TwoAddressInstructionPass.cpp revision 05dd6677dfb1aa786a45736ea01d5cd70e2165b6
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/ADT/BitVector.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/STLExtras.h"
50using namespace llvm;
51
52STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
53STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
54STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
55STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
56STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
57STATISTIC(NumReMats,           "Number of instructions re-materialized");
58STATISTIC(NumDeletes,          "Number of dead instructions deleted");
59
60namespace {
61  class TwoAddressInstructionPass : public MachineFunctionPass {
62    const TargetInstrInfo *TII;
63    const TargetRegisterInfo *TRI;
64    MachineRegisterInfo *MRI;
65    LiveVariables *LV;
66    AliasAnalysis *AA;
67
68    // DistanceMap - Keep track the distance of a MI from the start of the
69    // current basic block.
70    DenseMap<MachineInstr*, unsigned> DistanceMap;
71
72    // SrcRegMap - A map from virtual registers to physical registers which
73    // are likely targets to be coalesced to due to copies from physical
74    // registers to virtual registers. e.g. v1024 = move r0.
75    DenseMap<unsigned, unsigned> SrcRegMap;
76
77    // DstRegMap - A map from virtual registers to physical registers which
78    // are likely targets to be coalesced to due to copies to physical
79    // registers from virtual registers. e.g. r1 = move v1024.
80    DenseMap<unsigned, unsigned> DstRegMap;
81
82    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83    /// during the initial walk of the machine function.
84    SmallVector<MachineInstr*, 16> RegSequences;
85
86    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
87                              unsigned Reg,
88                              MachineBasicBlock::iterator OldPos);
89
90    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
91                             MachineInstr *MI, MachineInstr *DefMI,
92                             MachineBasicBlock *MBB, unsigned Loc);
93
94    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
95                           unsigned &LastDef);
96
97    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
98                                   unsigned Dist);
99
100    bool isProfitableToCommute(unsigned regB, unsigned regC,
101                               MachineInstr *MI, MachineBasicBlock *MBB,
102                               unsigned Dist);
103
104    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
105                            MachineFunction::iterator &mbbi,
106                            unsigned RegB, unsigned RegC, unsigned Dist);
107
108    bool isProfitableToConv3Addr(unsigned RegA);
109
110    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
111                            MachineBasicBlock::iterator &nmi,
112                            MachineFunction::iterator &mbbi,
113                            unsigned RegB, unsigned Dist);
114
115    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
116    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
117                               SmallVector<NewKill, 4> &NewKills,
118                               MachineBasicBlock *MBB, unsigned Dist);
119    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
120                           MachineBasicBlock::iterator &nmi,
121                           MachineFunction::iterator &mbbi, unsigned Dist);
122
123    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
124                                 MachineBasicBlock::iterator &nmi,
125                                 MachineFunction::iterator &mbbi,
126                                 unsigned SrcIdx, unsigned DstIdx,
127                                 unsigned Dist);
128
129    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
130                     SmallPtrSet<MachineInstr*, 8> &Processed);
131
132    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
133
134    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
135    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
136    /// sub-register references of the register defined by REG_SEQUENCE.
137    bool EliminateRegSequences();
138
139  public:
140    static char ID; // Pass identification, replacement for typeid
141    TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
142
143    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
144      AU.setPreservesCFG();
145      AU.addRequired<AliasAnalysis>();
146      AU.addPreserved<LiveVariables>();
147      AU.addPreservedID(MachineLoopInfoID);
148      AU.addPreservedID(MachineDominatorsID);
149      if (StrongPHIElim)
150        AU.addPreservedID(StrongPHIEliminationID);
151      else
152        AU.addPreservedID(PHIEliminationID);
153      MachineFunctionPass::getAnalysisUsage(AU);
154    }
155
156    /// runOnMachineFunction - Pass entry point.
157    bool runOnMachineFunction(MachineFunction&);
158  };
159}
160
161char TwoAddressInstructionPass::ID = 0;
162static RegisterPass<TwoAddressInstructionPass>
163X("twoaddressinstruction", "Two-Address instruction pass");
164
165const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
166
167/// Sink3AddrInstruction - A two-address instruction has been converted to a
168/// three-address instruction to avoid clobbering a register. Try to sink it
169/// past the instruction that would kill the above mentioned register to reduce
170/// register pressure.
171bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
172                                           MachineInstr *MI, unsigned SavedReg,
173                                           MachineBasicBlock::iterator OldPos) {
174  // Check if it's safe to move this instruction.
175  bool SeenStore = true; // Be conservative.
176  if (!MI->isSafeToMove(TII, AA, SeenStore))
177    return false;
178
179  unsigned DefReg = 0;
180  SmallSet<unsigned, 4> UseRegs;
181
182  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
183    const MachineOperand &MO = MI->getOperand(i);
184    if (!MO.isReg())
185      continue;
186    unsigned MOReg = MO.getReg();
187    if (!MOReg)
188      continue;
189    if (MO.isUse() && MOReg != SavedReg)
190      UseRegs.insert(MO.getReg());
191    if (!MO.isDef())
192      continue;
193    if (MO.isImplicit())
194      // Don't try to move it if it implicitly defines a register.
195      return false;
196    if (DefReg)
197      // For now, don't move any instructions that define multiple registers.
198      return false;
199    DefReg = MO.getReg();
200  }
201
202  // Find the instruction that kills SavedReg.
203  MachineInstr *KillMI = NULL;
204  for (MachineRegisterInfo::use_nodbg_iterator
205         UI = MRI->use_nodbg_begin(SavedReg),
206         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
207    MachineOperand &UseMO = UI.getOperand();
208    if (!UseMO.isKill())
209      continue;
210    KillMI = UseMO.getParent();
211    break;
212  }
213
214  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
215    return false;
216
217  // If any of the definitions are used by another instruction between the
218  // position and the kill use, then it's not safe to sink it.
219  //
220  // FIXME: This can be sped up if there is an easy way to query whether an
221  // instruction is before or after another instruction. Then we can use
222  // MachineRegisterInfo def / use instead.
223  MachineOperand *KillMO = NULL;
224  MachineBasicBlock::iterator KillPos = KillMI;
225  ++KillPos;
226
227  unsigned NumVisited = 0;
228  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
229    MachineInstr *OtherMI = I;
230    // DBG_VALUE cannot be counted against the limit.
231    if (OtherMI->isDebugValue())
232      continue;
233    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
234      return false;
235    ++NumVisited;
236    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
237      MachineOperand &MO = OtherMI->getOperand(i);
238      if (!MO.isReg())
239        continue;
240      unsigned MOReg = MO.getReg();
241      if (!MOReg)
242        continue;
243      if (DefReg == MOReg)
244        return false;
245
246      if (MO.isKill()) {
247        if (OtherMI == KillMI && MOReg == SavedReg)
248          // Save the operand that kills the register. We want to unset the kill
249          // marker if we can sink MI past it.
250          KillMO = &MO;
251        else if (UseRegs.count(MOReg))
252          // One of the uses is killed before the destination.
253          return false;
254      }
255    }
256  }
257
258  // Update kill and LV information.
259  KillMO->setIsKill(false);
260  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
261  KillMO->setIsKill(true);
262
263  if (LV)
264    LV->replaceKillInstruction(SavedReg, KillMI, MI);
265
266  // Move instruction to its destination.
267  MBB->remove(MI);
268  MBB->insert(KillPos, MI);
269
270  ++Num3AddrSunk;
271  return true;
272}
273
274/// isTwoAddrUse - Return true if the specified MI is using the specified
275/// register as a two-address operand.
276static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
277  const TargetInstrDesc &TID = UseMI->getDesc();
278  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
279    MachineOperand &MO = UseMI->getOperand(i);
280    if (MO.isReg() && MO.getReg() == Reg &&
281        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
282      // Earlier use is a two-address one.
283      return true;
284  }
285  return false;
286}
287
288/// isProfitableToReMat - Return true if the heuristics determines it is likely
289/// to be profitable to re-materialize the definition of Reg rather than copy
290/// the register.
291bool
292TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
293                                         const TargetRegisterClass *RC,
294                                         MachineInstr *MI, MachineInstr *DefMI,
295                                         MachineBasicBlock *MBB, unsigned Loc) {
296  bool OtherUse = false;
297  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
298         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
299    MachineOperand &UseMO = UI.getOperand();
300    MachineInstr *UseMI = UseMO.getParent();
301    MachineBasicBlock *UseMBB = UseMI->getParent();
302    if (UseMBB == MBB) {
303      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
304      if (DI != DistanceMap.end() && DI->second == Loc)
305        continue;  // Current use.
306      OtherUse = true;
307      // There is at least one other use in the MBB that will clobber the
308      // register.
309      if (isTwoAddrUse(UseMI, Reg))
310        return true;
311    }
312  }
313
314  // If other uses in MBB are not two-address uses, then don't remat.
315  if (OtherUse)
316    return false;
317
318  // No other uses in the same block, remat if it's defined in the same
319  // block so it does not unnecessarily extend the live range.
320  return MBB == DefMI->getParent();
321}
322
323/// NoUseAfterLastDef - Return true if there are no intervening uses between the
324/// last instruction in the MBB that defines the specified register and the
325/// two-address instruction which is being processed. It also returns the last
326/// def location by reference
327bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
328                                           MachineBasicBlock *MBB, unsigned Dist,
329                                           unsigned &LastDef) {
330  LastDef = 0;
331  unsigned LastUse = Dist;
332  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
333         E = MRI->reg_end(); I != E; ++I) {
334    MachineOperand &MO = I.getOperand();
335    MachineInstr *MI = MO.getParent();
336    if (MI->getParent() != MBB || MI->isDebugValue())
337      continue;
338    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
339    if (DI == DistanceMap.end())
340      continue;
341    if (MO.isUse() && DI->second < LastUse)
342      LastUse = DI->second;
343    if (MO.isDef() && DI->second > LastDef)
344      LastDef = DI->second;
345  }
346
347  return !(LastUse > LastDef && LastUse < Dist);
348}
349
350MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
351                                                         MachineBasicBlock *MBB,
352                                                         unsigned Dist) {
353  unsigned LastUseDist = 0;
354  MachineInstr *LastUse = 0;
355  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
356         E = MRI->reg_end(); I != E; ++I) {
357    MachineOperand &MO = I.getOperand();
358    MachineInstr *MI = MO.getParent();
359    if (MI->getParent() != MBB || MI->isDebugValue())
360      continue;
361    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
362    if (DI == DistanceMap.end())
363      continue;
364    if (DI->second >= Dist)
365      continue;
366
367    if (MO.isUse() && DI->second > LastUseDist) {
368      LastUse = DI->first;
369      LastUseDist = DI->second;
370    }
371  }
372  return LastUse;
373}
374
375/// isCopyToReg - Return true if the specified MI is a copy instruction or
376/// a extract_subreg instruction. It also returns the source and destination
377/// registers and whether they are physical registers by reference.
378static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
379                        unsigned &SrcReg, unsigned &DstReg,
380                        bool &IsSrcPhys, bool &IsDstPhys) {
381  SrcReg = 0;
382  DstReg = 0;
383  unsigned SrcSubIdx, DstSubIdx;
384  if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
385    if (MI.isExtractSubreg()) {
386      DstReg = MI.getOperand(0).getReg();
387      SrcReg = MI.getOperand(1).getReg();
388    } else if (MI.isInsertSubreg()) {
389      DstReg = MI.getOperand(0).getReg();
390      SrcReg = MI.getOperand(2).getReg();
391    } else if (MI.isSubregToReg()) {
392      DstReg = MI.getOperand(0).getReg();
393      SrcReg = MI.getOperand(2).getReg();
394    }
395  }
396
397  if (DstReg) {
398    IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
399    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
400    return true;
401  }
402  return false;
403}
404
405/// isKilled - Test if the given register value, which is used by the given
406/// instruction, is killed by the given instruction. This looks through
407/// coalescable copies to see if the original value is potentially not killed.
408///
409/// For example, in this code:
410///
411///   %reg1034 = copy %reg1024
412///   %reg1035 = copy %reg1025<kill>
413///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
414///
415/// %reg1034 is not considered to be killed, since it is copied from a
416/// register which is not killed. Treating it as not killed lets the
417/// normal heuristics commute the (two-address) add, which lets
418/// coalescing eliminate the extra copy.
419///
420static bool isKilled(MachineInstr &MI, unsigned Reg,
421                     const MachineRegisterInfo *MRI,
422                     const TargetInstrInfo *TII) {
423  MachineInstr *DefMI = &MI;
424  for (;;) {
425    if (!DefMI->killsRegister(Reg))
426      return false;
427    if (TargetRegisterInfo::isPhysicalRegister(Reg))
428      return true;
429    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
430    // If there are multiple defs, we can't do a simple analysis, so just
431    // go with what the kill flag says.
432    if (llvm::next(Begin) != MRI->def_end())
433      return true;
434    DefMI = &*Begin;
435    bool IsSrcPhys, IsDstPhys;
436    unsigned SrcReg,  DstReg;
437    // If the def is something other than a copy, then it isn't going to
438    // be coalesced, so follow the kill flag.
439    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
440      return true;
441    Reg = SrcReg;
442  }
443}
444
445/// isTwoAddrUse - Return true if the specified MI uses the specified register
446/// as a two-address use. If so, return the destination register by reference.
447static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
448  const TargetInstrDesc &TID = MI.getDesc();
449  unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
450  for (unsigned i = 0; i != NumOps; ++i) {
451    const MachineOperand &MO = MI.getOperand(i);
452    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
453      continue;
454    unsigned ti;
455    if (MI.isRegTiedToDefOperand(i, &ti)) {
456      DstReg = MI.getOperand(ti).getReg();
457      return true;
458    }
459  }
460  return false;
461}
462
463/// findOnlyInterestingUse - Given a register, if has a single in-basic block
464/// use, return the use instruction if it's a copy or a two-address use.
465static
466MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
467                                     MachineRegisterInfo *MRI,
468                                     const TargetInstrInfo *TII,
469                                     bool &IsCopy,
470                                     unsigned &DstReg, bool &IsDstPhys) {
471  if (!MRI->hasOneNonDBGUse(Reg))
472    // None or more than one use.
473    return 0;
474  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
475  if (UseMI.getParent() != MBB)
476    return 0;
477  unsigned SrcReg;
478  bool IsSrcPhys;
479  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
480    IsCopy = true;
481    return &UseMI;
482  }
483  IsDstPhys = false;
484  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
485    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
486    return &UseMI;
487  }
488  return 0;
489}
490
491/// getMappedReg - Return the physical register the specified virtual register
492/// might be mapped to.
493static unsigned
494getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
495  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
496    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
497    if (SI == RegMap.end())
498      return 0;
499    Reg = SI->second;
500  }
501  if (TargetRegisterInfo::isPhysicalRegister(Reg))
502    return Reg;
503  return 0;
504}
505
506/// regsAreCompatible - Return true if the two registers are equal or aliased.
507///
508static bool
509regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
510  if (RegA == RegB)
511    return true;
512  if (!RegA || !RegB)
513    return false;
514  return TRI->regsOverlap(RegA, RegB);
515}
516
517
518/// isProfitableToReMat - Return true if it's potentially profitable to commute
519/// the two-address instruction that's being processed.
520bool
521TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
522                                       MachineInstr *MI, MachineBasicBlock *MBB,
523                                       unsigned Dist) {
524  // Determine if it's profitable to commute this two address instruction. In
525  // general, we want no uses between this instruction and the definition of
526  // the two-address register.
527  // e.g.
528  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
529  // %reg1029<def> = MOV8rr %reg1028
530  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
531  // insert => %reg1030<def> = MOV8rr %reg1028
532  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
533  // In this case, it might not be possible to coalesce the second MOV8rr
534  // instruction if the first one is coalesced. So it would be profitable to
535  // commute it:
536  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
537  // %reg1029<def> = MOV8rr %reg1028
538  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
539  // insert => %reg1030<def> = MOV8rr %reg1029
540  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
541
542  if (!MI->killsRegister(regC))
543    return false;
544
545  // Ok, we have something like:
546  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
547  // let's see if it's worth commuting it.
548
549  // Look for situations like this:
550  // %reg1024<def> = MOV r1
551  // %reg1025<def> = MOV r0
552  // %reg1026<def> = ADD %reg1024, %reg1025
553  // r0            = MOV %reg1026
554  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
555  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
556  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
557  unsigned ToRegB = getMappedReg(regB, DstRegMap);
558  unsigned ToRegC = getMappedReg(regC, DstRegMap);
559  if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
560      (regsAreCompatible(FromRegB, ToRegC, TRI) ||
561       regsAreCompatible(FromRegC, ToRegB, TRI)))
562    return true;
563
564  // If there is a use of regC between its last def (could be livein) and this
565  // instruction, then bail.
566  unsigned LastDefC = 0;
567  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
568    return false;
569
570  // If there is a use of regB between its last def (could be livein) and this
571  // instruction, then go ahead and make this transformation.
572  unsigned LastDefB = 0;
573  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
574    return true;
575
576  // Since there are no intervening uses for both registers, then commute
577  // if the def of regC is closer. Its live interval is shorter.
578  return LastDefB && LastDefC && LastDefC > LastDefB;
579}
580
581/// CommuteInstruction - Commute a two-address instruction and update the basic
582/// block, distance map, and live variables if needed. Return true if it is
583/// successful.
584bool
585TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
586                               MachineFunction::iterator &mbbi,
587                               unsigned RegB, unsigned RegC, unsigned Dist) {
588  MachineInstr *MI = mi;
589  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
590  MachineInstr *NewMI = TII->commuteInstruction(MI);
591
592  if (NewMI == 0) {
593    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
594    return false;
595  }
596
597  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
598  // If the instruction changed to commute it, update livevar.
599  if (NewMI != MI) {
600    if (LV)
601      // Update live variables
602      LV->replaceKillInstruction(RegC, MI, NewMI);
603
604    mbbi->insert(mi, NewMI);           // Insert the new inst
605    mbbi->erase(mi);                   // Nuke the old inst.
606    mi = NewMI;
607    DistanceMap.insert(std::make_pair(NewMI, Dist));
608  }
609
610  // Update source register map.
611  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
612  if (FromRegC) {
613    unsigned RegA = MI->getOperand(0).getReg();
614    SrcRegMap[RegA] = FromRegC;
615  }
616
617  return true;
618}
619
620/// isProfitableToConv3Addr - Return true if it is profitable to convert the
621/// given 2-address instruction to a 3-address one.
622bool
623TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
624  // Look for situations like this:
625  // %reg1024<def> = MOV r1
626  // %reg1025<def> = MOV r0
627  // %reg1026<def> = ADD %reg1024, %reg1025
628  // r2            = MOV %reg1026
629  // Turn ADD into a 3-address instruction to avoid a copy.
630  unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
631  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
632  return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
633}
634
635/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
636/// three address one. Return true if this transformation was successful.
637bool
638TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
639                                              MachineBasicBlock::iterator &nmi,
640                                              MachineFunction::iterator &mbbi,
641                                              unsigned RegB, unsigned Dist) {
642  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
643  if (NewMI) {
644    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
645    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
646    bool Sunk = false;
647
648    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
649      // FIXME: Temporary workaround. If the new instruction doesn't
650      // uses RegB, convertToThreeAddress must have created more
651      // then one instruction.
652      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
653
654    mbbi->erase(mi); // Nuke the old inst.
655
656    if (!Sunk) {
657      DistanceMap.insert(std::make_pair(NewMI, Dist));
658      mi = NewMI;
659      nmi = llvm::next(mi);
660    }
661    return true;
662  }
663
664  return false;
665}
666
667/// ProcessCopy - If the specified instruction is not yet processed, process it
668/// if it's a copy. For a copy instruction, we find the physical registers the
669/// source and destination registers might be mapped to. These are kept in
670/// point-to maps used to determine future optimizations. e.g.
671/// v1024 = mov r0
672/// v1025 = mov r1
673/// v1026 = add v1024, v1025
674/// r1    = mov r1026
675/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
676/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
677/// potentially joined with r1 on the output side. It's worthwhile to commute
678/// 'add' to eliminate a copy.
679void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
680                                     MachineBasicBlock *MBB,
681                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
682  if (Processed.count(MI))
683    return;
684
685  bool IsSrcPhys, IsDstPhys;
686  unsigned SrcReg, DstReg;
687  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
688    return;
689
690  if (IsDstPhys && !IsSrcPhys)
691    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
692  else if (!IsDstPhys && IsSrcPhys) {
693    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
694    if (!isNew)
695      assert(SrcRegMap[DstReg] == SrcReg &&
696             "Can't map to two src physical registers!");
697
698    SmallVector<unsigned, 4> VirtRegPairs;
699    bool IsCopy = false;
700    unsigned NewReg = 0;
701    while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
702                                                   IsCopy, NewReg, IsDstPhys)) {
703      if (IsCopy) {
704        if (!Processed.insert(UseMI))
705          break;
706      }
707
708      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
709      if (DI != DistanceMap.end())
710        // Earlier in the same MBB.Reached via a back edge.
711        break;
712
713      if (IsDstPhys) {
714        VirtRegPairs.push_back(NewReg);
715        break;
716      }
717      bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
718      if (!isNew)
719        assert(SrcRegMap[NewReg] == DstReg &&
720               "Can't map to two src physical registers!");
721      VirtRegPairs.push_back(NewReg);
722      DstReg = NewReg;
723    }
724
725    if (!VirtRegPairs.empty()) {
726      unsigned ToReg = VirtRegPairs.back();
727      VirtRegPairs.pop_back();
728      while (!VirtRegPairs.empty()) {
729        unsigned FromReg = VirtRegPairs.back();
730        VirtRegPairs.pop_back();
731        bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
732        if (!isNew)
733          assert(DstRegMap[FromReg] == ToReg &&
734                 "Can't map to two dst physical registers!");
735        ToReg = FromReg;
736      }
737    }
738  }
739
740  Processed.insert(MI);
741}
742
743/// isSafeToDelete - If the specified instruction does not produce any side
744/// effects and all of its defs are dead, then it's safe to delete.
745static bool isSafeToDelete(MachineInstr *MI,
746                           const TargetInstrInfo *TII,
747                           SmallVector<unsigned, 4> &Kills) {
748  const TargetInstrDesc &TID = MI->getDesc();
749  if (TID.mayStore() || TID.isCall())
750    return false;
751  if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
752    return false;
753
754  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
755    MachineOperand &MO = MI->getOperand(i);
756    if (!MO.isReg())
757      continue;
758    if (MO.isDef() && !MO.isDead())
759      return false;
760    if (MO.isUse() && MO.isKill())
761      Kills.push_back(MO.getReg());
762  }
763  return true;
764}
765
766/// canUpdateDeletedKills - Check if all the registers listed in Kills are
767/// killed by instructions in MBB preceding the current instruction at
768/// position Dist.  If so, return true and record information about the
769/// preceding kills in NewKills.
770bool TwoAddressInstructionPass::
771canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
772                      SmallVector<NewKill, 4> &NewKills,
773                      MachineBasicBlock *MBB, unsigned Dist) {
774  while (!Kills.empty()) {
775    unsigned Kill = Kills.back();
776    Kills.pop_back();
777    if (TargetRegisterInfo::isPhysicalRegister(Kill))
778      return false;
779
780    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
781    if (!LastKill)
782      return false;
783
784    bool isModRef = LastKill->definesRegister(Kill);
785    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
786                                      LastKill));
787  }
788  return true;
789}
790
791/// DeleteUnusedInstr - If an instruction with a tied register operand can
792/// be safely deleted, just delete it.
793bool
794TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
795                                             MachineBasicBlock::iterator &nmi,
796                                             MachineFunction::iterator &mbbi,
797                                             unsigned Dist) {
798  // Check if the instruction has no side effects and if all its defs are dead.
799  SmallVector<unsigned, 4> Kills;
800  if (!isSafeToDelete(mi, TII, Kills))
801    return false;
802
803  // If this instruction kills some virtual registers, we need to
804  // update the kill information. If it's not possible to do so,
805  // then bail out.
806  SmallVector<NewKill, 4> NewKills;
807  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
808    return false;
809
810  if (LV) {
811    while (!NewKills.empty()) {
812      MachineInstr *NewKill = NewKills.back().second;
813      unsigned Kill = NewKills.back().first.first;
814      bool isDead = NewKills.back().first.second;
815      NewKills.pop_back();
816      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
817        if (isDead)
818          LV->addVirtualRegisterDead(Kill, NewKill);
819        else
820          LV->addVirtualRegisterKilled(Kill, NewKill);
821      }
822    }
823  }
824
825  mbbi->erase(mi); // Nuke the old inst.
826  mi = nmi;
827  return true;
828}
829
830/// TryInstructionTransform - For the case where an instruction has a single
831/// pair of tied register operands, attempt some transformations that may
832/// either eliminate the tied operands or improve the opportunities for
833/// coalescing away the register copy.  Returns true if the tied operands
834/// are eliminated altogether.
835bool TwoAddressInstructionPass::
836TryInstructionTransform(MachineBasicBlock::iterator &mi,
837                        MachineBasicBlock::iterator &nmi,
838                        MachineFunction::iterator &mbbi,
839                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
840  const TargetInstrDesc &TID = mi->getDesc();
841  unsigned regA = mi->getOperand(DstIdx).getReg();
842  unsigned regB = mi->getOperand(SrcIdx).getReg();
843
844  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
845         "cannot make instruction into two-address form");
846
847  // If regA is dead and the instruction can be deleted, just delete
848  // it so it doesn't clobber regB.
849  bool regBKilled = isKilled(*mi, regB, MRI, TII);
850  if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
851      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
852    ++NumDeletes;
853    return true; // Done with this instruction.
854  }
855
856  // Check if it is profitable to commute the operands.
857  unsigned SrcOp1, SrcOp2;
858  unsigned regC = 0;
859  unsigned regCIdx = ~0U;
860  bool TryCommute = false;
861  bool AggressiveCommute = false;
862  if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
863      TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
864    if (SrcIdx == SrcOp1)
865      regCIdx = SrcOp2;
866    else if (SrcIdx == SrcOp2)
867      regCIdx = SrcOp1;
868
869    if (regCIdx != ~0U) {
870      regC = mi->getOperand(regCIdx).getReg();
871      if (!regBKilled && isKilled(*mi, regC, MRI, TII))
872        // If C dies but B does not, swap the B and C operands.
873        // This makes the live ranges of A and C joinable.
874        TryCommute = true;
875      else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
876        TryCommute = true;
877        AggressiveCommute = true;
878      }
879    }
880  }
881
882  // If it's profitable to commute, try to do so.
883  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
884    ++NumCommuted;
885    if (AggressiveCommute)
886      ++NumAggrCommuted;
887    return false;
888  }
889
890  if (TID.isConvertibleTo3Addr()) {
891    // This instruction is potentially convertible to a true
892    // three-address instruction.  Check if it is profitable.
893    if (!regBKilled || isProfitableToConv3Addr(regA)) {
894      // Try to convert it.
895      if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
896        ++NumConvertedTo3Addr;
897        return true; // Done with this instruction.
898      }
899    }
900  }
901
902  // If this is an instruction with a load folded into it, try unfolding
903  // the load, e.g. avoid this:
904  //   movq %rdx, %rcx
905  //   addq (%rax), %rcx
906  // in favor of this:
907  //   movq (%rax), %rcx
908  //   addq %rdx, %rcx
909  // because it's preferable to schedule a load than a register copy.
910  if (TID.mayLoad() && !regBKilled) {
911    // Determine if a load can be unfolded.
912    unsigned LoadRegIndex;
913    unsigned NewOpc =
914      TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
915                                      /*UnfoldLoad=*/true,
916                                      /*UnfoldStore=*/false,
917                                      &LoadRegIndex);
918    if (NewOpc != 0) {
919      const TargetInstrDesc &UnfoldTID = TII->get(NewOpc);
920      if (UnfoldTID.getNumDefs() == 1) {
921        MachineFunction &MF = *mbbi->getParent();
922
923        // Unfold the load.
924        DEBUG(dbgs() << "2addr:   UNFOLDING: " << *mi);
925        const TargetRegisterClass *RC =
926          UnfoldTID.OpInfo[LoadRegIndex].getRegClass(TRI);
927        unsigned Reg = MRI->createVirtualRegister(RC);
928        SmallVector<MachineInstr *, 2> NewMIs;
929        bool Success =
930          TII->unfoldMemoryOperand(MF, mi, Reg,
931                                   /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
932                                   NewMIs);
933        (void)Success;
934        assert(Success &&
935               "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
936               "succeeded!");
937        assert(NewMIs.size() == 2 &&
938               "Unfolded a load into multiple instructions!");
939        // The load was previously folded, so this is the only use.
940        NewMIs[1]->addRegisterKilled(Reg, TRI);
941
942        // Tentatively insert the instructions into the block so that they
943        // look "normal" to the transformation logic.
944        mbbi->insert(mi, NewMIs[0]);
945        mbbi->insert(mi, NewMIs[1]);
946
947        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
948                     << "2addr:    NEW INST: " << *NewMIs[1]);
949
950        // Transform the instruction, now that it no longer has a load.
951        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
952        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
953        MachineBasicBlock::iterator NewMI = NewMIs[1];
954        bool TransformSuccess =
955          TryInstructionTransform(NewMI, mi, mbbi,
956                                  NewSrcIdx, NewDstIdx, Dist);
957        if (TransformSuccess ||
958            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
959          // Success, or at least we made an improvement. Keep the unfolded
960          // instructions and discard the original.
961          if (LV) {
962            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
963              MachineOperand &MO = mi->getOperand(i);
964              if (MO.isReg() && MO.getReg() != 0 &&
965                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
966                if (MO.isUse()) {
967                  if (MO.isKill()) {
968                    if (NewMIs[0]->killsRegister(MO.getReg()))
969                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
970                    else {
971                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
972                             "Kill missing after load unfold!");
973                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
974                    }
975                  }
976                } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
977                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
978                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
979                  else {
980                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
981                           "Dead flag missing after load unfold!");
982                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
983                  }
984                }
985              }
986            }
987            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
988          }
989          mi->eraseFromParent();
990          mi = NewMIs[1];
991          if (TransformSuccess)
992            return true;
993        } else {
994          // Transforming didn't eliminate the tie and didn't lead to an
995          // improvement. Clean up the unfolded instructions and keep the
996          // original.
997          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
998          NewMIs[0]->eraseFromParent();
999          NewMIs[1]->eraseFromParent();
1000        }
1001      }
1002    }
1003  }
1004
1005  return false;
1006}
1007
1008/// runOnMachineFunction - Reduce two-address instructions to two operands.
1009///
1010bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1011  DEBUG(dbgs() << "Machine Function\n");
1012  const TargetMachine &TM = MF.getTarget();
1013  MRI = &MF.getRegInfo();
1014  TII = TM.getInstrInfo();
1015  TRI = TM.getRegisterInfo();
1016  LV = getAnalysisIfAvailable<LiveVariables>();
1017  AA = &getAnalysis<AliasAnalysis>();
1018
1019  bool MadeChange = false;
1020
1021  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1022  DEBUG(dbgs() << "********** Function: "
1023        << MF.getFunction()->getName() << '\n');
1024
1025  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1026  BitVector ReMatRegs;
1027  ReMatRegs.resize(MRI->getLastVirtReg()+1);
1028
1029  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1030    TiedOperandMap;
1031  TiedOperandMap TiedOperands(4);
1032
1033  SmallPtrSet<MachineInstr*, 8> Processed;
1034  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1035       mbbi != mbbe; ++mbbi) {
1036    unsigned Dist = 0;
1037    DistanceMap.clear();
1038    SrcRegMap.clear();
1039    DstRegMap.clear();
1040    Processed.clear();
1041    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1042         mi != me; ) {
1043      MachineBasicBlock::iterator nmi = llvm::next(mi);
1044      if (mi->isDebugValue()) {
1045        mi = nmi;
1046        continue;
1047      }
1048
1049      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1050      if (mi->isRegSequence())
1051        RegSequences.push_back(&*mi);
1052
1053      const TargetInstrDesc &TID = mi->getDesc();
1054      bool FirstTied = true;
1055
1056      DistanceMap.insert(std::make_pair(mi, ++Dist));
1057
1058      ProcessCopy(&*mi, &*mbbi, Processed);
1059
1060      // First scan through all the tied register uses in this instruction
1061      // and record a list of pairs of tied operands for each register.
1062      unsigned NumOps = mi->isInlineAsm()
1063        ? mi->getNumOperands() : TID.getNumOperands();
1064      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1065        unsigned DstIdx = 0;
1066        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1067          continue;
1068
1069        if (FirstTied) {
1070          FirstTied = false;
1071          ++NumTwoAddressInstrs;
1072          DEBUG(dbgs() << '\t' << *mi);
1073        }
1074
1075        assert(mi->getOperand(SrcIdx).isReg() &&
1076               mi->getOperand(SrcIdx).getReg() &&
1077               mi->getOperand(SrcIdx).isUse() &&
1078               "two address instruction invalid");
1079
1080        unsigned regB = mi->getOperand(SrcIdx).getReg();
1081        TiedOperandMap::iterator OI = TiedOperands.find(regB);
1082        if (OI == TiedOperands.end()) {
1083          SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
1084          OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
1085        }
1086        OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
1087      }
1088
1089      // Now iterate over the information collected above.
1090      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1091             OE = TiedOperands.end(); OI != OE; ++OI) {
1092        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1093
1094        // If the instruction has a single pair of tied operands, try some
1095        // transformations that may either eliminate the tied operands or
1096        // improve the opportunities for coalescing away the register copy.
1097        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1098          unsigned SrcIdx = TiedPairs[0].first;
1099          unsigned DstIdx = TiedPairs[0].second;
1100
1101          // If the registers are already equal, nothing needs to be done.
1102          if (mi->getOperand(SrcIdx).getReg() ==
1103              mi->getOperand(DstIdx).getReg())
1104            break; // Done with this instruction.
1105
1106          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
1107            break; // The tied operands have been eliminated.
1108        }
1109
1110        bool RemovedKillFlag = false;
1111        bool AllUsesCopied = true;
1112        unsigned LastCopiedReg = 0;
1113        unsigned regB = OI->first;
1114        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1115          unsigned SrcIdx = TiedPairs[tpi].first;
1116          unsigned DstIdx = TiedPairs[tpi].second;
1117          unsigned regA = mi->getOperand(DstIdx).getReg();
1118          // Grab regB from the instruction because it may have changed if the
1119          // instruction was commuted.
1120          regB = mi->getOperand(SrcIdx).getReg();
1121
1122          if (regA == regB) {
1123            // The register is tied to multiple destinations (or else we would
1124            // not have continued this far), but this use of the register
1125            // already matches the tied destination.  Leave it.
1126            AllUsesCopied = false;
1127            continue;
1128          }
1129          LastCopiedReg = regA;
1130
1131          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1132                 "cannot make instruction into two-address form");
1133
1134#ifndef NDEBUG
1135          // First, verify that we don't have a use of "a" in the instruction
1136          // (a = b + a for example) because our transformation will not
1137          // work. This should never occur because we are in SSA form.
1138          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1139            assert(i == DstIdx ||
1140                   !mi->getOperand(i).isReg() ||
1141                   mi->getOperand(i).getReg() != regA);
1142#endif
1143
1144          // Emit a copy or rematerialize the definition.
1145          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1146          MachineInstr *DefMI = MRI->getVRegDef(regB);
1147          // If it's safe and profitable, remat the definition instead of
1148          // copying it.
1149          if (DefMI &&
1150              DefMI->getDesc().isAsCheapAsAMove() &&
1151              DefMI->isSafeToReMat(TII, AA, regB) &&
1152              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1153            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1154            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1155            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1156            ReMatRegs.set(regB);
1157            ++NumReMats;
1158          } else {
1159            bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc,
1160                                             mi->getDebugLoc());
1161            (void)Emitted;
1162            assert(Emitted && "Unable to issue a copy instruction!\n");
1163          }
1164
1165          MachineBasicBlock::iterator prevMI = prior(mi);
1166          // Update DistanceMap.
1167          DistanceMap.insert(std::make_pair(prevMI, Dist));
1168          DistanceMap[mi] = ++Dist;
1169
1170          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1171
1172          MachineOperand &MO = mi->getOperand(SrcIdx);
1173          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1174                 "inconsistent operand info for 2-reg pass");
1175          if (MO.isKill()) {
1176            MO.setIsKill(false);
1177            RemovedKillFlag = true;
1178          }
1179          MO.setReg(regA);
1180        }
1181
1182        if (AllUsesCopied) {
1183          // Replace other (un-tied) uses of regB with LastCopiedReg.
1184          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1185            MachineOperand &MO = mi->getOperand(i);
1186            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1187              if (MO.isKill()) {
1188                MO.setIsKill(false);
1189                RemovedKillFlag = true;
1190              }
1191              MO.setReg(LastCopiedReg);
1192            }
1193          }
1194
1195          // Update live variables for regB.
1196          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1197            LV->addVirtualRegisterKilled(regB, prior(mi));
1198
1199        } else if (RemovedKillFlag) {
1200          // Some tied uses of regB matched their destination registers, so
1201          // regB is still used in this instruction, but a kill flag was
1202          // removed from a different tied use of regB, so now we need to add
1203          // a kill flag to one of the remaining uses of regB.
1204          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1205            MachineOperand &MO = mi->getOperand(i);
1206            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1207              MO.setIsKill(true);
1208              break;
1209            }
1210          }
1211        }
1212
1213        // Schedule the source copy / remat inserted to form two-address
1214        // instruction. FIXME: Does it matter the distance map may not be
1215        // accurate after it's scheduled?
1216        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1217
1218        MadeChange = true;
1219
1220        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1221      }
1222
1223      // Clear TiedOperands here instead of at the top of the loop
1224      // since most instructions do not have tied operands.
1225      TiedOperands.clear();
1226      mi = nmi;
1227    }
1228  }
1229
1230  // Some remat'ed instructions are dead.
1231  int VReg = ReMatRegs.find_first();
1232  while (VReg != -1) {
1233    if (MRI->use_nodbg_empty(VReg)) {
1234      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1235      DefMI->eraseFromParent();
1236    }
1237    VReg = ReMatRegs.find_next(VReg);
1238  }
1239
1240  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1241  // SSA form. It's now safe to de-SSA.
1242  MadeChange |= EliminateRegSequences();
1243
1244  return MadeChange;
1245}
1246
1247static void UpdateRegSequenceSrcs(unsigned SrcReg,
1248                                  unsigned DstReg, unsigned SubIdx,
1249                                  MachineRegisterInfo *MRI,
1250                                  const TargetRegisterInfo &TRI) {
1251  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1252         RE = MRI->reg_end(); RI != RE; ) {
1253    MachineOperand &MO = RI.getOperand();
1254    ++RI;
1255    MO.substVirtReg(DstReg, SubIdx, TRI);
1256  }
1257}
1258
1259/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1260/// EXTRACT_SUBREG from the same register and to the same virtual register
1261/// with different sub-register indices, attempt to combine the
1262/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1263/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1264/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1265/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1266/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1267/// reg1026 to reg1029.
1268void
1269TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1270                                              unsigned DstReg) {
1271  SmallSet<unsigned, 4> Seen;
1272  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1273    unsigned SrcReg = Srcs[i];
1274    if (!Seen.insert(SrcReg))
1275      continue;
1276
1277    // Check that the instructions are all in the same basic block.
1278    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1279    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1280    if (SrcDefMI->getParent() != DstDefMI->getParent())
1281      continue;
1282
1283    // If there are no other uses than extract_subreg which feed into
1284    // the reg_sequence, then we might be able to coalesce them.
1285    bool CanCoalesce = true;
1286    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1287    for (MachineRegisterInfo::use_nodbg_iterator
1288           UI = MRI->use_nodbg_begin(SrcReg),
1289           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1290      MachineInstr *UseMI = &*UI;
1291      if (!UseMI->isExtractSubreg() ||
1292          UseMI->getOperand(0).getReg() != DstReg ||
1293          UseMI->getOperand(1).getSubReg() != 0) {
1294        CanCoalesce = false;
1295        break;
1296      }
1297      SrcSubIndices.push_back(UseMI->getOperand(2).getImm());
1298      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1299    }
1300
1301    if (!CanCoalesce || SrcSubIndices.size() < 2)
1302      continue;
1303
1304    // Check that the source subregisters can be combined.
1305    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1306    unsigned NewSrcSubIdx = 0;
1307    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1308                                      NewSrcSubIdx))
1309      continue;
1310
1311    // Check that the destination subregisters can also be combined.
1312    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1313    unsigned NewDstSubIdx = 0;
1314    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1315                                      NewDstSubIdx))
1316      continue;
1317
1318    // If neither source nor destination can be combined to the full register,
1319    // just give up.  This could be improved if it ever matters.
1320    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1321      continue;
1322
1323    // Now that we know that all the uses are extract_subregs and that those
1324    // subregs can somehow be combined, scan all the extract_subregs again to
1325    // make sure the subregs are in the right order and can be composed.
1326    MachineInstr *SomeMI = 0;
1327    CanCoalesce = true;
1328    for (MachineRegisterInfo::use_nodbg_iterator
1329           UI = MRI->use_nodbg_begin(SrcReg),
1330           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1331      MachineInstr *UseMI = &*UI;
1332      assert(UseMI->isExtractSubreg());
1333      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1334      unsigned SrcSubIdx = UseMI->getOperand(2).getImm();
1335      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1336      if ((NewDstSubIdx == 0 &&
1337           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1338          (NewSrcSubIdx == 0 &&
1339           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1340        CanCoalesce = false;
1341        break;
1342      }
1343      // Keep track of one of the uses.
1344      SomeMI = UseMI;
1345    }
1346    if (!CanCoalesce)
1347      continue;
1348
1349    // Insert a copy or an extract to replace the original extracts.
1350    MachineBasicBlock::iterator InsertLoc = SomeMI;
1351    if (NewSrcSubIdx) {
1352      // Insert an extract subreg.
1353      BuildMI(*SomeMI->getParent(), InsertLoc, SomeMI->getDebugLoc(),
1354              TII->get(TargetOpcode::EXTRACT_SUBREG), DstReg)
1355        .addReg(SrcReg).addImm(NewSrcSubIdx);
1356    } else if (NewDstSubIdx) {
1357      // Do a subreg insertion.
1358      BuildMI(*SomeMI->getParent(), InsertLoc, SomeMI->getDebugLoc(),
1359              TII->get(TargetOpcode::INSERT_SUBREG), DstReg)
1360        .addReg(DstReg).addReg(SrcReg).addImm(NewDstSubIdx);
1361    } else {
1362      // Insert a copy.
1363      bool Emitted =
1364        TII->copyRegToReg(*SomeMI->getParent(), InsertLoc, DstReg, SrcReg,
1365                          MRI->getRegClass(DstReg), MRI->getRegClass(SrcReg),
1366                          SomeMI->getDebugLoc());
1367      (void)Emitted;
1368    }
1369    MachineBasicBlock::iterator CopyMI = prior(InsertLoc);
1370
1371    // Remove all the old extract instructions.
1372    for (MachineRegisterInfo::use_nodbg_iterator
1373           UI = MRI->use_nodbg_begin(SrcReg),
1374           UE = MRI->use_nodbg_end(); UI != UE; ) {
1375      MachineInstr *UseMI = &*UI;
1376      ++UI;
1377      if (UseMI == CopyMI)
1378        continue;
1379      assert(UseMI->isExtractSubreg());
1380      // Move any kills to the new copy or extract instruction.
1381      if (UseMI->getOperand(1).isKill()) {
1382        MachineOperand *KillMO = CopyMI->findRegisterUseOperand(SrcReg);
1383        KillMO->setIsKill();
1384        if (LV)
1385          // Update live variables
1386          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1387      }
1388      UseMI->eraseFromParent();
1389    }
1390  }
1391}
1392
1393static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1394                                    MachineRegisterInfo *MRI) {
1395  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1396         UE = MRI->use_end(); UI != UE; ++UI) {
1397    MachineInstr *UseMI = &*UI;
1398    if (UseMI != RegSeq && UseMI->isRegSequence())
1399      return true;
1400  }
1401  return false;
1402}
1403
1404/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1405/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1406/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1407///
1408/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1409/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1410/// =>
1411/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1412bool TwoAddressInstructionPass::EliminateRegSequences() {
1413  if (RegSequences.empty())
1414    return false;
1415
1416  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1417    MachineInstr *MI = RegSequences[i];
1418    unsigned DstReg = MI->getOperand(0).getReg();
1419    if (MI->getOperand(0).getSubReg() ||
1420        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1421        !(MI->getNumOperands() & 1)) {
1422      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1423      llvm_unreachable(0);
1424    }
1425
1426    bool IsImpDef = true;
1427    SmallVector<unsigned, 4> RealSrcs;
1428    SmallSet<unsigned, 4> Seen;
1429    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1430      unsigned SrcReg = MI->getOperand(i).getReg();
1431      if (MI->getOperand(i).getSubReg() ||
1432          TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1433        DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1434        llvm_unreachable(0);
1435      }
1436
1437      MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1438      if (DefMI->isImplicitDef()) {
1439        DefMI->eraseFromParent();
1440        continue;
1441      }
1442      IsImpDef = false;
1443
1444      // Remember EXTRACT_SUBREG sources. These might be candidate for
1445      // coalescing.
1446      if (DefMI->isExtractSubreg())
1447        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1448
1449      if (!Seen.insert(SrcReg) ||
1450          MI->getParent() != DefMI->getParent() ||
1451          !MI->getOperand(i).isKill() ||
1452          HasOtherRegSequenceUses(SrcReg, MI, MRI)) {
1453        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1454        // Also add an copy if the source is live-in the block. We don't want
1455        // to end up with a partial-redef of a livein, e.g.
1456        // BB0:
1457        // reg1051:10<def> =
1458        // ...
1459        // BB1:
1460        // ... = reg1051:10
1461        // BB2:
1462        // reg1051:9<def> =
1463        // LiveIntervalAnalysis won't like it.
1464        //
1465        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1466        // correctly up to date becomes very difficult. Insert a copy.
1467        //
1468        const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
1469        unsigned NewReg = MRI->createVirtualRegister(RC);
1470        MachineBasicBlock::iterator InsertLoc = MI;
1471        bool Emitted =
1472          TII->copyRegToReg(*MI->getParent(), InsertLoc, NewReg, SrcReg, RC, RC,
1473                            MI->getDebugLoc());
1474        (void)Emitted;
1475        assert(Emitted && "Unable to issue a copy instruction!\n");
1476        MI->getOperand(i).setReg(NewReg);
1477        if (MI->getOperand(i).isKill()) {
1478          MachineBasicBlock::iterator CopyMI = prior(InsertLoc);
1479          MachineOperand *KillMO = CopyMI->findRegisterUseOperand(SrcReg);
1480          KillMO->setIsKill();
1481          if (LV)
1482            // Update live variables
1483            LV->replaceKillInstruction(SrcReg, MI, &*CopyMI);
1484        }
1485      }
1486    }
1487
1488    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1489      unsigned SrcReg = MI->getOperand(i).getReg();
1490      unsigned SubIdx = MI->getOperand(i+1).getImm();
1491      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1492    }
1493
1494    if (IsImpDef) {
1495      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1496      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1497      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1498        MI->RemoveOperand(j);
1499    } else {
1500      DEBUG(dbgs() << "Eliminated: " << *MI);
1501      MI->eraseFromParent();
1502    }
1503
1504    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1505    // INSERT_SUBREG instructions that must have <undef> flags added by
1506    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1507    if (LV)
1508      CoalesceExtSubRegs(RealSrcs, DstReg);
1509  }
1510
1511  RegSequences.clear();
1512  return true;
1513}
1514