/MCExpr.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetLoweringObjectFile.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include <cctype>
34using namespace llvm;
35
36/// InitLibcallNames - Set default libcall names.
37///
38static void InitLibcallNames(const char **Names, const TargetMachine &TM) {
39  Names[RTLIB::SHL_I16] = "__ashlhi3";
40  Names[RTLIB::SHL_I32] = "__ashlsi3";
41  Names[RTLIB::SHL_I64] = "__ashldi3";
42  Names[RTLIB::SHL_I128] = "__ashlti3";
43  Names[RTLIB::SRL_I16] = "__lshrhi3";
44  Names[RTLIB::SRL_I32] = "__lshrsi3";
45  Names[RTLIB::SRL_I64] = "__lshrdi3";
46  Names[RTLIB::SRL_I128] = "__lshrti3";
47  Names[RTLIB::SRA_I16] = "__ashrhi3";
48  Names[RTLIB::SRA_I32] = "__ashrsi3";
49  Names[RTLIB::SRA_I64] = "__ashrdi3";
50  Names[RTLIB::SRA_I128] = "__ashrti3";
51  Names[RTLIB::MUL_I8] = "__mulqi3";
52  Names[RTLIB::MUL_I16] = "__mulhi3";
53  Names[RTLIB::MUL_I32] = "__mulsi3";
54  Names[RTLIB::MUL_I64] = "__muldi3";
55  Names[RTLIB::MUL_I128] = "__multi3";
56  Names[RTLIB::MULO_I32] = "__mulosi4";
57  Names[RTLIB::MULO_I64] = "__mulodi4";
58  Names[RTLIB::MULO_I128] = "__muloti4";
59  Names[RTLIB::SDIV_I8] = "__divqi3";
60  Names[RTLIB::SDIV_I16] = "__divhi3";
61  Names[RTLIB::SDIV_I32] = "__divsi3";
62  Names[RTLIB::SDIV_I64] = "__divdi3";
63  Names[RTLIB::SDIV_I128] = "__divti3";
64  Names[RTLIB::UDIV_I8] = "__udivqi3";
65  Names[RTLIB::UDIV_I16] = "__udivhi3";
66  Names[RTLIB::UDIV_I32] = "__udivsi3";
67  Names[RTLIB::UDIV_I64] = "__udivdi3";
68  Names[RTLIB::UDIV_I128] = "__udivti3";
69  Names[RTLIB::SREM_I8] = "__modqi3";
70  Names[RTLIB::SREM_I16] = "__modhi3";
71  Names[RTLIB::SREM_I32] = "__modsi3";
72  Names[RTLIB::SREM_I64] = "__moddi3";
73  Names[RTLIB::SREM_I128] = "__modti3";
74  Names[RTLIB::UREM_I8] = "__umodqi3";
75  Names[RTLIB::UREM_I16] = "__umodhi3";
76  Names[RTLIB::UREM_I32] = "__umodsi3";
77  Names[RTLIB::UREM_I64] = "__umoddi3";
78  Names[RTLIB::UREM_I128] = "__umodti3";
79
80  // These are generally not available.
81  Names[RTLIB::SDIVREM_I8] = 0;
82  Names[RTLIB::SDIVREM_I16] = 0;
83  Names[RTLIB::SDIVREM_I32] = 0;
84  Names[RTLIB::SDIVREM_I64] = 0;
85  Names[RTLIB::SDIVREM_I128] = 0;
86  Names[RTLIB::UDIVREM_I8] = 0;
87  Names[RTLIB::UDIVREM_I16] = 0;
88  Names[RTLIB::UDIVREM_I32] = 0;
89  Names[RTLIB::UDIVREM_I64] = 0;
90  Names[RTLIB::UDIVREM_I128] = 0;
91
92  Names[RTLIB::NEG_I32] = "__negsi2";
93  Names[RTLIB::NEG_I64] = "__negdi2";
94  Names[RTLIB::ADD_F32] = "__addsf3";
95  Names[RTLIB::ADD_F64] = "__adddf3";
96  Names[RTLIB::ADD_F80] = "__addxf3";
97  Names[RTLIB::ADD_F128] = "__addtf3";
98  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
99  Names[RTLIB::SUB_F32] = "__subsf3";
100  Names[RTLIB::SUB_F64] = "__subdf3";
101  Names[RTLIB::SUB_F80] = "__subxf3";
102  Names[RTLIB::SUB_F128] = "__subtf3";
103  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
104  Names[RTLIB::MUL_F32] = "__mulsf3";
105  Names[RTLIB::MUL_F64] = "__muldf3";
106  Names[RTLIB::MUL_F80] = "__mulxf3";
107  Names[RTLIB::MUL_F128] = "__multf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_F128] = "__divtf3";
113  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
114  Names[RTLIB::REM_F32] = "fmodf";
115  Names[RTLIB::REM_F64] = "fmod";
116  Names[RTLIB::REM_F80] = "fmodl";
117  Names[RTLIB::REM_F128] = "fmodl";
118  Names[RTLIB::REM_PPCF128] = "fmodl";
119  Names[RTLIB::FMA_F32] = "fmaf";
120  Names[RTLIB::FMA_F64] = "fma";
121  Names[RTLIB::FMA_F80] = "fmal";
122  Names[RTLIB::FMA_F128] = "fmal";
123  Names[RTLIB::FMA_PPCF128] = "fmal";
124  Names[RTLIB::POWI_F32] = "__powisf2";
125  Names[RTLIB::POWI_F64] = "__powidf2";
126  Names[RTLIB::POWI_F80] = "__powixf2";
127  Names[RTLIB::POWI_F128] = "__powitf2";
128  Names[RTLIB::POWI_PPCF128] = "__powitf2";
129  Names[RTLIB::SQRT_F32] = "sqrtf";
130  Names[RTLIB::SQRT_F64] = "sqrt";
131  Names[RTLIB::SQRT_F80] = "sqrtl";
132  Names[RTLIB::SQRT_F128] = "sqrtl";
133  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
134  Names[RTLIB::LOG_F32] = "logf";
135  Names[RTLIB::LOG_F64] = "log";
136  Names[RTLIB::LOG_F80] = "logl";
137  Names[RTLIB::LOG_F128] = "logl";
138  Names[RTLIB::LOG_PPCF128] = "logl";
139  Names[RTLIB::LOG2_F32] = "log2f";
140  Names[RTLIB::LOG2_F64] = "log2";
141  Names[RTLIB::LOG2_F80] = "log2l";
142  Names[RTLIB::LOG2_F128] = "log2l";
143  Names[RTLIB::LOG2_PPCF128] = "log2l";
144  Names[RTLIB::LOG10_F32] = "log10f";
145  Names[RTLIB::LOG10_F64] = "log10";
146  Names[RTLIB::LOG10_F80] = "log10l";
147  Names[RTLIB::LOG10_F128] = "log10l";
148  Names[RTLIB::LOG10_PPCF128] = "log10l";
149  Names[RTLIB::EXP_F32] = "expf";
150  Names[RTLIB::EXP_F64] = "exp";
151  Names[RTLIB::EXP_F80] = "expl";
152  Names[RTLIB::EXP_F128] = "expl";
153  Names[RTLIB::EXP_PPCF128] = "expl";
154  Names[RTLIB::EXP2_F32] = "exp2f";
155  Names[RTLIB::EXP2_F64] = "exp2";
156  Names[RTLIB::EXP2_F80] = "exp2l";
157  Names[RTLIB::EXP2_F128] = "exp2l";
158  Names[RTLIB::EXP2_PPCF128] = "exp2l";
159  Names[RTLIB::SIN_F32] = "sinf";
160  Names[RTLIB::SIN_F64] = "sin";
161  Names[RTLIB::SIN_F80] = "sinl";
162  Names[RTLIB::SIN_F128] = "sinl";
163  Names[RTLIB::SIN_PPCF128] = "sinl";
164  Names[RTLIB::COS_F32] = "cosf";
165  Names[RTLIB::COS_F64] = "cos";
166  Names[RTLIB::COS_F80] = "cosl";
167  Names[RTLIB::COS_F128] = "cosl";
168  Names[RTLIB::COS_PPCF128] = "cosl";
169  Names[RTLIB::POW_F32] = "powf";
170  Names[RTLIB::POW_F64] = "pow";
171  Names[RTLIB::POW_F80] = "powl";
172  Names[RTLIB::POW_F128] = "powl";
173  Names[RTLIB::POW_PPCF128] = "powl";
174  Names[RTLIB::CEIL_F32] = "ceilf";
175  Names[RTLIB::CEIL_F64] = "ceil";
176  Names[RTLIB::CEIL_F80] = "ceill";
177  Names[RTLIB::CEIL_F128] = "ceill";
178  Names[RTLIB::CEIL_PPCF128] = "ceill";
179  Names[RTLIB::TRUNC_F32] = "truncf";
180  Names[RTLIB::TRUNC_F64] = "trunc";
181  Names[RTLIB::TRUNC_F80] = "truncl";
182  Names[RTLIB::TRUNC_F128] = "truncl";
183  Names[RTLIB::TRUNC_PPCF128] = "truncl";
184  Names[RTLIB::RINT_F32] = "rintf";
185  Names[RTLIB::RINT_F64] = "rint";
186  Names[RTLIB::RINT_F80] = "rintl";
187  Names[RTLIB::RINT_F128] = "rintl";
188  Names[RTLIB::RINT_PPCF128] = "rintl";
189  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
190  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
191  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
192  Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
193  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
194  Names[RTLIB::FLOOR_F32] = "floorf";
195  Names[RTLIB::FLOOR_F64] = "floor";
196  Names[RTLIB::FLOOR_F80] = "floorl";
197  Names[RTLIB::FLOOR_F128] = "floorl";
198  Names[RTLIB::FLOOR_PPCF128] = "floorl";
199  Names[RTLIB::COPYSIGN_F32] = "copysignf";
200  Names[RTLIB::COPYSIGN_F64] = "copysign";
201  Names[RTLIB::COPYSIGN_F80] = "copysignl";
202  Names[RTLIB::COPYSIGN_F128] = "copysignl";
203  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
204  Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
205  Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
206  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
207  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
208  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
209  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
210  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
211  Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
212  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
213  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
214  Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
215  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
216  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
217  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
218  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
219  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
220  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
221  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
222  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
223  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
224  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
225  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
226  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
227  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
228  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
229  Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
230  Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
231  Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
232  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
233  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
234  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
235  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
236  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
237  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
238  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
239  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
240  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
241  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
242  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
243  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
244  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
245  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
246  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
247  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
248  Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
249  Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
250  Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
251  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
252  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
253  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
254  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
255  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
256  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
257  Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
258  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
259  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
260  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
261  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
262  Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
263  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
264  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
265  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
266  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
267  Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
268  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
269  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
270  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
271  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
272  Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
273  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
274  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
275  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
276  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
277  Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
278  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
279  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
280  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
281  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
282  Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
283  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
284  Names[RTLIB::OEQ_F32] = "__eqsf2";
285  Names[RTLIB::OEQ_F64] = "__eqdf2";
286  Names[RTLIB::OEQ_F128] = "__eqtf2";
287  Names[RTLIB::UNE_F32] = "__nesf2";
288  Names[RTLIB::UNE_F64] = "__nedf2";
289  Names[RTLIB::UNE_F128] = "__netf2";
290  Names[RTLIB::OGE_F32] = "__gesf2";
291  Names[RTLIB::OGE_F64] = "__gedf2";
292  Names[RTLIB::OGE_F128] = "__getf2";
293  Names[RTLIB::OLT_F32] = "__ltsf2";
294  Names[RTLIB::OLT_F64] = "__ltdf2";
295  Names[RTLIB::OLT_F128] = "__lttf2";
296  Names[RTLIB::OLE_F32] = "__lesf2";
297  Names[RTLIB::OLE_F64] = "__ledf2";
298  Names[RTLIB::OLE_F128] = "__letf2";
299  Names[RTLIB::OGT_F32] = "__gtsf2";
300  Names[RTLIB::OGT_F64] = "__gtdf2";
301  Names[RTLIB::OGT_F128] = "__gttf2";
302  Names[RTLIB::UO_F32] = "__unordsf2";
303  Names[RTLIB::UO_F64] = "__unorddf2";
304  Names[RTLIB::UO_F128] = "__unordtf2";
305  Names[RTLIB::O_F32] = "__unordsf2";
306  Names[RTLIB::O_F64] = "__unorddf2";
307  Names[RTLIB::O_F128] = "__unordtf2";
308  Names[RTLIB::MEMCPY] = "memcpy";
309  Names[RTLIB::MEMMOVE] = "memmove";
310  Names[RTLIB::MEMSET] = "memset";
311  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
312  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
313  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
314  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
315  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
316  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
317  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
318  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
319  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
320  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
321  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
322  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
323  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
324  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
325  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
326  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
327  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
328  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
329  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
330  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
331  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
332  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
333  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
334  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
335  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
336  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
337  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
338  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
339  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
340  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
341  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
342  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
343  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
344
345  if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) {
346    Names[RTLIB::SINCOS_F32] = "sincosf";
347    Names[RTLIB::SINCOS_F64] = "sincos";
348    Names[RTLIB::SINCOS_F80] = "sincosl";
349    Names[RTLIB::SINCOS_F128] = "sincosl";
350    Names[RTLIB::SINCOS_PPCF128] = "sincosl";
351  } else {
352    // These are generally not available.
353    Names[RTLIB::SINCOS_F32] = 0;
354    Names[RTLIB::SINCOS_F64] = 0;
355    Names[RTLIB::SINCOS_F80] = 0;
356    Names[RTLIB::SINCOS_F128] = 0;
357    Names[RTLIB::SINCOS_PPCF128] = 0;
358  }
359}
360
361/// InitLibcallCallingConvs - Set default libcall CallingConvs.
362///
363static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
364  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
365    CCs[i] = CallingConv::C;
366  }
367}
368
369/// getFPEXT - Return the FPEXT_*_* value for the given types, or
370/// UNKNOWN_LIBCALL if there is none.
371RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
372  if (OpVT == MVT::f32) {
373    if (RetVT == MVT::f64)
374      return FPEXT_F32_F64;
375    if (RetVT == MVT::f128)
376      return FPEXT_F32_F128;
377  } else if (OpVT == MVT::f64) {
378    if (RetVT == MVT::f128)
379      return FPEXT_F64_F128;
380  }
381
382  return UNKNOWN_LIBCALL;
383}
384
385/// getFPROUND - Return the FPROUND_*_* value for the given types, or
386/// UNKNOWN_LIBCALL if there is none.
387RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
388  if (RetVT == MVT::f32) {
389    if (OpVT == MVT::f64)
390      return FPROUND_F64_F32;
391    if (OpVT == MVT::f80)
392      return FPROUND_F80_F32;
393    if (OpVT == MVT::f128)
394      return FPROUND_F128_F32;
395    if (OpVT == MVT::ppcf128)
396      return FPROUND_PPCF128_F32;
397  } else if (RetVT == MVT::f64) {
398    if (OpVT == MVT::f80)
399      return FPROUND_F80_F64;
400    if (OpVT == MVT::f128)
401      return FPROUND_F128_F64;
402    if (OpVT == MVT::ppcf128)
403      return FPROUND_PPCF128_F64;
404  }
405
406  return UNKNOWN_LIBCALL;
407}
408
409/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
410/// UNKNOWN_LIBCALL if there is none.
411RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
412  if (OpVT == MVT::f32) {
413    if (RetVT == MVT::i8)
414      return FPTOSINT_F32_I8;
415    if (RetVT == MVT::i16)
416      return FPTOSINT_F32_I16;
417    if (RetVT == MVT::i32)
418      return FPTOSINT_F32_I32;
419    if (RetVT == MVT::i64)
420      return FPTOSINT_F32_I64;
421    if (RetVT == MVT::i128)
422      return FPTOSINT_F32_I128;
423  } else if (OpVT == MVT::f64) {
424    if (RetVT == MVT::i8)
425      return FPTOSINT_F64_I8;
426    if (RetVT == MVT::i16)
427      return FPTOSINT_F64_I16;
428    if (RetVT == MVT::i32)
429      return FPTOSINT_F64_I32;
430    if (RetVT == MVT::i64)
431      return FPTOSINT_F64_I64;
432    if (RetVT == MVT::i128)
433      return FPTOSINT_F64_I128;
434  } else if (OpVT == MVT::f80) {
435    if (RetVT == MVT::i32)
436      return FPTOSINT_F80_I32;
437    if (RetVT == MVT::i64)
438      return FPTOSINT_F80_I64;
439    if (RetVT == MVT::i128)
440      return FPTOSINT_F80_I128;
441  } else if (OpVT == MVT::f128) {
442    if (RetVT == MVT::i32)
443      return FPTOSINT_F128_I32;
444    if (RetVT == MVT::i64)
445      return FPTOSINT_F128_I64;
446    if (RetVT == MVT::i128)
447      return FPTOSINT_F128_I128;
448  } else if (OpVT == MVT::ppcf128) {
449    if (RetVT == MVT::i32)
450      return FPTOSINT_PPCF128_I32;
451    if (RetVT == MVT::i64)
452      return FPTOSINT_PPCF128_I64;
453    if (RetVT == MVT::i128)
454      return FPTOSINT_PPCF128_I128;
455  }
456  return UNKNOWN_LIBCALL;
457}
458
459/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
460/// UNKNOWN_LIBCALL if there is none.
461RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
462  if (OpVT == MVT::f32) {
463    if (RetVT == MVT::i8)
464      return FPTOUINT_F32_I8;
465    if (RetVT == MVT::i16)
466      return FPTOUINT_F32_I16;
467    if (RetVT == MVT::i32)
468      return FPTOUINT_F32_I32;
469    if (RetVT == MVT::i64)
470      return FPTOUINT_F32_I64;
471    if (RetVT == MVT::i128)
472      return FPTOUINT_F32_I128;
473  } else if (OpVT == MVT::f64) {
474    if (RetVT == MVT::i8)
475      return FPTOUINT_F64_I8;
476    if (RetVT == MVT::i16)
477      return FPTOUINT_F64_I16;
478    if (RetVT == MVT::i32)
479      return FPTOUINT_F64_I32;
480    if (RetVT == MVT::i64)
481      return FPTOUINT_F64_I64;
482    if (RetVT == MVT::i128)
483      return FPTOUINT_F64_I128;
484  } else if (OpVT == MVT::f80) {
485    if (RetVT == MVT::i32)
486      return FPTOUINT_F80_I32;
487    if (RetVT == MVT::i64)
488      return FPTOUINT_F80_I64;
489    if (RetVT == MVT::i128)
490      return FPTOUINT_F80_I128;
491  } else if (OpVT == MVT::f128) {
492    if (RetVT == MVT::i32)
493      return FPTOUINT_F128_I32;
494    if (RetVT == MVT::i64)
495      return FPTOUINT_F128_I64;
496    if (RetVT == MVT::i128)
497      return FPTOUINT_F128_I128;
498  } else if (OpVT == MVT::ppcf128) {
499    if (RetVT == MVT::i32)
500      return FPTOUINT_PPCF128_I32;
501    if (RetVT == MVT::i64)
502      return FPTOUINT_PPCF128_I64;
503    if (RetVT == MVT::i128)
504      return FPTOUINT_PPCF128_I128;
505  }
506  return UNKNOWN_LIBCALL;
507}
508
509/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
510/// UNKNOWN_LIBCALL if there is none.
511RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
512  if (OpVT == MVT::i32) {
513    if (RetVT == MVT::f32)
514      return SINTTOFP_I32_F32;
515    if (RetVT == MVT::f64)
516      return SINTTOFP_I32_F64;
517    if (RetVT == MVT::f80)
518      return SINTTOFP_I32_F80;
519    if (RetVT == MVT::f128)
520      return SINTTOFP_I32_F128;
521    if (RetVT == MVT::ppcf128)
522      return SINTTOFP_I32_PPCF128;
523  } else if (OpVT == MVT::i64) {
524    if (RetVT == MVT::f32)
525      return SINTTOFP_I64_F32;
526    if (RetVT == MVT::f64)
527      return SINTTOFP_I64_F64;
528    if (RetVT == MVT::f80)
529      return SINTTOFP_I64_F80;
530    if (RetVT == MVT::f128)
531      return SINTTOFP_I64_F128;
532    if (RetVT == MVT::ppcf128)
533      return SINTTOFP_I64_PPCF128;
534  } else if (OpVT == MVT::i128) {
535    if (RetVT == MVT::f32)
536      return SINTTOFP_I128_F32;
537    if (RetVT == MVT::f64)
538      return SINTTOFP_I128_F64;
539    if (RetVT == MVT::f80)
540      return SINTTOFP_I128_F80;
541    if (RetVT == MVT::f128)
542      return SINTTOFP_I128_F128;
543    if (RetVT == MVT::ppcf128)
544      return SINTTOFP_I128_PPCF128;
545  }
546  return UNKNOWN_LIBCALL;
547}
548
549/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
550/// UNKNOWN_LIBCALL if there is none.
551RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
552  if (OpVT == MVT::i32) {
553    if (RetVT == MVT::f32)
554      return UINTTOFP_I32_F32;
555    if (RetVT == MVT::f64)
556      return UINTTOFP_I32_F64;
557    if (RetVT == MVT::f80)
558      return UINTTOFP_I32_F80;
559    if (RetVT == MVT::f128)
560      return UINTTOFP_I32_F128;
561    if (RetVT == MVT::ppcf128)
562      return UINTTOFP_I32_PPCF128;
563  } else if (OpVT == MVT::i64) {
564    if (RetVT == MVT::f32)
565      return UINTTOFP_I64_F32;
566    if (RetVT == MVT::f64)
567      return UINTTOFP_I64_F64;
568    if (RetVT == MVT::f80)
569      return UINTTOFP_I64_F80;
570    if (RetVT == MVT::f128)
571      return UINTTOFP_I64_F128;
572    if (RetVT == MVT::ppcf128)
573      return UINTTOFP_I64_PPCF128;
574  } else if (OpVT == MVT::i128) {
575    if (RetVT == MVT::f32)
576      return UINTTOFP_I128_F32;
577    if (RetVT == MVT::f64)
578      return UINTTOFP_I128_F64;
579    if (RetVT == MVT::f80)
580      return UINTTOFP_I128_F80;
581    if (RetVT == MVT::f128)
582      return UINTTOFP_I128_F128;
583    if (RetVT == MVT::ppcf128)
584      return UINTTOFP_I128_PPCF128;
585  }
586  return UNKNOWN_LIBCALL;
587}
588
589/// InitCmpLibcallCCs - Set default comparison libcall CC.
590///
591static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
592  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
593  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
594  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
595  CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
596  CCs[RTLIB::UNE_F32] = ISD::SETNE;
597  CCs[RTLIB::UNE_F64] = ISD::SETNE;
598  CCs[RTLIB::UNE_F128] = ISD::SETNE;
599  CCs[RTLIB::OGE_F32] = ISD::SETGE;
600  CCs[RTLIB::OGE_F64] = ISD::SETGE;
601  CCs[RTLIB::OGE_F128] = ISD::SETGE;
602  CCs[RTLIB::OLT_F32] = ISD::SETLT;
603  CCs[RTLIB::OLT_F64] = ISD::SETLT;
604  CCs[RTLIB::OLT_F128] = ISD::SETLT;
605  CCs[RTLIB::OLE_F32] = ISD::SETLE;
606  CCs[RTLIB::OLE_F64] = ISD::SETLE;
607  CCs[RTLIB::OLE_F128] = ISD::SETLE;
608  CCs[RTLIB::OGT_F32] = ISD::SETGT;
609  CCs[RTLIB::OGT_F64] = ISD::SETGT;
610  CCs[RTLIB::OGT_F128] = ISD::SETGT;
611  CCs[RTLIB::UO_F32] = ISD::SETNE;
612  CCs[RTLIB::UO_F64] = ISD::SETNE;
613  CCs[RTLIB::UO_F128] = ISD::SETNE;
614  CCs[RTLIB::O_F32] = ISD::SETEQ;
615  CCs[RTLIB::O_F64] = ISD::SETEQ;
616  CCs[RTLIB::O_F128] = ISD::SETEQ;
617}
618
619/// NOTE: The constructor takes ownership of TLOF.
620TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
621                                       const TargetLoweringObjectFile *tlof)
622  : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
623  // All operations default to being supported.
624  memset(OpActions, 0, sizeof(OpActions));
625  memset(LoadExtActions, 0, sizeof(LoadExtActions));
626  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
627  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
628  memset(CondCodeActions, 0, sizeof(CondCodeActions));
629
630  // Set default actions for various operations.
631  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
632    // Default all indexed load / store to expand.
633    for (unsigned IM = (unsigned)ISD::PRE_INC;
634         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
635      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
636      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
637    }
638
639    // These operations default to expand.
640    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
641    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
642  }
643
644  // Most targets ignore the @llvm.prefetch intrinsic.
645  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
646
647  // ConstantFP nodes default to expand.  Targets can either change this to
648  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
649  // to optimize expansions for certain constants.
650  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
651  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
652  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
653  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
654  setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
655
656  // These library functions default to expand.
657  setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
658  setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
659  setOperationAction(ISD::FLOG10, MVT::f16, Expand);
660  setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
661  setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
662  setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
663  setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
664  setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
665  setOperationAction(ISD::FRINT,  MVT::f16, Expand);
666  setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
667  setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
668  setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
669  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
670  setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
671  setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
672  setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
673  setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
674  setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
675  setOperationAction(ISD::FRINT,  MVT::f32, Expand);
676  setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
677  setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
678  setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
679  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
680  setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
681  setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
682  setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
683  setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
684  setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
685  setOperationAction(ISD::FRINT,  MVT::f64, Expand);
686  setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
687  setOperationAction(ISD::FLOG ,  MVT::f128, Expand);
688  setOperationAction(ISD::FLOG2,  MVT::f128, Expand);
689  setOperationAction(ISD::FLOG10, MVT::f128, Expand);
690  setOperationAction(ISD::FEXP ,  MVT::f128, Expand);
691  setOperationAction(ISD::FEXP2,  MVT::f128, Expand);
692  setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
693  setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
694  setOperationAction(ISD::FCEIL,  MVT::f128, Expand);
695  setOperationAction(ISD::FRINT,  MVT::f128, Expand);
696  setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
697
698  // Default ISD::TRAP to expand (which turns it into abort).
699  setOperationAction(ISD::TRAP, MVT::Other, Expand);
700
701  // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
702  // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
703  //
704  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
705
706  IsLittleEndian = TD->isLittleEndian();
707  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0));
708  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
709  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
710  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
711  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
712    = maxStoresPerMemmoveOptSize = 4;
713  benefitFromCodePlacementOpt = false;
714  UseUnderscoreSetJmp = false;
715  UseUnderscoreLongJmp = false;
716  SelectIsExpensive = false;
717  IntDivIsCheap = false;
718  Pow2DivIsCheap = false;
719  JumpIsExpensive = false;
720  predictableSelectIsExpensive = false;
721  StackPointerRegisterToSaveRestore = 0;
722  ExceptionPointerRegister = 0;
723  ExceptionSelectorRegister = 0;
724  BooleanContents = UndefinedBooleanContent;
725  BooleanVectorContents = UndefinedBooleanContent;
726  SchedPreferenceInfo = Sched::ILP;
727  JumpBufSize = 0;
728  JumpBufAlignment = 0;
729  MinFunctionAlignment = 0;
730  PrefFunctionAlignment = 0;
731  PrefLoopAlignment = 0;
732  MinStackArgumentAlignment = 1;
733  ShouldFoldAtomicFences = false;
734  InsertFencesForAtomic = false;
735  SupportJumpTables = true;
736  MinimumJumpTableEntries = 4;
737
738  InitLibcallNames(LibcallRoutineNames, TM);
739  InitCmpLibcallCCs(CmpLibcallCCs);
740  InitLibcallCallingConvs(LibcallCallingConvs);
741}
742
743TargetLoweringBase::~TargetLoweringBase() {
744  delete &TLOF;
745}
746
747MVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
748  return MVT::getIntegerVT(8*TD->getPointerSize(0));
749}
750
751/// canOpTrap - Returns true if the operation can trap for the value type.
752/// VT must be a legal type.
753bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
754  assert(isTypeLegal(VT));
755  switch (Op) {
756  default:
757    return false;
758  case ISD::FDIV:
759  case ISD::FREM:
760  case ISD::SDIV:
761  case ISD::UDIV:
762  case ISD::SREM:
763  case ISD::UREM:
764    return true;
765  }
766}
767
768
769static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
770                                          unsigned &NumIntermediates,
771                                          MVT &RegisterVT,
772                                          TargetLoweringBase *TLI) {
773  // Figure out the right, legal destination reg to copy into.
774  unsigned NumElts = VT.getVectorNumElements();
775  MVT EltTy = VT.getVectorElementType();
776
777  unsigned NumVectorRegs = 1;
778
779  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
780  // could break down into LHS/RHS like LegalizeDAG does.
781  if (!isPowerOf2_32(NumElts)) {
782    NumVectorRegs = NumElts;
783    NumElts = 1;
784  }
785
786  // Divide the input until we get to a supported size.  This will always
787  // end with a scalar if the target doesn't support vectors.
788  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
789    NumElts >>= 1;
790    NumVectorRegs <<= 1;
791  }
792
793  NumIntermediates = NumVectorRegs;
794
795  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
796  if (!TLI->isTypeLegal(NewVT))
797    NewVT = EltTy;
798  IntermediateVT = NewVT;
799
800  unsigned NewVTSize = NewVT.getSizeInBits();
801
802  // Convert sizes such as i33 to i64.
803  if (!isPowerOf2_32(NewVTSize))
804    NewVTSize = NextPowerOf2(NewVTSize);
805
806  MVT DestVT = TLI->getRegisterType(NewVT);
807  RegisterVT = DestVT;
808  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
809    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
810
811  // Otherwise, promotion or legal types use the same number of registers as
812  // the vector decimated to the appropriate level.
813  return NumVectorRegs;
814}
815
816/// isLegalRC - Return true if the value types that can be represented by the
817/// specified register class are all legal.
818bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
819  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
820       I != E; ++I) {
821    if (isTypeLegal(*I))
822      return true;
823  }
824  return false;
825}
826
827/// findRepresentativeClass - Return the largest legal super-reg register class
828/// of the register class for the specified type and its associated "cost".
829std::pair<const TargetRegisterClass*, uint8_t>
830TargetLoweringBase::findRepresentativeClass(MVT VT) const {
831  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
832  const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
833  if (!RC)
834    return std::make_pair(RC, 0);
835
836  // Compute the set of all super-register classes.
837  BitVector SuperRegRC(TRI->getNumRegClasses());
838  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
839    SuperRegRC.setBitsInMask(RCI.getMask());
840
841  // Find the first legal register class with the largest spill size.
842  const TargetRegisterClass *BestRC = RC;
843  for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
844    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
845    // We want the largest possible spill size.
846    if (SuperRC->getSize() <= BestRC->getSize())
847      continue;
848    if (!isLegalRC(SuperRC))
849      continue;
850    BestRC = SuperRC;
851  }
852  return std::make_pair(BestRC, 1);
853}
854
855/// computeRegisterProperties - Once all of the register classes are added,
856/// this allows us to compute derived properties we expose.
857void TargetLoweringBase::computeRegisterProperties() {
858  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
859         "Too many value types for ValueTypeActions to hold!");
860
861  // Everything defaults to needing one register.
862  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
863    NumRegistersForVT[i] = 1;
864    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
865  }
866  // ...except isVoid, which doesn't need any registers.
867  NumRegistersForVT[MVT::isVoid] = 0;
868
869  // Find the largest integer register class.
870  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
871  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
872    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
873
874  // Every integer value type larger than this largest register takes twice as
875  // many registers to represent as the previous ValueType.
876  for (unsigned ExpandedReg = LargestIntReg + 1;
877       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
878    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
879    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
880    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
881    ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
882                                   TypeExpandInteger);
883  }
884
885  // Inspect all of the ValueType's smaller than the largest integer
886  // register to see which ones need promotion.
887  unsigned LegalIntReg = LargestIntReg;
888  for (unsigned IntReg = LargestIntReg - 1;
889       IntReg >= (unsigned)MVT::i1; --IntReg) {
890    MVT IVT = (MVT::SimpleValueType)IntReg;
891    if (isTypeLegal(IVT)) {
892      LegalIntReg = IntReg;
893    } else {
894      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
895        (const MVT::SimpleValueType)LegalIntReg;
896      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
897    }
898  }
899
900  // ppcf128 type is really two f64's.
901  if (!isTypeLegal(MVT::ppcf128)) {
902    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
903    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
904    TransformToType[MVT::ppcf128] = MVT::f64;
905    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
906  }
907
908  // Decide how to handle f64. If the target does not have native f64 support,
909  // expand it to i64 and we will be generating soft float library calls.
910  if (!isTypeLegal(MVT::f64)) {
911    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
912    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
913    TransformToType[MVT::f64] = MVT::i64;
914    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
915  }
916
917  // Decide how to handle f32. If the target does not have native support for
918  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
919  if (!isTypeLegal(MVT::f32)) {
920    if (isTypeLegal(MVT::f64)) {
921      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
922      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
923      TransformToType[MVT::f32] = MVT::f64;
924      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
925    } else {
926      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
927      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
928      TransformToType[MVT::f32] = MVT::i32;
929      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
930    }
931  }
932
933  // Loop over all of the vector value types to see which need transformations.
934  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
935       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
936    MVT VT = (MVT::SimpleValueType)i;
937    if (isTypeLegal(VT)) continue;
938
939    // Determine if there is a legal wider type.  If so, we should promote to
940    // that wider vector type.
941    MVT EltVT = VT.getVectorElementType();
942    unsigned NElts = VT.getVectorNumElements();
943    if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
944      bool IsLegalWiderType = false;
945      // First try to promote the elements of integer vectors. If no legal
946      // promotion was found, fallback to the widen-vector method.
947      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
948        MVT SVT = (MVT::SimpleValueType)nVT;
949        // Promote vectors of integers to vectors with the same number
950        // of elements, with a wider element type.
951        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
952            && SVT.getVectorNumElements() == NElts &&
953            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
954          TransformToType[i] = SVT;
955          RegisterTypeForVT[i] = SVT;
956          NumRegistersForVT[i] = 1;
957          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
958          IsLegalWiderType = true;
959          break;
960        }
961      }
962
963      if (IsLegalWiderType) continue;
964
965      // Try to widen the vector.
966      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
967        MVT SVT = (MVT::SimpleValueType)nVT;
968        if (SVT.getVectorElementType() == EltVT &&
969            SVT.getVectorNumElements() > NElts &&
970            isTypeLegal(SVT)) {
971          TransformToType[i] = SVT;
972          RegisterTypeForVT[i] = SVT;
973          NumRegistersForVT[i] = 1;
974          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
975          IsLegalWiderType = true;
976          break;
977        }
978      }
979      if (IsLegalWiderType) continue;
980    }
981
982    MVT IntermediateVT;
983    MVT RegisterVT;
984    unsigned NumIntermediates;
985    NumRegistersForVT[i] =
986      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
987                                RegisterVT, this);
988    RegisterTypeForVT[i] = RegisterVT;
989
990    MVT NVT = VT.getPow2VectorType();
991    if (NVT == VT) {
992      // Type is already a power of 2.  The default action is to split.
993      TransformToType[i] = MVT::Other;
994      unsigned NumElts = VT.getVectorNumElements();
995      ValueTypeActions.setTypeAction(VT,
996            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
997    } else {
998      TransformToType[i] = NVT;
999      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1000    }
1001  }
1002
1003  // Determine the 'representative' register class for each value type.
1004  // An representative register class is the largest (meaning one which is
1005  // not a sub-register class / subreg register class) legal register class for
1006  // a group of value types. For example, on i386, i8, i16, and i32
1007  // representative would be GR32; while on x86_64 it's GR64.
1008  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1009    const TargetRegisterClass* RRC;
1010    uint8_t Cost;
1011    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
1012    RepRegClassForVT[i] = RRC;
1013    RepRegClassCostForVT[i] = Cost;
1014  }
1015}
1016
1017EVT TargetLoweringBase::getSetCCResultType(EVT VT) const {
1018  assert(!VT.isVector() && "No default SetCC type for vectors!");
1019  return getPointerTy(0).SimpleTy;
1020}
1021
1022MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1023  return MVT::i32; // return the default value
1024}
1025
1026/// getVectorTypeBreakdown - Vector types are broken down into some number of
1027/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1028/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1029/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1030///
1031/// This method returns the number of registers needed, and the VT for each
1032/// register.  It also returns the VT and quantity of the intermediate values
1033/// before they are promoted/expanded.
1034///
1035unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1036                                                EVT &IntermediateVT,
1037                                                unsigned &NumIntermediates,
1038                                                MVT &RegisterVT) const {
1039  unsigned NumElts = VT.getVectorNumElements();
1040
1041  // If there is a wider vector type with the same element type as this one,
1042  // or a promoted vector type that has the same number of elements which
1043  // are wider, then we should convert to that legal vector type.
1044  // This handles things like <2 x float> -> <4 x float> and
1045  // <4 x i1> -> <4 x i32>.
1046  LegalizeTypeAction TA = getTypeAction(Context, VT);
1047  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1048    EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1049    if (isTypeLegal(RegisterEVT)) {
1050      IntermediateVT = RegisterEVT;
1051      RegisterVT = RegisterEVT.getSimpleVT();
1052      NumIntermediates = 1;
1053      return 1;
1054    }
1055  }
1056
1057  // Figure out the right, legal destination reg to copy into.
1058  EVT EltTy = VT.getVectorElementType();
1059
1060  unsigned NumVectorRegs = 1;
1061
1062  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1063  // could break down into LHS/RHS like LegalizeDAG does.
1064  if (!isPowerOf2_32(NumElts)) {
1065    NumVectorRegs = NumElts;
1066    NumElts = 1;
1067  }
1068
1069  // Divide the input until we get to a supported size.  This will always
1070  // end with a scalar if the target doesn't support vectors.
1071  while (NumElts > 1 && !isTypeLegal(
1072                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
1073    NumElts >>= 1;
1074    NumVectorRegs <<= 1;
1075  }
1076
1077  NumIntermediates = NumVectorRegs;
1078
1079  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1080  if (!isTypeLegal(NewVT))
1081    NewVT = EltTy;
1082  IntermediateVT = NewVT;
1083
1084  MVT DestVT = getRegisterType(Context, NewVT);
1085  RegisterVT = DestVT;
1086  unsigned NewVTSize = NewVT.getSizeInBits();
1087
1088  // Convert sizes such as i33 to i64.
1089  if (!isPowerOf2_32(NewVTSize))
1090    NewVTSize = NextPowerOf2(NewVTSize);
1091
1092  if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1093    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1094
1095  // Otherwise, promotion or legal types use the same number of registers as
1096  // the vector decimated to the appropriate level.
1097  return NumVectorRegs;
1098}
1099
1100/// Get the EVTs and ArgFlags collections that represent the legalized return
1101/// type of the given function.  This does not require a DAG or a return value,
1102/// and is suitable for use before any DAGs for the function are constructed.
1103/// TODO: Move this out of TargetLowering.cpp.
1104void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
1105                         SmallVectorImpl<ISD::OutputArg> &Outs,
1106                         const TargetLowering &TLI) {
1107  SmallVector<EVT, 4> ValueVTs;
1108  ComputeValueVTs(TLI, ReturnType, ValueVTs);
1109  unsigned NumValues = ValueVTs.size();
1110  if (NumValues == 0) return;
1111
1112  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1113    EVT VT = ValueVTs[j];
1114    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1115
1116    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1117      ExtendKind = ISD::SIGN_EXTEND;
1118    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1119      ExtendKind = ISD::ZERO_EXTEND;
1120
1121    // FIXME: C calling convention requires the return type to be promoted to
1122    // at least 32-bit. But this is not necessary for non-C calling
1123    // conventions. The frontend should mark functions whose return values
1124    // require promoting with signext or zeroext attributes.
1125    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1126      MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1127      if (VT.bitsLT(MinVT))
1128        VT = MinVT;
1129    }
1130
1131    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1132    MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1133
1134    // 'inreg' on function refers to return value
1135    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1136    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1137      Flags.setInReg();
1138
1139    // Propagate extension type if any
1140    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1141      Flags.setSExt();
1142    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1143      Flags.setZExt();
1144
1145    for (unsigned i = 0; i < NumParts; ++i)
1146      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0));
1147  }
1148}
1149
1150/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1151/// function arguments in the caller parameter area.  This is the actual
1152/// alignment, not its logarithm.
1153unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
1154  return TD->getCallFrameTypeAlignment(Ty);
1155}
1156
1157//===----------------------------------------------------------------------===//
1158//  TargetTransformInfo Helpers
1159//===----------------------------------------------------------------------===//
1160
1161int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1162  enum InstructionOpcodes {
1163#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1164#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1165#include "llvm/IR/Instruction.def"
1166  };
1167  switch (static_cast<InstructionOpcodes>(Opcode)) {
1168  case Ret:            return 0;
1169  case Br:             return 0;
1170  case Switch:         return 0;
1171  case IndirectBr:     return 0;
1172  case Invoke:         return 0;
1173  case Resume:         return 0;
1174  case Unreachable:    return 0;
1175  case Add:            return ISD::ADD;
1176  case FAdd:           return ISD::FADD;
1177  case Sub:            return ISD::SUB;
1178  case FSub:           return ISD::FSUB;
1179  case Mul:            return ISD::MUL;
1180  case FMul:           return ISD::FMUL;
1181  case UDiv:           return ISD::UDIV;
1182  case SDiv:           return ISD::UDIV;
1183  case FDiv:           return ISD::FDIV;
1184  case URem:           return ISD::UREM;
1185  case SRem:           return ISD::SREM;
1186  case FRem:           return ISD::FREM;
1187  case Shl:            return ISD::SHL;
1188  case LShr:           return ISD::SRL;
1189  case AShr:           return ISD::SRA;
1190  case And:            return ISD::AND;
1191  case Or:             return ISD::OR;
1192  case Xor:            return ISD::XOR;
1193  case Alloca:         return 0;
1194  case Load:           return ISD::LOAD;
1195  case Store:          return ISD::STORE;
1196  case GetElementPtr:  return 0;
1197  case Fence:          return 0;
1198  case AtomicCmpXchg:  return 0;
1199  case AtomicRMW:      return 0;
1200  case Trunc:          return ISD::TRUNCATE;
1201  case ZExt:           return ISD::ZERO_EXTEND;
1202  case SExt:           return ISD::SIGN_EXTEND;
1203  case FPToUI:         return ISD::FP_TO_UINT;
1204  case FPToSI:         return ISD::FP_TO_SINT;
1205  case UIToFP:         return ISD::UINT_TO_FP;
1206  case SIToFP:         return ISD::SINT_TO_FP;
1207  case FPTrunc:        return ISD::FP_ROUND;
1208  case FPExt:          return ISD::FP_EXTEND;
1209  case PtrToInt:       return ISD::BITCAST;
1210  case IntToPtr:       return ISD::BITCAST;
1211  case BitCast:        return ISD::BITCAST;
1212  case ICmp:           return ISD::SETCC;
1213  case FCmp:           return ISD::SETCC;
1214  case PHI:            return 0;
1215  case Call:           return 0;
1216  case Select:         return ISD::SELECT;
1217  case UserOp1:        return 0;
1218  case UserOp2:        return 0;
1219  case VAArg:          return 0;
1220  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1221  case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1222  case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1223  case ExtractValue:   return ISD::MERGE_VALUES;
1224  case InsertValue:    return ISD::MERGE_VALUES;
1225  case LandingPad:     return 0;
1226  }
1227
1228  llvm_unreachable("Unknown instruction type encountered!");
1229}
1230
1231std::pair<unsigned, MVT>
1232TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
1233  LLVMContext &C = Ty->getContext();
1234  EVT MTy = getValueType(Ty);
1235
1236  unsigned Cost = 1;
1237  // We keep legalizing the type until we find a legal kind. We assume that
1238  // the only operation that costs anything is the split. After splitting
1239  // we need to handle two types.
1240  while (true) {
1241    LegalizeKind LK = getTypeConversion(C, MTy);
1242
1243    if (LK.first == TypeLegal)
1244      return std::make_pair(Cost, MTy.getSimpleVT());
1245
1246    if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1247      Cost *= 2;
1248
1249    // Keep legalizing the type.
1250    MTy = LK.second;
1251  }
1252}
1253
1254//===----------------------------------------------------------------------===//
1255//  Loop Strength Reduction hooks
1256//===----------------------------------------------------------------------===//
1257
1258/// isLegalAddressingMode - Return true if the addressing mode represented
1259/// by AM is legal for this target, for a load/store of the specified type.
1260bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
1261                                           Type *Ty) const {
1262  // The default implementation of this implements a conservative RISCy, r+r and
1263  // r+i addr mode.
1264
1265  // Allows a sign-extended 16-bit immediate field.
1266  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1267    return false;
1268
1269  // No global is ever allowed as a base.
1270  if (AM.BaseGV)
1271    return false;
1272
1273  // Only support r+r,
1274  switch (AM.Scale) {
1275  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1276    break;
1277  case 1:
1278    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1279      return false;
1280    // Otherwise we have r+r or r+i.
1281    break;
1282  case 2:
1283    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1284      return false;
1285    // Allow 2*r as r+r.
1286    break;
1287  }
1288
1289  return true;
1290}
1291