TwoAddressInstructionPass.cpp revision 1f74590e9d1b9cf0f1f81a156efea73f76546e05
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/ADT/BitVector.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/STLExtras.h"
50using namespace llvm;
51
52STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
53STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
54STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
55STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
56STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
57STATISTIC(NumReMats,           "Number of instructions re-materialized");
58STATISTIC(NumDeletes,          "Number of dead instructions deleted");
59
60namespace {
61  class TwoAddressInstructionPass : public MachineFunctionPass {
62    const TargetInstrInfo *TII;
63    const TargetRegisterInfo *TRI;
64    MachineRegisterInfo *MRI;
65    LiveVariables *LV;
66    AliasAnalysis *AA;
67
68    // DistanceMap - Keep track the distance of a MI from the start of the
69    // current basic block.
70    DenseMap<MachineInstr*, unsigned> DistanceMap;
71
72    // SrcRegMap - A map from virtual registers to physical registers which
73    // are likely targets to be coalesced to due to copies from physical
74    // registers to virtual registers. e.g. v1024 = move r0.
75    DenseMap<unsigned, unsigned> SrcRegMap;
76
77    // DstRegMap - A map from virtual registers to physical registers which
78    // are likely targets to be coalesced to due to copies to physical
79    // registers from virtual registers. e.g. r1 = move v1024.
80    DenseMap<unsigned, unsigned> DstRegMap;
81
82    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83    /// during the initial walk of the machine function.
84    SmallVector<MachineInstr*, 16> RegSequences;
85
86    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
87                              unsigned Reg,
88                              MachineBasicBlock::iterator OldPos);
89
90    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
91                             MachineInstr *MI, MachineInstr *DefMI,
92                             MachineBasicBlock *MBB, unsigned Loc);
93
94    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
95                           unsigned &LastDef);
96
97    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
98                                   unsigned Dist);
99
100    bool isProfitableToCommute(unsigned regB, unsigned regC,
101                               MachineInstr *MI, MachineBasicBlock *MBB,
102                               unsigned Dist);
103
104    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
105                            MachineFunction::iterator &mbbi,
106                            unsigned RegB, unsigned RegC, unsigned Dist);
107
108    bool isProfitableToConv3Addr(unsigned RegA);
109
110    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
111                            MachineBasicBlock::iterator &nmi,
112                            MachineFunction::iterator &mbbi,
113                            unsigned RegB, unsigned Dist);
114
115    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
116    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
117                               SmallVector<NewKill, 4> &NewKills,
118                               MachineBasicBlock *MBB, unsigned Dist);
119    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
120                           MachineBasicBlock::iterator &nmi,
121                           MachineFunction::iterator &mbbi, unsigned Dist);
122
123    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
124                                 MachineBasicBlock::iterator &nmi,
125                                 MachineFunction::iterator &mbbi,
126                                 unsigned SrcIdx, unsigned DstIdx,
127                                 unsigned Dist);
128
129    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
130                     SmallPtrSet<MachineInstr*, 8> &Processed);
131
132    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
133
134    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
135    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
136    /// sub-register references of the register defined by REG_SEQUENCE.
137    bool EliminateRegSequences();
138
139  public:
140    static char ID; // Pass identification, replacement for typeid
141    TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
142
143    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
144      AU.setPreservesCFG();
145      AU.addRequired<AliasAnalysis>();
146      AU.addPreserved<LiveVariables>();
147      AU.addPreservedID(MachineLoopInfoID);
148      AU.addPreservedID(MachineDominatorsID);
149      if (StrongPHIElim)
150        AU.addPreservedID(StrongPHIEliminationID);
151      else
152        AU.addPreservedID(PHIEliminationID);
153      MachineFunctionPass::getAnalysisUsage(AU);
154    }
155
156    /// runOnMachineFunction - Pass entry point.
157    bool runOnMachineFunction(MachineFunction&);
158  };
159}
160
161char TwoAddressInstructionPass::ID = 0;
162static RegisterPass<TwoAddressInstructionPass>
163X("twoaddressinstruction", "Two-Address instruction pass");
164
165const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
166
167/// Sink3AddrInstruction - A two-address instruction has been converted to a
168/// three-address instruction to avoid clobbering a register. Try to sink it
169/// past the instruction that would kill the above mentioned register to reduce
170/// register pressure.
171bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
172                                           MachineInstr *MI, unsigned SavedReg,
173                                           MachineBasicBlock::iterator OldPos) {
174  // Check if it's safe to move this instruction.
175  bool SeenStore = true; // Be conservative.
176  if (!MI->isSafeToMove(TII, AA, SeenStore))
177    return false;
178
179  unsigned DefReg = 0;
180  SmallSet<unsigned, 4> UseRegs;
181
182  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
183    const MachineOperand &MO = MI->getOperand(i);
184    if (!MO.isReg())
185      continue;
186    unsigned MOReg = MO.getReg();
187    if (!MOReg)
188      continue;
189    if (MO.isUse() && MOReg != SavedReg)
190      UseRegs.insert(MO.getReg());
191    if (!MO.isDef())
192      continue;
193    if (MO.isImplicit())
194      // Don't try to move it if it implicitly defines a register.
195      return false;
196    if (DefReg)
197      // For now, don't move any instructions that define multiple registers.
198      return false;
199    DefReg = MO.getReg();
200  }
201
202  // Find the instruction that kills SavedReg.
203  MachineInstr *KillMI = NULL;
204  for (MachineRegisterInfo::use_nodbg_iterator
205         UI = MRI->use_nodbg_begin(SavedReg),
206         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
207    MachineOperand &UseMO = UI.getOperand();
208    if (!UseMO.isKill())
209      continue;
210    KillMI = UseMO.getParent();
211    break;
212  }
213
214  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
215    return false;
216
217  // If any of the definitions are used by another instruction between the
218  // position and the kill use, then it's not safe to sink it.
219  //
220  // FIXME: This can be sped up if there is an easy way to query whether an
221  // instruction is before or after another instruction. Then we can use
222  // MachineRegisterInfo def / use instead.
223  MachineOperand *KillMO = NULL;
224  MachineBasicBlock::iterator KillPos = KillMI;
225  ++KillPos;
226
227  unsigned NumVisited = 0;
228  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
229    MachineInstr *OtherMI = I;
230    // DBG_VALUE cannot be counted against the limit.
231    if (OtherMI->isDebugValue())
232      continue;
233    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
234      return false;
235    ++NumVisited;
236    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
237      MachineOperand &MO = OtherMI->getOperand(i);
238      if (!MO.isReg())
239        continue;
240      unsigned MOReg = MO.getReg();
241      if (!MOReg)
242        continue;
243      if (DefReg == MOReg)
244        return false;
245
246      if (MO.isKill()) {
247        if (OtherMI == KillMI && MOReg == SavedReg)
248          // Save the operand that kills the register. We want to unset the kill
249          // marker if we can sink MI past it.
250          KillMO = &MO;
251        else if (UseRegs.count(MOReg))
252          // One of the uses is killed before the destination.
253          return false;
254      }
255    }
256  }
257
258  // Update kill and LV information.
259  KillMO->setIsKill(false);
260  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
261  KillMO->setIsKill(true);
262
263  if (LV)
264    LV->replaceKillInstruction(SavedReg, KillMI, MI);
265
266  // Move instruction to its destination.
267  MBB->remove(MI);
268  MBB->insert(KillPos, MI);
269
270  ++Num3AddrSunk;
271  return true;
272}
273
274/// isTwoAddrUse - Return true if the specified MI is using the specified
275/// register as a two-address operand.
276static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
277  const TargetInstrDesc &TID = UseMI->getDesc();
278  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
279    MachineOperand &MO = UseMI->getOperand(i);
280    if (MO.isReg() && MO.getReg() == Reg &&
281        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
282      // Earlier use is a two-address one.
283      return true;
284  }
285  return false;
286}
287
288/// isProfitableToReMat - Return true if the heuristics determines it is likely
289/// to be profitable to re-materialize the definition of Reg rather than copy
290/// the register.
291bool
292TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
293                                         const TargetRegisterClass *RC,
294                                         MachineInstr *MI, MachineInstr *DefMI,
295                                         MachineBasicBlock *MBB, unsigned Loc) {
296  bool OtherUse = false;
297  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
298         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
299    MachineOperand &UseMO = UI.getOperand();
300    MachineInstr *UseMI = UseMO.getParent();
301    MachineBasicBlock *UseMBB = UseMI->getParent();
302    if (UseMBB == MBB) {
303      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
304      if (DI != DistanceMap.end() && DI->second == Loc)
305        continue;  // Current use.
306      OtherUse = true;
307      // There is at least one other use in the MBB that will clobber the
308      // register.
309      if (isTwoAddrUse(UseMI, Reg))
310        return true;
311    }
312  }
313
314  // If other uses in MBB are not two-address uses, then don't remat.
315  if (OtherUse)
316    return false;
317
318  // No other uses in the same block, remat if it's defined in the same
319  // block so it does not unnecessarily extend the live range.
320  return MBB == DefMI->getParent();
321}
322
323/// NoUseAfterLastDef - Return true if there are no intervening uses between the
324/// last instruction in the MBB that defines the specified register and the
325/// two-address instruction which is being processed. It also returns the last
326/// def location by reference
327bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
328                                           MachineBasicBlock *MBB, unsigned Dist,
329                                           unsigned &LastDef) {
330  LastDef = 0;
331  unsigned LastUse = Dist;
332  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
333         E = MRI->reg_end(); I != E; ++I) {
334    MachineOperand &MO = I.getOperand();
335    MachineInstr *MI = MO.getParent();
336    if (MI->getParent() != MBB || MI->isDebugValue())
337      continue;
338    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
339    if (DI == DistanceMap.end())
340      continue;
341    if (MO.isUse() && DI->second < LastUse)
342      LastUse = DI->second;
343    if (MO.isDef() && DI->second > LastDef)
344      LastDef = DI->second;
345  }
346
347  return !(LastUse > LastDef && LastUse < Dist);
348}
349
350MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
351                                                         MachineBasicBlock *MBB,
352                                                         unsigned Dist) {
353  unsigned LastUseDist = 0;
354  MachineInstr *LastUse = 0;
355  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
356         E = MRI->reg_end(); I != E; ++I) {
357    MachineOperand &MO = I.getOperand();
358    MachineInstr *MI = MO.getParent();
359    if (MI->getParent() != MBB || MI->isDebugValue())
360      continue;
361    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
362    if (DI == DistanceMap.end())
363      continue;
364    if (DI->second >= Dist)
365      continue;
366
367    if (MO.isUse() && DI->second > LastUseDist) {
368      LastUse = DI->first;
369      LastUseDist = DI->second;
370    }
371  }
372  return LastUse;
373}
374
375/// isCopyToReg - Return true if the specified MI is a copy instruction or
376/// a extract_subreg instruction. It also returns the source and destination
377/// registers and whether they are physical registers by reference.
378static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
379                        unsigned &SrcReg, unsigned &DstReg,
380                        bool &IsSrcPhys, bool &IsDstPhys) {
381  SrcReg = 0;
382  DstReg = 0;
383  if (MI.isCopy()) {
384    DstReg = MI.getOperand(0).getReg();
385    SrcReg = MI.getOperand(1).getReg();
386  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
387    DstReg = MI.getOperand(0).getReg();
388    SrcReg = MI.getOperand(2).getReg();
389  } else
390    return false;
391
392  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
393  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
394  return true;
395}
396
397/// isKilled - Test if the given register value, which is used by the given
398/// instruction, is killed by the given instruction. This looks through
399/// coalescable copies to see if the original value is potentially not killed.
400///
401/// For example, in this code:
402///
403///   %reg1034 = copy %reg1024
404///   %reg1035 = copy %reg1025<kill>
405///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
406///
407/// %reg1034 is not considered to be killed, since it is copied from a
408/// register which is not killed. Treating it as not killed lets the
409/// normal heuristics commute the (two-address) add, which lets
410/// coalescing eliminate the extra copy.
411///
412static bool isKilled(MachineInstr &MI, unsigned Reg,
413                     const MachineRegisterInfo *MRI,
414                     const TargetInstrInfo *TII) {
415  MachineInstr *DefMI = &MI;
416  for (;;) {
417    if (!DefMI->killsRegister(Reg))
418      return false;
419    if (TargetRegisterInfo::isPhysicalRegister(Reg))
420      return true;
421    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
422    // If there are multiple defs, we can't do a simple analysis, so just
423    // go with what the kill flag says.
424    if (llvm::next(Begin) != MRI->def_end())
425      return true;
426    DefMI = &*Begin;
427    bool IsSrcPhys, IsDstPhys;
428    unsigned SrcReg,  DstReg;
429    // If the def is something other than a copy, then it isn't going to
430    // be coalesced, so follow the kill flag.
431    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
432      return true;
433    Reg = SrcReg;
434  }
435}
436
437/// isTwoAddrUse - Return true if the specified MI uses the specified register
438/// as a two-address use. If so, return the destination register by reference.
439static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
440  const TargetInstrDesc &TID = MI.getDesc();
441  unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
442  for (unsigned i = 0; i != NumOps; ++i) {
443    const MachineOperand &MO = MI.getOperand(i);
444    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
445      continue;
446    unsigned ti;
447    if (MI.isRegTiedToDefOperand(i, &ti)) {
448      DstReg = MI.getOperand(ti).getReg();
449      return true;
450    }
451  }
452  return false;
453}
454
455/// findOnlyInterestingUse - Given a register, if has a single in-basic block
456/// use, return the use instruction if it's a copy or a two-address use.
457static
458MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
459                                     MachineRegisterInfo *MRI,
460                                     const TargetInstrInfo *TII,
461                                     bool &IsCopy,
462                                     unsigned &DstReg, bool &IsDstPhys) {
463  if (!MRI->hasOneNonDBGUse(Reg))
464    // None or more than one use.
465    return 0;
466  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
467  if (UseMI.getParent() != MBB)
468    return 0;
469  unsigned SrcReg;
470  bool IsSrcPhys;
471  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
472    IsCopy = true;
473    return &UseMI;
474  }
475  IsDstPhys = false;
476  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
477    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
478    return &UseMI;
479  }
480  return 0;
481}
482
483/// getMappedReg - Return the physical register the specified virtual register
484/// might be mapped to.
485static unsigned
486getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
487  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
488    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
489    if (SI == RegMap.end())
490      return 0;
491    Reg = SI->second;
492  }
493  if (TargetRegisterInfo::isPhysicalRegister(Reg))
494    return Reg;
495  return 0;
496}
497
498/// regsAreCompatible - Return true if the two registers are equal or aliased.
499///
500static bool
501regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
502  if (RegA == RegB)
503    return true;
504  if (!RegA || !RegB)
505    return false;
506  return TRI->regsOverlap(RegA, RegB);
507}
508
509
510/// isProfitableToReMat - Return true if it's potentially profitable to commute
511/// the two-address instruction that's being processed.
512bool
513TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
514                                       MachineInstr *MI, MachineBasicBlock *MBB,
515                                       unsigned Dist) {
516  // Determine if it's profitable to commute this two address instruction. In
517  // general, we want no uses between this instruction and the definition of
518  // the two-address register.
519  // e.g.
520  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
521  // %reg1029<def> = MOV8rr %reg1028
522  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
523  // insert => %reg1030<def> = MOV8rr %reg1028
524  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
525  // In this case, it might not be possible to coalesce the second MOV8rr
526  // instruction if the first one is coalesced. So it would be profitable to
527  // commute it:
528  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
529  // %reg1029<def> = MOV8rr %reg1028
530  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
531  // insert => %reg1030<def> = MOV8rr %reg1029
532  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
533
534  if (!MI->killsRegister(regC))
535    return false;
536
537  // Ok, we have something like:
538  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
539  // let's see if it's worth commuting it.
540
541  // Look for situations like this:
542  // %reg1024<def> = MOV r1
543  // %reg1025<def> = MOV r0
544  // %reg1026<def> = ADD %reg1024, %reg1025
545  // r0            = MOV %reg1026
546  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
547  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
548  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
549  unsigned ToRegB = getMappedReg(regB, DstRegMap);
550  unsigned ToRegC = getMappedReg(regC, DstRegMap);
551  if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
552      (regsAreCompatible(FromRegB, ToRegC, TRI) ||
553       regsAreCompatible(FromRegC, ToRegB, TRI)))
554    return true;
555
556  // If there is a use of regC between its last def (could be livein) and this
557  // instruction, then bail.
558  unsigned LastDefC = 0;
559  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
560    return false;
561
562  // If there is a use of regB between its last def (could be livein) and this
563  // instruction, then go ahead and make this transformation.
564  unsigned LastDefB = 0;
565  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
566    return true;
567
568  // Since there are no intervening uses for both registers, then commute
569  // if the def of regC is closer. Its live interval is shorter.
570  return LastDefB && LastDefC && LastDefC > LastDefB;
571}
572
573/// CommuteInstruction - Commute a two-address instruction and update the basic
574/// block, distance map, and live variables if needed. Return true if it is
575/// successful.
576bool
577TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
578                               MachineFunction::iterator &mbbi,
579                               unsigned RegB, unsigned RegC, unsigned Dist) {
580  MachineInstr *MI = mi;
581  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
582  MachineInstr *NewMI = TII->commuteInstruction(MI);
583
584  if (NewMI == 0) {
585    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
586    return false;
587  }
588
589  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
590  // If the instruction changed to commute it, update livevar.
591  if (NewMI != MI) {
592    if (LV)
593      // Update live variables
594      LV->replaceKillInstruction(RegC, MI, NewMI);
595
596    mbbi->insert(mi, NewMI);           // Insert the new inst
597    mbbi->erase(mi);                   // Nuke the old inst.
598    mi = NewMI;
599    DistanceMap.insert(std::make_pair(NewMI, Dist));
600  }
601
602  // Update source register map.
603  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
604  if (FromRegC) {
605    unsigned RegA = MI->getOperand(0).getReg();
606    SrcRegMap[RegA] = FromRegC;
607  }
608
609  return true;
610}
611
612/// isProfitableToConv3Addr - Return true if it is profitable to convert the
613/// given 2-address instruction to a 3-address one.
614bool
615TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
616  // Look for situations like this:
617  // %reg1024<def> = MOV r1
618  // %reg1025<def> = MOV r0
619  // %reg1026<def> = ADD %reg1024, %reg1025
620  // r2            = MOV %reg1026
621  // Turn ADD into a 3-address instruction to avoid a copy.
622  unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
623  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
624  return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
625}
626
627/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
628/// three address one. Return true if this transformation was successful.
629bool
630TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
631                                              MachineBasicBlock::iterator &nmi,
632                                              MachineFunction::iterator &mbbi,
633                                              unsigned RegB, unsigned Dist) {
634  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
635  if (NewMI) {
636    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
637    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
638    bool Sunk = false;
639
640    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
641      // FIXME: Temporary workaround. If the new instruction doesn't
642      // uses RegB, convertToThreeAddress must have created more
643      // then one instruction.
644      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
645
646    mbbi->erase(mi); // Nuke the old inst.
647
648    if (!Sunk) {
649      DistanceMap.insert(std::make_pair(NewMI, Dist));
650      mi = NewMI;
651      nmi = llvm::next(mi);
652    }
653    return true;
654  }
655
656  return false;
657}
658
659/// ProcessCopy - If the specified instruction is not yet processed, process it
660/// if it's a copy. For a copy instruction, we find the physical registers the
661/// source and destination registers might be mapped to. These are kept in
662/// point-to maps used to determine future optimizations. e.g.
663/// v1024 = mov r0
664/// v1025 = mov r1
665/// v1026 = add v1024, v1025
666/// r1    = mov r1026
667/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
668/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
669/// potentially joined with r1 on the output side. It's worthwhile to commute
670/// 'add' to eliminate a copy.
671void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
672                                     MachineBasicBlock *MBB,
673                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
674  if (Processed.count(MI))
675    return;
676
677  bool IsSrcPhys, IsDstPhys;
678  unsigned SrcReg, DstReg;
679  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
680    return;
681
682  if (IsDstPhys && !IsSrcPhys)
683    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
684  else if (!IsDstPhys && IsSrcPhys) {
685    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
686    if (!isNew)
687      assert(SrcRegMap[DstReg] == SrcReg &&
688             "Can't map to two src physical registers!");
689
690    SmallVector<unsigned, 4> VirtRegPairs;
691    bool IsCopy = false;
692    unsigned NewReg = 0;
693    while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
694                                                   IsCopy, NewReg, IsDstPhys)) {
695      if (IsCopy) {
696        if (!Processed.insert(UseMI))
697          break;
698      }
699
700      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
701      if (DI != DistanceMap.end())
702        // Earlier in the same MBB.Reached via a back edge.
703        break;
704
705      if (IsDstPhys) {
706        VirtRegPairs.push_back(NewReg);
707        break;
708      }
709      bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
710      if (!isNew)
711        assert(SrcRegMap[NewReg] == DstReg &&
712               "Can't map to two src physical registers!");
713      VirtRegPairs.push_back(NewReg);
714      DstReg = NewReg;
715    }
716
717    if (!VirtRegPairs.empty()) {
718      unsigned ToReg = VirtRegPairs.back();
719      VirtRegPairs.pop_back();
720      while (!VirtRegPairs.empty()) {
721        unsigned FromReg = VirtRegPairs.back();
722        VirtRegPairs.pop_back();
723        bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
724        if (!isNew)
725          assert(DstRegMap[FromReg] == ToReg &&
726                 "Can't map to two dst physical registers!");
727        ToReg = FromReg;
728      }
729    }
730  }
731
732  Processed.insert(MI);
733}
734
735/// isSafeToDelete - If the specified instruction does not produce any side
736/// effects and all of its defs are dead, then it's safe to delete.
737static bool isSafeToDelete(MachineInstr *MI,
738                           const TargetInstrInfo *TII,
739                           SmallVector<unsigned, 4> &Kills) {
740  const TargetInstrDesc &TID = MI->getDesc();
741  if (TID.mayStore() || TID.isCall())
742    return false;
743  if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
744    return false;
745
746  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
747    MachineOperand &MO = MI->getOperand(i);
748    if (!MO.isReg())
749      continue;
750    if (MO.isDef() && !MO.isDead())
751      return false;
752    if (MO.isUse() && MO.isKill())
753      Kills.push_back(MO.getReg());
754  }
755  return true;
756}
757
758/// canUpdateDeletedKills - Check if all the registers listed in Kills are
759/// killed by instructions in MBB preceding the current instruction at
760/// position Dist.  If so, return true and record information about the
761/// preceding kills in NewKills.
762bool TwoAddressInstructionPass::
763canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
764                      SmallVector<NewKill, 4> &NewKills,
765                      MachineBasicBlock *MBB, unsigned Dist) {
766  while (!Kills.empty()) {
767    unsigned Kill = Kills.back();
768    Kills.pop_back();
769    if (TargetRegisterInfo::isPhysicalRegister(Kill))
770      return false;
771
772    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
773    if (!LastKill)
774      return false;
775
776    bool isModRef = LastKill->definesRegister(Kill);
777    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
778                                      LastKill));
779  }
780  return true;
781}
782
783/// DeleteUnusedInstr - If an instruction with a tied register operand can
784/// be safely deleted, just delete it.
785bool
786TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
787                                             MachineBasicBlock::iterator &nmi,
788                                             MachineFunction::iterator &mbbi,
789                                             unsigned Dist) {
790  // Check if the instruction has no side effects and if all its defs are dead.
791  SmallVector<unsigned, 4> Kills;
792  if (!isSafeToDelete(mi, TII, Kills))
793    return false;
794
795  // If this instruction kills some virtual registers, we need to
796  // update the kill information. If it's not possible to do so,
797  // then bail out.
798  SmallVector<NewKill, 4> NewKills;
799  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
800    return false;
801
802  if (LV) {
803    while (!NewKills.empty()) {
804      MachineInstr *NewKill = NewKills.back().second;
805      unsigned Kill = NewKills.back().first.first;
806      bool isDead = NewKills.back().first.second;
807      NewKills.pop_back();
808      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
809        if (isDead)
810          LV->addVirtualRegisterDead(Kill, NewKill);
811        else
812          LV->addVirtualRegisterKilled(Kill, NewKill);
813      }
814    }
815  }
816
817  mbbi->erase(mi); // Nuke the old inst.
818  mi = nmi;
819  return true;
820}
821
822/// TryInstructionTransform - For the case where an instruction has a single
823/// pair of tied register operands, attempt some transformations that may
824/// either eliminate the tied operands or improve the opportunities for
825/// coalescing away the register copy.  Returns true if the tied operands
826/// are eliminated altogether.
827bool TwoAddressInstructionPass::
828TryInstructionTransform(MachineBasicBlock::iterator &mi,
829                        MachineBasicBlock::iterator &nmi,
830                        MachineFunction::iterator &mbbi,
831                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
832  const TargetInstrDesc &TID = mi->getDesc();
833  unsigned regA = mi->getOperand(DstIdx).getReg();
834  unsigned regB = mi->getOperand(SrcIdx).getReg();
835
836  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
837         "cannot make instruction into two-address form");
838
839  // If regA is dead and the instruction can be deleted, just delete
840  // it so it doesn't clobber regB.
841  bool regBKilled = isKilled(*mi, regB, MRI, TII);
842  if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
843      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
844    ++NumDeletes;
845    return true; // Done with this instruction.
846  }
847
848  // Check if it is profitable to commute the operands.
849  unsigned SrcOp1, SrcOp2;
850  unsigned regC = 0;
851  unsigned regCIdx = ~0U;
852  bool TryCommute = false;
853  bool AggressiveCommute = false;
854  if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
855      TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
856    if (SrcIdx == SrcOp1)
857      regCIdx = SrcOp2;
858    else if (SrcIdx == SrcOp2)
859      regCIdx = SrcOp1;
860
861    if (regCIdx != ~0U) {
862      regC = mi->getOperand(regCIdx).getReg();
863      if (!regBKilled && isKilled(*mi, regC, MRI, TII))
864        // If C dies but B does not, swap the B and C operands.
865        // This makes the live ranges of A and C joinable.
866        TryCommute = true;
867      else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
868        TryCommute = true;
869        AggressiveCommute = true;
870      }
871    }
872  }
873
874  // If it's profitable to commute, try to do so.
875  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
876    ++NumCommuted;
877    if (AggressiveCommute)
878      ++NumAggrCommuted;
879    return false;
880  }
881
882  if (TID.isConvertibleTo3Addr()) {
883    // This instruction is potentially convertible to a true
884    // three-address instruction.  Check if it is profitable.
885    if (!regBKilled || isProfitableToConv3Addr(regA)) {
886      // Try to convert it.
887      if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
888        ++NumConvertedTo3Addr;
889        return true; // Done with this instruction.
890      }
891    }
892  }
893
894  // If this is an instruction with a load folded into it, try unfolding
895  // the load, e.g. avoid this:
896  //   movq %rdx, %rcx
897  //   addq (%rax), %rcx
898  // in favor of this:
899  //   movq (%rax), %rcx
900  //   addq %rdx, %rcx
901  // because it's preferable to schedule a load than a register copy.
902  if (TID.mayLoad() && !regBKilled) {
903    // Determine if a load can be unfolded.
904    unsigned LoadRegIndex;
905    unsigned NewOpc =
906      TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
907                                      /*UnfoldLoad=*/true,
908                                      /*UnfoldStore=*/false,
909                                      &LoadRegIndex);
910    if (NewOpc != 0) {
911      const TargetInstrDesc &UnfoldTID = TII->get(NewOpc);
912      if (UnfoldTID.getNumDefs() == 1) {
913        MachineFunction &MF = *mbbi->getParent();
914
915        // Unfold the load.
916        DEBUG(dbgs() << "2addr:   UNFOLDING: " << *mi);
917        const TargetRegisterClass *RC =
918          UnfoldTID.OpInfo[LoadRegIndex].getRegClass(TRI);
919        unsigned Reg = MRI->createVirtualRegister(RC);
920        SmallVector<MachineInstr *, 2> NewMIs;
921        if (!TII->unfoldMemoryOperand(MF, mi, Reg,
922                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
923                                      NewMIs)) {
924          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
925          return false;
926        }
927        assert(NewMIs.size() == 2 &&
928               "Unfolded a load into multiple instructions!");
929        // The load was previously folded, so this is the only use.
930        NewMIs[1]->addRegisterKilled(Reg, TRI);
931
932        // Tentatively insert the instructions into the block so that they
933        // look "normal" to the transformation logic.
934        mbbi->insert(mi, NewMIs[0]);
935        mbbi->insert(mi, NewMIs[1]);
936
937        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
938                     << "2addr:    NEW INST: " << *NewMIs[1]);
939
940        // Transform the instruction, now that it no longer has a load.
941        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
942        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
943        MachineBasicBlock::iterator NewMI = NewMIs[1];
944        bool TransformSuccess =
945          TryInstructionTransform(NewMI, mi, mbbi,
946                                  NewSrcIdx, NewDstIdx, Dist);
947        if (TransformSuccess ||
948            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
949          // Success, or at least we made an improvement. Keep the unfolded
950          // instructions and discard the original.
951          if (LV) {
952            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
953              MachineOperand &MO = mi->getOperand(i);
954              if (MO.isReg() && MO.getReg() != 0 &&
955                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
956                if (MO.isUse()) {
957                  if (MO.isKill()) {
958                    if (NewMIs[0]->killsRegister(MO.getReg()))
959                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
960                    else {
961                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
962                             "Kill missing after load unfold!");
963                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
964                    }
965                  }
966                } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
967                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
968                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
969                  else {
970                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
971                           "Dead flag missing after load unfold!");
972                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
973                  }
974                }
975              }
976            }
977            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
978          }
979          mi->eraseFromParent();
980          mi = NewMIs[1];
981          if (TransformSuccess)
982            return true;
983        } else {
984          // Transforming didn't eliminate the tie and didn't lead to an
985          // improvement. Clean up the unfolded instructions and keep the
986          // original.
987          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
988          NewMIs[0]->eraseFromParent();
989          NewMIs[1]->eraseFromParent();
990        }
991      }
992    }
993  }
994
995  return false;
996}
997
998/// runOnMachineFunction - Reduce two-address instructions to two operands.
999///
1000bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1001  DEBUG(dbgs() << "Machine Function\n");
1002  const TargetMachine &TM = MF.getTarget();
1003  MRI = &MF.getRegInfo();
1004  TII = TM.getInstrInfo();
1005  TRI = TM.getRegisterInfo();
1006  LV = getAnalysisIfAvailable<LiveVariables>();
1007  AA = &getAnalysis<AliasAnalysis>();
1008
1009  bool MadeChange = false;
1010
1011  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1012  DEBUG(dbgs() << "********** Function: "
1013        << MF.getFunction()->getName() << '\n');
1014
1015  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1016  BitVector ReMatRegs;
1017  ReMatRegs.resize(MRI->getLastVirtReg()+1);
1018
1019  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1020    TiedOperandMap;
1021  TiedOperandMap TiedOperands(4);
1022
1023  SmallPtrSet<MachineInstr*, 8> Processed;
1024  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1025       mbbi != mbbe; ++mbbi) {
1026    unsigned Dist = 0;
1027    DistanceMap.clear();
1028    SrcRegMap.clear();
1029    DstRegMap.clear();
1030    Processed.clear();
1031    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1032         mi != me; ) {
1033      MachineBasicBlock::iterator nmi = llvm::next(mi);
1034      if (mi->isDebugValue()) {
1035        mi = nmi;
1036        continue;
1037      }
1038
1039      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1040      if (mi->isRegSequence())
1041        RegSequences.push_back(&*mi);
1042
1043      const TargetInstrDesc &TID = mi->getDesc();
1044      bool FirstTied = true;
1045
1046      DistanceMap.insert(std::make_pair(mi, ++Dist));
1047
1048      ProcessCopy(&*mi, &*mbbi, Processed);
1049
1050      // First scan through all the tied register uses in this instruction
1051      // and record a list of pairs of tied operands for each register.
1052      unsigned NumOps = mi->isInlineAsm()
1053        ? mi->getNumOperands() : TID.getNumOperands();
1054      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1055        unsigned DstIdx = 0;
1056        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1057          continue;
1058
1059        if (FirstTied) {
1060          FirstTied = false;
1061          ++NumTwoAddressInstrs;
1062          DEBUG(dbgs() << '\t' << *mi);
1063        }
1064
1065        assert(mi->getOperand(SrcIdx).isReg() &&
1066               mi->getOperand(SrcIdx).getReg() &&
1067               mi->getOperand(SrcIdx).isUse() &&
1068               "two address instruction invalid");
1069
1070        unsigned regB = mi->getOperand(SrcIdx).getReg();
1071        TiedOperandMap::iterator OI = TiedOperands.find(regB);
1072        if (OI == TiedOperands.end()) {
1073          SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
1074          OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
1075        }
1076        OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
1077      }
1078
1079      // Now iterate over the information collected above.
1080      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1081             OE = TiedOperands.end(); OI != OE; ++OI) {
1082        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1083
1084        // If the instruction has a single pair of tied operands, try some
1085        // transformations that may either eliminate the tied operands or
1086        // improve the opportunities for coalescing away the register copy.
1087        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1088          unsigned SrcIdx = TiedPairs[0].first;
1089          unsigned DstIdx = TiedPairs[0].second;
1090
1091          // If the registers are already equal, nothing needs to be done.
1092          if (mi->getOperand(SrcIdx).getReg() ==
1093              mi->getOperand(DstIdx).getReg())
1094            break; // Done with this instruction.
1095
1096          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
1097            break; // The tied operands have been eliminated.
1098        }
1099
1100        bool RemovedKillFlag = false;
1101        bool AllUsesCopied = true;
1102        unsigned LastCopiedReg = 0;
1103        unsigned regB = OI->first;
1104        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1105          unsigned SrcIdx = TiedPairs[tpi].first;
1106          unsigned DstIdx = TiedPairs[tpi].second;
1107          unsigned regA = mi->getOperand(DstIdx).getReg();
1108          // Grab regB from the instruction because it may have changed if the
1109          // instruction was commuted.
1110          regB = mi->getOperand(SrcIdx).getReg();
1111
1112          if (regA == regB) {
1113            // The register is tied to multiple destinations (or else we would
1114            // not have continued this far), but this use of the register
1115            // already matches the tied destination.  Leave it.
1116            AllUsesCopied = false;
1117            continue;
1118          }
1119          LastCopiedReg = regA;
1120
1121          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1122                 "cannot make instruction into two-address form");
1123
1124#ifndef NDEBUG
1125          // First, verify that we don't have a use of "a" in the instruction
1126          // (a = b + a for example) because our transformation will not
1127          // work. This should never occur because we are in SSA form.
1128          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1129            assert(i == DstIdx ||
1130                   !mi->getOperand(i).isReg() ||
1131                   mi->getOperand(i).getReg() != regA);
1132#endif
1133
1134          // Emit a copy or rematerialize the definition.
1135          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1136          MachineInstr *DefMI = MRI->getVRegDef(regB);
1137          // If it's safe and profitable, remat the definition instead of
1138          // copying it.
1139          if (DefMI &&
1140              DefMI->getDesc().isAsCheapAsAMove() &&
1141              DefMI->isSafeToReMat(TII, AA, regB) &&
1142              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1143            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1144            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1145            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1146            ReMatRegs.set(regB);
1147            ++NumReMats;
1148          } else {
1149            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1150                    regA).addReg(regB);
1151          }
1152
1153          MachineBasicBlock::iterator prevMI = prior(mi);
1154          // Update DistanceMap.
1155          DistanceMap.insert(std::make_pair(prevMI, Dist));
1156          DistanceMap[mi] = ++Dist;
1157
1158          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1159
1160          MachineOperand &MO = mi->getOperand(SrcIdx);
1161          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1162                 "inconsistent operand info for 2-reg pass");
1163          if (MO.isKill()) {
1164            MO.setIsKill(false);
1165            RemovedKillFlag = true;
1166          }
1167          MO.setReg(regA);
1168        }
1169
1170        if (AllUsesCopied) {
1171          // Replace other (un-tied) uses of regB with LastCopiedReg.
1172          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1173            MachineOperand &MO = mi->getOperand(i);
1174            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1175              if (MO.isKill()) {
1176                MO.setIsKill(false);
1177                RemovedKillFlag = true;
1178              }
1179              MO.setReg(LastCopiedReg);
1180            }
1181          }
1182
1183          // Update live variables for regB.
1184          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1185            LV->addVirtualRegisterKilled(regB, prior(mi));
1186
1187        } else if (RemovedKillFlag) {
1188          // Some tied uses of regB matched their destination registers, so
1189          // regB is still used in this instruction, but a kill flag was
1190          // removed from a different tied use of regB, so now we need to add
1191          // a kill flag to one of the remaining uses of regB.
1192          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1193            MachineOperand &MO = mi->getOperand(i);
1194            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1195              MO.setIsKill(true);
1196              break;
1197            }
1198          }
1199        }
1200
1201        // Schedule the source copy / remat inserted to form two-address
1202        // instruction. FIXME: Does it matter the distance map may not be
1203        // accurate after it's scheduled?
1204        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1205
1206        MadeChange = true;
1207
1208        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1209      }
1210
1211      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1212      if (mi->isInsertSubreg()) {
1213        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1214        // To   %reg:subidx = COPY %subreg
1215        unsigned SubIdx = mi->getOperand(3).getImm();
1216        mi->RemoveOperand(3);
1217        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1218        mi->getOperand(0).setSubReg(SubIdx);
1219        mi->RemoveOperand(1);
1220        mi->setDesc(TII->get(TargetOpcode::COPY));
1221        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1222      }
1223
1224      // Clear TiedOperands here instead of at the top of the loop
1225      // since most instructions do not have tied operands.
1226      TiedOperands.clear();
1227      mi = nmi;
1228    }
1229  }
1230
1231  // Some remat'ed instructions are dead.
1232  int VReg = ReMatRegs.find_first();
1233  while (VReg != -1) {
1234    if (MRI->use_nodbg_empty(VReg)) {
1235      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1236      DefMI->eraseFromParent();
1237    }
1238    VReg = ReMatRegs.find_next(VReg);
1239  }
1240
1241  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1242  // SSA form. It's now safe to de-SSA.
1243  MadeChange |= EliminateRegSequences();
1244
1245  return MadeChange;
1246}
1247
1248static void UpdateRegSequenceSrcs(unsigned SrcReg,
1249                                  unsigned DstReg, unsigned SubIdx,
1250                                  MachineRegisterInfo *MRI,
1251                                  const TargetRegisterInfo &TRI) {
1252  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1253         RE = MRI->reg_end(); RI != RE; ) {
1254    MachineOperand &MO = RI.getOperand();
1255    ++RI;
1256    MO.substVirtReg(DstReg, SubIdx, TRI);
1257  }
1258}
1259
1260/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1261/// EXTRACT_SUBREG from the same register and to the same virtual register
1262/// with different sub-register indices, attempt to combine the
1263/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1264/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1265/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1266/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1267/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1268/// reg1026 to reg1029.
1269void
1270TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1271                                              unsigned DstReg) {
1272  SmallSet<unsigned, 4> Seen;
1273  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1274    unsigned SrcReg = Srcs[i];
1275    if (!Seen.insert(SrcReg))
1276      continue;
1277
1278    // Check that the instructions are all in the same basic block.
1279    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1280    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1281    if (SrcDefMI->getParent() != DstDefMI->getParent())
1282      continue;
1283
1284    // If there are no other uses than copies which feed into
1285    // the reg_sequence, then we might be able to coalesce them.
1286    bool CanCoalesce = true;
1287    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1288    for (MachineRegisterInfo::use_nodbg_iterator
1289           UI = MRI->use_nodbg_begin(SrcReg),
1290           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1291      MachineInstr *UseMI = &*UI;
1292      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1293        CanCoalesce = false;
1294        break;
1295      }
1296      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1297      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1298    }
1299
1300    if (!CanCoalesce || SrcSubIndices.size() < 2)
1301      continue;
1302
1303    // Check that the source subregisters can be combined.
1304    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1305    unsigned NewSrcSubIdx = 0;
1306    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1307                                      NewSrcSubIdx))
1308      continue;
1309
1310    // Check that the destination subregisters can also be combined.
1311    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1312    unsigned NewDstSubIdx = 0;
1313    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1314                                      NewDstSubIdx))
1315      continue;
1316
1317    // If neither source nor destination can be combined to the full register,
1318    // just give up.  This could be improved if it ever matters.
1319    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1320      continue;
1321
1322    // Now that we know that all the uses are extract_subregs and that those
1323    // subregs can somehow be combined, scan all the extract_subregs again to
1324    // make sure the subregs are in the right order and can be composed.
1325    MachineInstr *SomeMI = 0;
1326    CanCoalesce = true;
1327    for (MachineRegisterInfo::use_nodbg_iterator
1328           UI = MRI->use_nodbg_begin(SrcReg),
1329           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1330      MachineInstr *UseMI = &*UI;
1331      assert(UseMI->isCopy());
1332      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1333      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1334      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1335      if ((NewDstSubIdx == 0 &&
1336           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1337          (NewSrcSubIdx == 0 &&
1338           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1339        CanCoalesce = false;
1340        break;
1341      }
1342      // Keep track of one of the uses.
1343      SomeMI = UseMI;
1344    }
1345    if (!CanCoalesce)
1346      continue;
1347
1348    // Insert a copy to replace the original.
1349    MachineBasicBlock::iterator InsertLoc = SomeMI;
1350    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1351                                   SomeMI->getDebugLoc(),
1352                                   TII->get(TargetOpcode::COPY))
1353      .addReg(DstReg, RegState::Define, NewDstSubIdx)
1354      .addReg(SrcReg, 0, NewSrcSubIdx);
1355
1356    // Remove all the old extract instructions.
1357    for (MachineRegisterInfo::use_nodbg_iterator
1358           UI = MRI->use_nodbg_begin(SrcReg),
1359           UE = MRI->use_nodbg_end(); UI != UE; ) {
1360      MachineInstr *UseMI = &*UI;
1361      ++UI;
1362      if (UseMI == CopyMI)
1363        continue;
1364      assert(UseMI->isCopy());
1365      // Move any kills to the new copy or extract instruction.
1366      if (UseMI->getOperand(1).isKill()) {
1367        CopyMI->getOperand(1).setIsKill();
1368        if (LV)
1369          // Update live variables
1370          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1371      }
1372      UseMI->eraseFromParent();
1373    }
1374  }
1375}
1376
1377static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1378                                    MachineRegisterInfo *MRI) {
1379  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1380         UE = MRI->use_end(); UI != UE; ++UI) {
1381    MachineInstr *UseMI = &*UI;
1382    if (UseMI != RegSeq && UseMI->isRegSequence())
1383      return true;
1384  }
1385  return false;
1386}
1387
1388/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1389/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1390/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1391///
1392/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1393/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1394/// =>
1395/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1396bool TwoAddressInstructionPass::EliminateRegSequences() {
1397  if (RegSequences.empty())
1398    return false;
1399
1400  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1401    MachineInstr *MI = RegSequences[i];
1402    unsigned DstReg = MI->getOperand(0).getReg();
1403    if (MI->getOperand(0).getSubReg() ||
1404        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1405        !(MI->getNumOperands() & 1)) {
1406      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1407      llvm_unreachable(0);
1408    }
1409
1410    bool IsImpDef = true;
1411    SmallVector<unsigned, 4> RealSrcs;
1412    SmallSet<unsigned, 4> Seen;
1413    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1414      unsigned SrcReg = MI->getOperand(i).getReg();
1415      if (MI->getOperand(i).getSubReg() ||
1416          TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1417        DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1418        llvm_unreachable(0);
1419      }
1420
1421      MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1422      if (DefMI->isImplicitDef()) {
1423        DefMI->eraseFromParent();
1424        continue;
1425      }
1426      IsImpDef = false;
1427
1428      // Remember COPY sources. These might be candidate for coalescing.
1429      if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1430        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1431
1432      bool isKill = MI->getOperand(i).isKill();
1433      if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1434          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI)) {
1435        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1436        // Also add an copy if the source is live-in the block. We don't want
1437        // to end up with a partial-redef of a livein, e.g.
1438        // BB0:
1439        // reg1051:10<def> =
1440        // ...
1441        // BB1:
1442        // ... = reg1051:10
1443        // BB2:
1444        // reg1051:9<def> =
1445        // LiveIntervalAnalysis won't like it.
1446        //
1447        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1448        // correctly up to date becomes very difficult. Insert a copy.
1449        //
1450        MachineBasicBlock::iterator InsertLoc = MI;
1451        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1452                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1453            .addReg(DstReg, RegState::Define, MI->getOperand(i+1).getImm())
1454            .addReg(SrcReg, getKillRegState(isKill));
1455        MI->getOperand(i).setReg(0);
1456        if (LV && isKill)
1457          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1458        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1459      }
1460    }
1461
1462    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1463      unsigned SrcReg = MI->getOperand(i).getReg();
1464      if (!SrcReg) continue;
1465      unsigned SubIdx = MI->getOperand(i+1).getImm();
1466      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1467    }
1468
1469    if (IsImpDef) {
1470      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1471      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1472      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1473        MI->RemoveOperand(j);
1474    } else {
1475      DEBUG(dbgs() << "Eliminated: " << *MI);
1476      MI->eraseFromParent();
1477    }
1478
1479    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1480    // INSERT_SUBREG instructions that must have <undef> flags added by
1481    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1482    if (LV)
1483      CoalesceExtSubRegs(RealSrcs, DstReg);
1484  }
1485
1486  RegSequences.clear();
1487  return true;
1488}
1489