TwoAddressInstructionPass.cpp revision 28c7ce3fd44143b595f05436edbaebea9e5d47c3
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/DenseMap.h"
45#include "llvm/ADT/SmallSet.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/STLExtras.h"
48using namespace llvm;
49
50STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
51STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
52STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
53STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
54STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
55STATISTIC(NumReMats,           "Number of instructions re-materialized");
56STATISTIC(NumDeletes,          "Number of dead instructions deleted");
57
58namespace {
59  class VISIBILITY_HIDDEN TwoAddressInstructionPass
60    : public MachineFunctionPass {
61    const TargetInstrInfo *TII;
62    const TargetRegisterInfo *TRI;
63    MachineRegisterInfo *MRI;
64    LiveVariables *LV;
65
66    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
67                              unsigned Reg,
68                              MachineBasicBlock::iterator OldPos);
69
70    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
71                             MachineInstr *MI, MachineInstr *DefMI,
72                             MachineBasicBlock *MBB, unsigned Loc,
73                             DenseMap<MachineInstr*, unsigned> &DistanceMap);
74
75    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
76                           DenseMap<MachineInstr*, unsigned> &DistanceMap,
77                           unsigned &LastDef);
78
79    bool isProfitableToCommute(unsigned regB, unsigned regC,
80                               MachineInstr *MI, MachineBasicBlock *MBB,
81                               unsigned Dist,
82                               DenseMap<MachineInstr*, unsigned> &DistanceMap);
83
84    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
85                            MachineFunction::iterator &mbbi,
86                            unsigned RegC, unsigned Dist,
87                            DenseMap<MachineInstr*, unsigned> &DistanceMap);
88  public:
89    static char ID; // Pass identification, replacement for typeid
90    TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
91
92    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
93      AU.addPreserved<LiveVariables>();
94      AU.addPreservedID(MachineLoopInfoID);
95      AU.addPreservedID(MachineDominatorsID);
96      if (StrongPHIElim)
97        AU.addPreservedID(StrongPHIEliminationID);
98      else
99        AU.addPreservedID(PHIEliminationID);
100      MachineFunctionPass::getAnalysisUsage(AU);
101    }
102
103    /// runOnMachineFunction - Pass entry point.
104    bool runOnMachineFunction(MachineFunction&);
105  };
106}
107
108char TwoAddressInstructionPass::ID = 0;
109static RegisterPass<TwoAddressInstructionPass>
110X("twoaddressinstruction", "Two-Address instruction pass");
111
112const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
113
114/// Sink3AddrInstruction - A two-address instruction has been converted to a
115/// three-address instruction to avoid clobbering a register. Try to sink it
116/// past the instruction that would kill the above mentioned register to reduce
117/// register pressure.
118bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
119                                           MachineInstr *MI, unsigned SavedReg,
120                                           MachineBasicBlock::iterator OldPos) {
121  // Check if it's safe to move this instruction.
122  bool SeenStore = true; // Be conservative.
123  if (!MI->isSafeToMove(TII, SeenStore))
124    return false;
125
126  unsigned DefReg = 0;
127  SmallSet<unsigned, 4> UseRegs;
128
129  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
130    const MachineOperand &MO = MI->getOperand(i);
131    if (!MO.isReg())
132      continue;
133    unsigned MOReg = MO.getReg();
134    if (!MOReg)
135      continue;
136    if (MO.isUse() && MOReg != SavedReg)
137      UseRegs.insert(MO.getReg());
138    if (!MO.isDef())
139      continue;
140    if (MO.isImplicit())
141      // Don't try to move it if it implicitly defines a register.
142      return false;
143    if (DefReg)
144      // For now, don't move any instructions that define multiple registers.
145      return false;
146    DefReg = MO.getReg();
147  }
148
149  // Find the instruction that kills SavedReg.
150  MachineInstr *KillMI = NULL;
151  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
152         UE = MRI->use_end(); UI != UE; ++UI) {
153    MachineOperand &UseMO = UI.getOperand();
154    if (!UseMO.isKill())
155      continue;
156    KillMI = UseMO.getParent();
157    break;
158  }
159
160  if (!KillMI || KillMI->getParent() != MBB)
161    return false;
162
163  // If any of the definitions are used by another instruction between the
164  // position and the kill use, then it's not safe to sink it.
165  //
166  // FIXME: This can be sped up if there is an easy way to query whether an
167  // instruction is before or after another instruction. Then we can use
168  // MachineRegisterInfo def / use instead.
169  MachineOperand *KillMO = NULL;
170  MachineBasicBlock::iterator KillPos = KillMI;
171  ++KillPos;
172
173  unsigned NumVisited = 0;
174  for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
175    MachineInstr *OtherMI = I;
176    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
177      return false;
178    ++NumVisited;
179    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
180      MachineOperand &MO = OtherMI->getOperand(i);
181      if (!MO.isReg())
182        continue;
183      unsigned MOReg = MO.getReg();
184      if (!MOReg)
185        continue;
186      if (DefReg == MOReg)
187        return false;
188
189      if (MO.isKill()) {
190        if (OtherMI == KillMI && MOReg == SavedReg)
191          // Save the operand that kills the register. We want to unset the kill
192          // marker if we can sink MI past it.
193          KillMO = &MO;
194        else if (UseRegs.count(MOReg))
195          // One of the uses is killed before the destination.
196          return false;
197      }
198    }
199  }
200
201  // Update kill and LV information.
202  KillMO->setIsKill(false);
203  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
204  KillMO->setIsKill(true);
205
206  if (LV)
207    LV->replaceKillInstruction(SavedReg, KillMI, MI);
208
209  // Move instruction to its destination.
210  MBB->remove(MI);
211  MBB->insert(KillPos, MI);
212
213  ++Num3AddrSunk;
214  return true;
215}
216
217/// isTwoAddrUse - Return true if the specified MI is using the specified
218/// register as a two-address operand.
219static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
220  const TargetInstrDesc &TID = UseMI->getDesc();
221  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
222    MachineOperand &MO = UseMI->getOperand(i);
223    if (MO.isReg() && MO.getReg() == Reg &&
224        (MO.isDef() || TID.getOperandConstraint(i, TOI::TIED_TO) != -1))
225      // Earlier use is a two-address one.
226      return true;
227  }
228  return false;
229}
230
231/// isProfitableToReMat - Return true if the heuristics determines it is likely
232/// to be profitable to re-materialize the definition of Reg rather than copy
233/// the register.
234bool
235TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
236                                const TargetRegisterClass *RC,
237                                MachineInstr *MI, MachineInstr *DefMI,
238                                MachineBasicBlock *MBB, unsigned Loc,
239                                DenseMap<MachineInstr*, unsigned> &DistanceMap){
240  bool OtherUse = false;
241  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
242         UE = MRI->use_end(); UI != UE; ++UI) {
243    MachineOperand &UseMO = UI.getOperand();
244    MachineInstr *UseMI = UseMO.getParent();
245    MachineBasicBlock *UseMBB = UseMI->getParent();
246    if (UseMBB == MBB) {
247      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
248      if (DI != DistanceMap.end() && DI->second == Loc)
249        continue;  // Current use.
250      OtherUse = true;
251      // There is at least one other use in the MBB that will clobber the
252      // register.
253      if (isTwoAddrUse(UseMI, Reg))
254        return true;
255    }
256  }
257
258  // If other uses in MBB are not two-address uses, then don't remat.
259  if (OtherUse)
260    return false;
261
262  // No other uses in the same block, remat if it's defined in the same
263  // block so it does not unnecessarily extend the live range.
264  return MBB == DefMI->getParent();
265}
266
267/// NoUseAfterLastDef - Return true if there are no intervening uses between the
268/// last instruction in the MBB that defines the specified register and the
269/// two-address instruction which is being processed. It also returns the last
270/// def location by reference
271bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
272                                 MachineBasicBlock *MBB, unsigned Dist,
273                                 DenseMap<MachineInstr*, unsigned> &DistanceMap,
274                                 unsigned &LastDef) {
275  LastDef = 0;
276  unsigned LastUse = Dist;
277  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
278         E = MRI->reg_end(); I != E; ++I) {
279    MachineOperand &MO = I.getOperand();
280    MachineInstr *MI = MO.getParent();
281    if (MI->getParent() != MBB)
282      continue;
283    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
284    if (DI == DistanceMap.end())
285      continue;
286    if (MO.isUse() && DI->second < LastUse)
287      LastUse = DI->second;
288    if (MO.isDef() && DI->second > LastDef)
289      LastDef = DI->second;
290  }
291
292  return !(LastUse > LastDef && LastUse < Dist);
293}
294
295/// isProfitableToReMat - Return true if it's potentially profitable to commute
296/// the two-address instruction that's being processed.
297bool
298TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
299                MachineInstr *MI, MachineBasicBlock *MBB,
300                unsigned Dist, DenseMap<MachineInstr*, unsigned> &DistanceMap) {
301  // Determine if it's profitable to commute this two address instruction. In
302  // general, we want no uses between this instruction and the definition of
303  // the two-address register.
304  // e.g.
305  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
306  // %reg1029<def> = MOV8rr %reg1028
307  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
308  // insert => %reg1030<def> = MOV8rr %reg1028
309  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
310  // In this case, it might not be possible to coalesce the second MOV8rr
311  // instruction if the first one is coalesced. So it would be profitable to
312  // commute it:
313  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
314  // %reg1029<def> = MOV8rr %reg1028
315  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
316  // insert => %reg1030<def> = MOV8rr %reg1029
317  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
318
319  if (!MI->killsRegister(regC))
320    return false;
321
322  // Ok, we have something like:
323  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
324  // let's see if it's worth commuting it.
325
326  // If there is a use of regC between its last def (could be livein) and this
327  // instruction, then bail.
328  unsigned LastDefC = 0;
329  if (!NoUseAfterLastDef(regC, MBB, Dist, DistanceMap, LastDefC))
330    return false;
331
332  // If there is a use of regB between its last def (could be livein) and this
333  // instruction, then go ahead and make this transformation.
334  unsigned LastDefB = 0;
335  if (!NoUseAfterLastDef(regB, MBB, Dist, DistanceMap, LastDefB))
336    return true;
337
338  // Since there are no intervening uses for both registers, then commute
339  // if the def of regC is closer. Its live interval is shorter.
340  return LastDefB && LastDefC && LastDefC > LastDefB;
341}
342
343/// CommuteInstruction - Commute a two-address instruction and update the basic
344/// block, distance map, and live variables if needed. Return true if it is
345/// successful.
346bool
347TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
348                                              MachineFunction::iterator &mbbi,
349                                              unsigned RegC, unsigned Dist,
350                               DenseMap<MachineInstr*, unsigned> &DistanceMap) {
351  MachineInstr *MI = mi;
352  DOUT << "2addr: COMMUTING  : " << *MI;
353  MachineInstr *NewMI = TII->commuteInstruction(MI);
354
355  if (NewMI == 0) {
356    DOUT << "2addr: COMMUTING FAILED!\n";
357    return false;
358  }
359
360  DOUT << "2addr: COMMUTED TO: " << *NewMI;
361  // If the instruction changed to commute it, update livevar.
362  if (NewMI != MI) {
363    if (LV)
364      // Update live variables
365      LV->replaceKillInstruction(RegC, MI, NewMI);
366
367    mbbi->insert(mi, NewMI);           // Insert the new inst
368    mbbi->erase(mi);                   // Nuke the old inst.
369    mi = NewMI;
370    DistanceMap.insert(std::make_pair(NewMI, Dist));
371  }
372  return true;
373}
374
375/// isSafeToDelete - If the specified instruction does not produce any side
376/// effects and all of its defs are dead, then it's safe to delete.
377static bool isSafeToDelete(MachineInstr *MI, const TargetInstrInfo *TII) {
378  const TargetInstrDesc &TID = MI->getDesc();
379  if (TID.mayStore() || TID.isCall())
380    return false;
381  if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
382    return false;
383
384  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
385    MachineOperand &MO = MI->getOperand(i);
386    if (!MO.isReg() || !MO.isDef())
387      continue;
388    if (!MO.isDead())
389      return false;
390  }
391
392  return true;
393}
394
395/// runOnMachineFunction - Reduce two-address instructions to two operands.
396///
397bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
398  DOUT << "Machine Function\n";
399  const TargetMachine &TM = MF.getTarget();
400  MRI = &MF.getRegInfo();
401  TII = TM.getInstrInfo();
402  TRI = TM.getRegisterInfo();
403  LV = getAnalysisIfAvailable<LiveVariables>();
404
405  bool MadeChange = false;
406
407  DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
408  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
409
410  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
411  BitVector ReMatRegs;
412  ReMatRegs.resize(MRI->getLastVirtReg()+1);
413
414  // DistanceMap - Keep track the distance of a MI from the start of the
415  // current basic block.
416  DenseMap<MachineInstr*, unsigned> DistanceMap;
417
418  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
419       mbbi != mbbe; ++mbbi) {
420    unsigned Dist = 0;
421    DistanceMap.clear();
422    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
423         mi != me; ) {
424      MachineBasicBlock::iterator nmi = next(mi);
425      const TargetInstrDesc &TID = mi->getDesc();
426      bool FirstTied = true;
427
428      DistanceMap.insert(std::make_pair(mi, ++Dist));
429      for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) {
430        int ti = TID.getOperandConstraint(si, TOI::TIED_TO);
431        if (ti == -1)
432          continue;
433
434        if (FirstTied) {
435          ++NumTwoAddressInstrs;
436          DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
437        }
438
439        FirstTied = false;
440
441        assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
442               mi->getOperand(si).isUse() && "two address instruction invalid");
443
444        // If the two operands are the same we just remove the use
445        // and mark the def as def&use, otherwise we have to insert a copy.
446        if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
447          // Rewrite:
448          //     a = b op c
449          // to:
450          //     a = b
451          //     a = a op c
452          unsigned regA = mi->getOperand(ti).getReg();
453          unsigned regB = mi->getOperand(si).getReg();
454
455          assert(TargetRegisterInfo::isVirtualRegister(regA) &&
456                 TargetRegisterInfo::isVirtualRegister(regB) &&
457                 "cannot update physical register live information");
458
459#ifndef NDEBUG
460          // First, verify that we don't have a use of a in the instruction (a =
461          // b + a for example) because our transformation will not work. This
462          // should never occur because we are in SSA form.
463          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
464            assert((int)i == ti ||
465                   !mi->getOperand(i).isReg() ||
466                   mi->getOperand(i).getReg() != regA);
467#endif
468
469          // If this instruction is not the killing user of B, see if we can
470          // rearrange the code to make it so.  Making it the killing user will
471          // allow us to coalesce A and B together, eliminating the copy we are
472          // about to insert.
473          if (!mi->killsRegister(regB)) {
474            // If regA is dead and the instruction can be deleted, just delete
475            // it so it doesn't clobber regB.
476            if (mi->getOperand(ti).isDead() && isSafeToDelete(mi, TII)) {
477              mbbi->erase(mi); // Nuke the old inst.
478              mi = nmi;
479              ++NumDeletes;
480              break; // Done with this instruction.
481            }
482
483            // If this instruction is commutative, check to see if C dies.  If
484            // so, swap the B and C operands.  This makes the live ranges of A
485            // and C joinable.
486            // FIXME: This code also works for A := B op C instructions.
487            if (TID.isCommutable() && mi->getNumOperands() >= 3) {
488              assert(mi->getOperand(3-si).isReg() &&
489                     "Not a proper commutative instruction!");
490              unsigned regC = mi->getOperand(3-si).getReg();
491              if (mi->killsRegister(regC)) {
492                if (CommuteInstruction(mi, mbbi, regC, Dist, DistanceMap)) {
493                  ++NumCommuted;
494                  regB = regC;
495                  goto InstructionRearranged;
496                }
497              }
498            }
499
500            // If this instruction is potentially convertible to a true
501            // three-address instruction,
502            if (TID.isConvertibleTo3Addr()) {
503              // FIXME: This assumes there are no more operands which are tied
504              // to another register.
505#ifndef NDEBUG
506              for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
507                assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
508#endif
509
510              MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
511              if (NewMI) {
512                DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
513                DOUT << "2addr:         TO 3-ADDR: " << *NewMI;
514                bool Sunk = false;
515
516                if (NewMI->findRegisterUseOperand(regB, false, TRI))
517                  // FIXME: Temporary workaround. If the new instruction doesn't
518                  // uses regB, convertToThreeAddress must have created more
519                  // then one instruction.
520                  Sunk = Sink3AddrInstruction(mbbi, NewMI, regB, mi);
521
522                mbbi->erase(mi); // Nuke the old inst.
523
524                if (!Sunk) {
525                  DistanceMap.insert(std::make_pair(NewMI, Dist));
526                  mi = NewMI;
527                  nmi = next(mi);
528                }
529
530                ++NumConvertedTo3Addr;
531                break; // Done with this instruction.
532              }
533            }
534          }
535
536          // If it's profitable to commute the instruction, do so.
537          if (TID.isCommutable() && mi->getNumOperands() >= 3) {
538            unsigned regC = mi->getOperand(3-si).getReg();
539            if (isProfitableToCommute(regB, regC, mi, mbbi, Dist, DistanceMap))
540              if (CommuteInstruction(mi, mbbi, regC, Dist, DistanceMap)) {
541                ++NumAggrCommuted;
542                ++NumCommuted;
543                regB = regC;
544              }
545          }
546
547        InstructionRearranged:
548          const TargetRegisterClass* rc = MRI->getRegClass(regA);
549          MachineInstr *DefMI = MRI->getVRegDef(regB);
550          // If it's safe and profitable, remat the definition instead of
551          // copying it.
552          if (DefMI &&
553              DefMI->getDesc().isAsCheapAsAMove() &&
554              DefMI->isSafeToReMat(TII, regB) &&
555              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist,DistanceMap)){
556            DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
557            TII->reMaterialize(*mbbi, mi, regA, DefMI);
558            ReMatRegs.set(regB);
559            ++NumReMats;
560          } else {
561            TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
562          }
563
564          MachineBasicBlock::iterator prevMI = prior(mi);
565          // Update DistanceMap.
566          DistanceMap.insert(std::make_pair(prevMI, Dist));
567          DistanceMap[mi] = ++Dist;
568
569          // Update live variables for regB.
570          if (LV) {
571            LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);
572
573            // regB is used in this BB.
574            varInfoB.UsedBlocks[mbbi->getNumber()] = true;
575
576            if (LV->removeVirtualRegisterKilled(regB,  mi))
577              LV->addVirtualRegisterKilled(regB, prevMI);
578
579            if (LV->removeVirtualRegisterDead(regB, mi))
580              LV->addVirtualRegisterDead(regB, prevMI);
581          }
582
583          DOUT << "\t\tprepend:\t"; DEBUG(prevMI->print(*cerr.stream(), &TM));
584
585          // Replace all occurences of regB with regA.
586          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
587            if (mi->getOperand(i).isReg() &&
588                mi->getOperand(i).getReg() == regB)
589              mi->getOperand(i).setReg(regA);
590          }
591        }
592
593        assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
594        mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
595        MadeChange = true;
596
597        DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
598      }
599
600      mi = nmi;
601    }
602  }
603
604  // Some remat'ed instructions are dead.
605  int VReg = ReMatRegs.find_first();
606  while (VReg != -1) {
607    if (MRI->use_empty(VReg)) {
608      MachineInstr *DefMI = MRI->getVRegDef(VReg);
609      DefMI->eraseFromParent();
610    }
611    VReg = ReMatRegs.find_next(VReg);
612  }
613
614  return MadeChange;
615}
616