TwoAddressInstructionPass.cpp revision 2a4410df44cd710e20b3f12873c35405830d66fb
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/MC/MCInstrItineraries.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/ADT/STLExtras.h"
51using namespace llvm;
52
53STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
54STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
55STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
56STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
57STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
58STATISTIC(NumReMats,           "Number of instructions re-materialized");
59STATISTIC(NumDeletes,          "Number of dead instructions deleted");
60STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
61STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
62
63namespace {
64  class TwoAddressInstructionPass : public MachineFunctionPass {
65    const TargetInstrInfo *TII;
66    const TargetRegisterInfo *TRI;
67    const InstrItineraryData *InstrItins;
68    MachineRegisterInfo *MRI;
69    LiveVariables *LV;
70    AliasAnalysis *AA;
71
72    // DistanceMap - Keep track the distance of a MI from the start of the
73    // current basic block.
74    DenseMap<MachineInstr*, unsigned> DistanceMap;
75
76    // SrcRegMap - A map from virtual registers to physical registers which
77    // are likely targets to be coalesced to due to copies from physical
78    // registers to virtual registers. e.g. v1024 = move r0.
79    DenseMap<unsigned, unsigned> SrcRegMap;
80
81    // DstRegMap - A map from virtual registers to physical registers which
82    // are likely targets to be coalesced to due to copies to physical
83    // registers from virtual registers. e.g. r1 = move v1024.
84    DenseMap<unsigned, unsigned> DstRegMap;
85
86    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
87    /// during the initial walk of the machine function.
88    SmallVector<MachineInstr*, 16> RegSequences;
89
90    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
91                              unsigned Reg,
92                              MachineBasicBlock::iterator OldPos);
93
94    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
95                             MachineInstr *MI, MachineInstr *DefMI,
96                             MachineBasicBlock *MBB, unsigned Loc);
97
98    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
99                           unsigned &LastDef);
100
101    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
102                                   unsigned Dist);
103
104    bool isProfitableToCommute(unsigned regB, unsigned regC,
105                               MachineInstr *MI, MachineBasicBlock *MBB,
106                               unsigned Dist);
107
108    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
109                            MachineFunction::iterator &mbbi,
110                            unsigned RegB, unsigned RegC, unsigned Dist);
111
112    bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
113
114    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
115                            MachineBasicBlock::iterator &nmi,
116                            MachineFunction::iterator &mbbi,
117                            unsigned RegA, unsigned RegB, unsigned Dist);
118
119    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
120    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
121                               SmallVector<NewKill, 4> &NewKills,
122                               MachineBasicBlock *MBB, unsigned Dist);
123    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
124                           MachineBasicBlock::iterator &nmi,
125                           MachineFunction::iterator &mbbi, unsigned Dist);
126
127    bool isDefTooClose(unsigned Reg, unsigned Dist,
128                       MachineInstr *MI, MachineBasicBlock *MBB);
129
130    bool RescheduleMIBelowKill(MachineBasicBlock *MBB,
131                               MachineBasicBlock::iterator &mi,
132                               MachineBasicBlock::iterator &nmi,
133                               unsigned Reg);
134    bool RescheduleKillAboveMI(MachineBasicBlock *MBB,
135                               MachineBasicBlock::iterator &mi,
136                               MachineBasicBlock::iterator &nmi,
137                               unsigned Reg);
138
139    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
140                                 MachineBasicBlock::iterator &nmi,
141                                 MachineFunction::iterator &mbbi,
142                                 unsigned SrcIdx, unsigned DstIdx,
143                                 unsigned Dist,
144                                 SmallPtrSet<MachineInstr*, 8> &Processed);
145
146    void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
147                  SmallPtrSet<MachineInstr*, 8> &Processed);
148
149    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
150                     SmallPtrSet<MachineInstr*, 8> &Processed);
151
152    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
153
154    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
155    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
156    /// sub-register references of the register defined by REG_SEQUENCE.
157    bool EliminateRegSequences();
158
159  public:
160    static char ID; // Pass identification, replacement for typeid
161    TwoAddressInstructionPass() : MachineFunctionPass(ID) {
162      initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
163    }
164
165    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
166      AU.setPreservesCFG();
167      AU.addRequired<AliasAnalysis>();
168      AU.addPreserved<LiveVariables>();
169      AU.addPreservedID(MachineLoopInfoID);
170      AU.addPreservedID(MachineDominatorsID);
171      AU.addPreservedID(PHIEliminationID);
172      MachineFunctionPass::getAnalysisUsage(AU);
173    }
174
175    /// runOnMachineFunction - Pass entry point.
176    bool runOnMachineFunction(MachineFunction&);
177  };
178}
179
180char TwoAddressInstructionPass::ID = 0;
181INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
182                "Two-Address instruction pass", false, false)
183INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
184INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
185                "Two-Address instruction pass", false, false)
186
187char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
188
189/// Sink3AddrInstruction - A two-address instruction has been converted to a
190/// three-address instruction to avoid clobbering a register. Try to sink it
191/// past the instruction that would kill the above mentioned register to reduce
192/// register pressure.
193bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
194                                           MachineInstr *MI, unsigned SavedReg,
195                                           MachineBasicBlock::iterator OldPos) {
196  // FIXME: Shouldn't we be trying to do this before we three-addressify the
197  // instruction?  After this transformation is done, we no longer need
198  // the instruction to be in three-address form.
199
200  // Check if it's safe to move this instruction.
201  bool SeenStore = true; // Be conservative.
202  if (!MI->isSafeToMove(TII, AA, SeenStore))
203    return false;
204
205  unsigned DefReg = 0;
206  SmallSet<unsigned, 4> UseRegs;
207
208  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
209    const MachineOperand &MO = MI->getOperand(i);
210    if (!MO.isReg())
211      continue;
212    unsigned MOReg = MO.getReg();
213    if (!MOReg)
214      continue;
215    if (MO.isUse() && MOReg != SavedReg)
216      UseRegs.insert(MO.getReg());
217    if (!MO.isDef())
218      continue;
219    if (MO.isImplicit())
220      // Don't try to move it if it implicitly defines a register.
221      return false;
222    if (DefReg)
223      // For now, don't move any instructions that define multiple registers.
224      return false;
225    DefReg = MO.getReg();
226  }
227
228  // Find the instruction that kills SavedReg.
229  MachineInstr *KillMI = NULL;
230  for (MachineRegisterInfo::use_nodbg_iterator
231         UI = MRI->use_nodbg_begin(SavedReg),
232         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
233    MachineOperand &UseMO = UI.getOperand();
234    if (!UseMO.isKill())
235      continue;
236    KillMI = UseMO.getParent();
237    break;
238  }
239
240  // If we find the instruction that kills SavedReg, and it is in an
241  // appropriate location, we can try to sink the current instruction
242  // past it.
243  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
244      KillMI->getDesc().isTerminator())
245    return false;
246
247  // If any of the definitions are used by another instruction between the
248  // position and the kill use, then it's not safe to sink it.
249  //
250  // FIXME: This can be sped up if there is an easy way to query whether an
251  // instruction is before or after another instruction. Then we can use
252  // MachineRegisterInfo def / use instead.
253  MachineOperand *KillMO = NULL;
254  MachineBasicBlock::iterator KillPos = KillMI;
255  ++KillPos;
256
257  unsigned NumVisited = 0;
258  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
259    MachineInstr *OtherMI = I;
260    // DBG_VALUE cannot be counted against the limit.
261    if (OtherMI->isDebugValue())
262      continue;
263    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
264      return false;
265    ++NumVisited;
266    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
267      MachineOperand &MO = OtherMI->getOperand(i);
268      if (!MO.isReg())
269        continue;
270      unsigned MOReg = MO.getReg();
271      if (!MOReg)
272        continue;
273      if (DefReg == MOReg)
274        return false;
275
276      if (MO.isKill()) {
277        if (OtherMI == KillMI && MOReg == SavedReg)
278          // Save the operand that kills the register. We want to unset the kill
279          // marker if we can sink MI past it.
280          KillMO = &MO;
281        else if (UseRegs.count(MOReg))
282          // One of the uses is killed before the destination.
283          return false;
284      }
285    }
286  }
287
288  // Update kill and LV information.
289  KillMO->setIsKill(false);
290  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
291  KillMO->setIsKill(true);
292
293  if (LV)
294    LV->replaceKillInstruction(SavedReg, KillMI, MI);
295
296  // Move instruction to its destination.
297  MBB->remove(MI);
298  MBB->insert(KillPos, MI);
299
300  ++Num3AddrSunk;
301  return true;
302}
303
304/// isTwoAddrUse - Return true if the specified MI is using the specified
305/// register as a two-address operand.
306static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
307  const MCInstrDesc &MCID = UseMI->getDesc();
308  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
309    MachineOperand &MO = UseMI->getOperand(i);
310    if (MO.isReg() && MO.getReg() == Reg &&
311        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
312      // Earlier use is a two-address one.
313      return true;
314  }
315  return false;
316}
317
318/// isProfitableToReMat - Return true if the heuristics determines it is likely
319/// to be profitable to re-materialize the definition of Reg rather than copy
320/// the register.
321bool
322TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
323                                         const TargetRegisterClass *RC,
324                                         MachineInstr *MI, MachineInstr *DefMI,
325                                         MachineBasicBlock *MBB, unsigned Loc) {
326  bool OtherUse = false;
327  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
328         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
329    MachineOperand &UseMO = UI.getOperand();
330    MachineInstr *UseMI = UseMO.getParent();
331    MachineBasicBlock *UseMBB = UseMI->getParent();
332    if (UseMBB == MBB) {
333      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
334      if (DI != DistanceMap.end() && DI->second == Loc)
335        continue;  // Current use.
336      OtherUse = true;
337      // There is at least one other use in the MBB that will clobber the
338      // register.
339      if (isTwoAddrUse(UseMI, Reg))
340        return true;
341    }
342  }
343
344  // If other uses in MBB are not two-address uses, then don't remat.
345  if (OtherUse)
346    return false;
347
348  // No other uses in the same block, remat if it's defined in the same
349  // block so it does not unnecessarily extend the live range.
350  return MBB == DefMI->getParent();
351}
352
353/// NoUseAfterLastDef - Return true if there are no intervening uses between the
354/// last instruction in the MBB that defines the specified register and the
355/// two-address instruction which is being processed. It also returns the last
356/// def location by reference
357bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
358                                           MachineBasicBlock *MBB, unsigned Dist,
359                                           unsigned &LastDef) {
360  LastDef = 0;
361  unsigned LastUse = Dist;
362  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
363         E = MRI->reg_end(); I != E; ++I) {
364    MachineOperand &MO = I.getOperand();
365    MachineInstr *MI = MO.getParent();
366    if (MI->getParent() != MBB || MI->isDebugValue())
367      continue;
368    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
369    if (DI == DistanceMap.end())
370      continue;
371    if (MO.isUse() && DI->second < LastUse)
372      LastUse = DI->second;
373    if (MO.isDef() && DI->second > LastDef)
374      LastDef = DI->second;
375  }
376
377  return !(LastUse > LastDef && LastUse < Dist);
378}
379
380MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
381                                                         MachineBasicBlock *MBB,
382                                                         unsigned Dist) {
383  unsigned LastUseDist = 0;
384  MachineInstr *LastUse = 0;
385  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
386         E = MRI->reg_end(); I != E; ++I) {
387    MachineOperand &MO = I.getOperand();
388    MachineInstr *MI = MO.getParent();
389    if (MI->getParent() != MBB || MI->isDebugValue())
390      continue;
391    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
392    if (DI == DistanceMap.end())
393      continue;
394    if (DI->second >= Dist)
395      continue;
396
397    if (MO.isUse() && DI->second > LastUseDist) {
398      LastUse = DI->first;
399      LastUseDist = DI->second;
400    }
401  }
402  return LastUse;
403}
404
405/// isCopyToReg - Return true if the specified MI is a copy instruction or
406/// a extract_subreg instruction. It also returns the source and destination
407/// registers and whether they are physical registers by reference.
408static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
409                        unsigned &SrcReg, unsigned &DstReg,
410                        bool &IsSrcPhys, bool &IsDstPhys) {
411  SrcReg = 0;
412  DstReg = 0;
413  if (MI.isCopy()) {
414    DstReg = MI.getOperand(0).getReg();
415    SrcReg = MI.getOperand(1).getReg();
416  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
417    DstReg = MI.getOperand(0).getReg();
418    SrcReg = MI.getOperand(2).getReg();
419  } else
420    return false;
421
422  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
423  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
424  return true;
425}
426
427/// isKilled - Test if the given register value, which is used by the given
428/// instruction, is killed by the given instruction. This looks through
429/// coalescable copies to see if the original value is potentially not killed.
430///
431/// For example, in this code:
432///
433///   %reg1034 = copy %reg1024
434///   %reg1035 = copy %reg1025<kill>
435///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
436///
437/// %reg1034 is not considered to be killed, since it is copied from a
438/// register which is not killed. Treating it as not killed lets the
439/// normal heuristics commute the (two-address) add, which lets
440/// coalescing eliminate the extra copy.
441///
442static bool isKilled(MachineInstr &MI, unsigned Reg,
443                     const MachineRegisterInfo *MRI,
444                     const TargetInstrInfo *TII) {
445  MachineInstr *DefMI = &MI;
446  for (;;) {
447    if (!DefMI->killsRegister(Reg))
448      return false;
449    if (TargetRegisterInfo::isPhysicalRegister(Reg))
450      return true;
451    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
452    // If there are multiple defs, we can't do a simple analysis, so just
453    // go with what the kill flag says.
454    if (llvm::next(Begin) != MRI->def_end())
455      return true;
456    DefMI = &*Begin;
457    bool IsSrcPhys, IsDstPhys;
458    unsigned SrcReg,  DstReg;
459    // If the def is something other than a copy, then it isn't going to
460    // be coalesced, so follow the kill flag.
461    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
462      return true;
463    Reg = SrcReg;
464  }
465}
466
467/// isTwoAddrUse - Return true if the specified MI uses the specified register
468/// as a two-address use. If so, return the destination register by reference.
469static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
470  const MCInstrDesc &MCID = MI.getDesc();
471  unsigned NumOps = MI.isInlineAsm()
472    ? MI.getNumOperands() : MCID.getNumOperands();
473  for (unsigned i = 0; i != NumOps; ++i) {
474    const MachineOperand &MO = MI.getOperand(i);
475    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
476      continue;
477    unsigned ti;
478    if (MI.isRegTiedToDefOperand(i, &ti)) {
479      DstReg = MI.getOperand(ti).getReg();
480      return true;
481    }
482  }
483  return false;
484}
485
486/// findLocalKill - Look for an instruction below MI in the MBB that kills the
487/// specified register. Returns null if there are any other Reg use between the
488/// instructions.
489static
490MachineInstr *findLocalKill(unsigned Reg, MachineBasicBlock *MBB,
491                            MachineInstr *MI, MachineRegisterInfo *MRI,
492                            DenseMap<MachineInstr*, unsigned> &DistanceMap) {
493  MachineInstr *KillMI = 0;
494  for (MachineRegisterInfo::use_nodbg_iterator
495         UI = MRI->use_nodbg_begin(Reg),
496         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
497    MachineInstr *UseMI = &*UI;
498    if (UseMI == MI || UseMI->getParent() != MBB)
499      continue;
500    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
501    if (DI != DistanceMap.end())
502      continue;
503    if (!UI.getOperand().isKill())
504      return 0;
505    assert(!KillMI && "More than one local kills?");
506    KillMI = UseMI;
507  }
508
509  return KillMI;
510}
511
512/// findOnlyInterestingUse - Given a register, if has a single in-basic block
513/// use, return the use instruction if it's a copy or a two-address use.
514static
515MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
516                                     MachineRegisterInfo *MRI,
517                                     const TargetInstrInfo *TII,
518                                     bool &IsCopy,
519                                     unsigned &DstReg, bool &IsDstPhys) {
520  if (!MRI->hasOneNonDBGUse(Reg))
521    // None or more than one use.
522    return 0;
523  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
524  if (UseMI.getParent() != MBB)
525    return 0;
526  unsigned SrcReg;
527  bool IsSrcPhys;
528  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
529    IsCopy = true;
530    return &UseMI;
531  }
532  IsDstPhys = false;
533  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
534    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
535    return &UseMI;
536  }
537  return 0;
538}
539
540/// getMappedReg - Return the physical register the specified virtual register
541/// might be mapped to.
542static unsigned
543getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
544  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
545    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
546    if (SI == RegMap.end())
547      return 0;
548    Reg = SI->second;
549  }
550  if (TargetRegisterInfo::isPhysicalRegister(Reg))
551    return Reg;
552  return 0;
553}
554
555/// regsAreCompatible - Return true if the two registers are equal or aliased.
556///
557static bool
558regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
559  if (RegA == RegB)
560    return true;
561  if (!RegA || !RegB)
562    return false;
563  return TRI->regsOverlap(RegA, RegB);
564}
565
566
567/// isProfitableToReMat - Return true if it's potentially profitable to commute
568/// the two-address instruction that's being processed.
569bool
570TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
571                                       MachineInstr *MI, MachineBasicBlock *MBB,
572                                       unsigned Dist) {
573  // Determine if it's profitable to commute this two address instruction. In
574  // general, we want no uses between this instruction and the definition of
575  // the two-address register.
576  // e.g.
577  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
578  // %reg1029<def> = MOV8rr %reg1028
579  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
580  // insert => %reg1030<def> = MOV8rr %reg1028
581  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
582  // In this case, it might not be possible to coalesce the second MOV8rr
583  // instruction if the first one is coalesced. So it would be profitable to
584  // commute it:
585  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
586  // %reg1029<def> = MOV8rr %reg1028
587  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
588  // insert => %reg1030<def> = MOV8rr %reg1029
589  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
590
591  if (!MI->killsRegister(regC))
592    return false;
593
594  // Ok, we have something like:
595  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
596  // let's see if it's worth commuting it.
597
598  // Look for situations like this:
599  // %reg1024<def> = MOV r1
600  // %reg1025<def> = MOV r0
601  // %reg1026<def> = ADD %reg1024, %reg1025
602  // r0            = MOV %reg1026
603  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
604  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
605  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
606  unsigned ToRegB = getMappedReg(regB, DstRegMap);
607  unsigned ToRegC = getMappedReg(regC, DstRegMap);
608  if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
609      ((!FromRegC && !ToRegC) ||
610       regsAreCompatible(FromRegB, ToRegC, TRI) ||
611       regsAreCompatible(FromRegC, ToRegB, TRI)))
612    return true;
613
614  // If there is a use of regC between its last def (could be livein) and this
615  // instruction, then bail.
616  unsigned LastDefC = 0;
617  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
618    return false;
619
620  // If there is a use of regB between its last def (could be livein) and this
621  // instruction, then go ahead and make this transformation.
622  unsigned LastDefB = 0;
623  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
624    return true;
625
626  // Since there are no intervening uses for both registers, then commute
627  // if the def of regC is closer. Its live interval is shorter.
628  return LastDefB && LastDefC && LastDefC > LastDefB;
629}
630
631/// CommuteInstruction - Commute a two-address instruction and update the basic
632/// block, distance map, and live variables if needed. Return true if it is
633/// successful.
634bool
635TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
636                               MachineFunction::iterator &mbbi,
637                               unsigned RegB, unsigned RegC, unsigned Dist) {
638  MachineInstr *MI = mi;
639  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
640  MachineInstr *NewMI = TII->commuteInstruction(MI);
641
642  if (NewMI == 0) {
643    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
644    return false;
645  }
646
647  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
648  // If the instruction changed to commute it, update livevar.
649  if (NewMI != MI) {
650    if (LV)
651      // Update live variables
652      LV->replaceKillInstruction(RegC, MI, NewMI);
653
654    mbbi->insert(mi, NewMI);           // Insert the new inst
655    mbbi->erase(mi);                   // Nuke the old inst.
656    mi = NewMI;
657    DistanceMap.insert(std::make_pair(NewMI, Dist));
658  }
659
660  // Update source register map.
661  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
662  if (FromRegC) {
663    unsigned RegA = MI->getOperand(0).getReg();
664    SrcRegMap[RegA] = FromRegC;
665  }
666
667  return true;
668}
669
670/// isProfitableToConv3Addr - Return true if it is profitable to convert the
671/// given 2-address instruction to a 3-address one.
672bool
673TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
674  // Look for situations like this:
675  // %reg1024<def> = MOV r1
676  // %reg1025<def> = MOV r0
677  // %reg1026<def> = ADD %reg1024, %reg1025
678  // r2            = MOV %reg1026
679  // Turn ADD into a 3-address instruction to avoid a copy.
680  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
681  if (!FromRegB)
682    return false;
683  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
684  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
685}
686
687/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
688/// three address one. Return true if this transformation was successful.
689bool
690TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
691                                              MachineBasicBlock::iterator &nmi,
692                                              MachineFunction::iterator &mbbi,
693                                              unsigned RegA, unsigned RegB,
694                                              unsigned Dist) {
695  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
696  if (NewMI) {
697    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
698    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
699    bool Sunk = false;
700
701    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
702      // FIXME: Temporary workaround. If the new instruction doesn't
703      // uses RegB, convertToThreeAddress must have created more
704      // then one instruction.
705      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
706
707    mbbi->erase(mi); // Nuke the old inst.
708
709    if (!Sunk) {
710      DistanceMap.insert(std::make_pair(NewMI, Dist));
711      mi = NewMI;
712      nmi = llvm::next(mi);
713    }
714
715    // Update source and destination register maps.
716    SrcRegMap.erase(RegA);
717    DstRegMap.erase(RegB);
718    return true;
719  }
720
721  return false;
722}
723
724/// ScanUses - Scan forward recursively for only uses, update maps if the use
725/// is a copy or a two-address instruction.
726void
727TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
728                                    SmallPtrSet<MachineInstr*, 8> &Processed) {
729  SmallVector<unsigned, 4> VirtRegPairs;
730  bool IsDstPhys;
731  bool IsCopy = false;
732  unsigned NewReg = 0;
733  unsigned Reg = DstReg;
734  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
735                                                      NewReg, IsDstPhys)) {
736    if (IsCopy && !Processed.insert(UseMI))
737      break;
738
739    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
740    if (DI != DistanceMap.end())
741      // Earlier in the same MBB.Reached via a back edge.
742      break;
743
744    if (IsDstPhys) {
745      VirtRegPairs.push_back(NewReg);
746      break;
747    }
748    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
749    if (!isNew)
750      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
751    VirtRegPairs.push_back(NewReg);
752    Reg = NewReg;
753  }
754
755  if (!VirtRegPairs.empty()) {
756    unsigned ToReg = VirtRegPairs.back();
757    VirtRegPairs.pop_back();
758    while (!VirtRegPairs.empty()) {
759      unsigned FromReg = VirtRegPairs.back();
760      VirtRegPairs.pop_back();
761      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
762      if (!isNew)
763        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
764      ToReg = FromReg;
765    }
766    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
767    if (!isNew)
768      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
769  }
770}
771
772/// ProcessCopy - If the specified instruction is not yet processed, process it
773/// if it's a copy. For a copy instruction, we find the physical registers the
774/// source and destination registers might be mapped to. These are kept in
775/// point-to maps used to determine future optimizations. e.g.
776/// v1024 = mov r0
777/// v1025 = mov r1
778/// v1026 = add v1024, v1025
779/// r1    = mov r1026
780/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
781/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
782/// potentially joined with r1 on the output side. It's worthwhile to commute
783/// 'add' to eliminate a copy.
784void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
785                                     MachineBasicBlock *MBB,
786                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
787  if (Processed.count(MI))
788    return;
789
790  bool IsSrcPhys, IsDstPhys;
791  unsigned SrcReg, DstReg;
792  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
793    return;
794
795  if (IsDstPhys && !IsSrcPhys)
796    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
797  else if (!IsDstPhys && IsSrcPhys) {
798    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
799    if (!isNew)
800      assert(SrcRegMap[DstReg] == SrcReg &&
801             "Can't map to two src physical registers!");
802
803    ScanUses(DstReg, MBB, Processed);
804  }
805
806  Processed.insert(MI);
807  return;
808}
809
810/// isSafeToDelete - If the specified instruction does not produce any side
811/// effects and all of its defs are dead, then it's safe to delete.
812static bool isSafeToDelete(MachineInstr *MI,
813                           const TargetInstrInfo *TII,
814                           SmallVector<unsigned, 4> &Kills) {
815  const MCInstrDesc &MCID = MI->getDesc();
816  if (MCID.mayStore() || MCID.isCall())
817    return false;
818  if (MCID.isTerminator() || MI->hasUnmodeledSideEffects())
819    return false;
820
821  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
822    MachineOperand &MO = MI->getOperand(i);
823    if (!MO.isReg())
824      continue;
825    if (MO.isDef() && !MO.isDead())
826      return false;
827    if (MO.isUse() && MO.isKill())
828      Kills.push_back(MO.getReg());
829  }
830  return true;
831}
832
833/// canUpdateDeletedKills - Check if all the registers listed in Kills are
834/// killed by instructions in MBB preceding the current instruction at
835/// position Dist.  If so, return true and record information about the
836/// preceding kills in NewKills.
837bool TwoAddressInstructionPass::
838canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
839                      SmallVector<NewKill, 4> &NewKills,
840                      MachineBasicBlock *MBB, unsigned Dist) {
841  while (!Kills.empty()) {
842    unsigned Kill = Kills.back();
843    Kills.pop_back();
844    if (TargetRegisterInfo::isPhysicalRegister(Kill))
845      return false;
846
847    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
848    if (!LastKill)
849      return false;
850
851    bool isModRef = LastKill->definesRegister(Kill);
852    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
853                                      LastKill));
854  }
855  return true;
856}
857
858/// DeleteUnusedInstr - If an instruction with a tied register operand can
859/// be safely deleted, just delete it.
860bool
861TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
862                                             MachineBasicBlock::iterator &nmi,
863                                             MachineFunction::iterator &mbbi,
864                                             unsigned Dist) {
865  // Check if the instruction has no side effects and if all its defs are dead.
866  SmallVector<unsigned, 4> Kills;
867  if (!isSafeToDelete(mi, TII, Kills))
868    return false;
869
870  // If this instruction kills some virtual registers, we need to
871  // update the kill information. If it's not possible to do so,
872  // then bail out.
873  SmallVector<NewKill, 4> NewKills;
874  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
875    return false;
876
877  if (LV) {
878    while (!NewKills.empty()) {
879      MachineInstr *NewKill = NewKills.back().second;
880      unsigned Kill = NewKills.back().first.first;
881      bool isDead = NewKills.back().first.second;
882      NewKills.pop_back();
883      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
884        if (isDead)
885          LV->addVirtualRegisterDead(Kill, NewKill);
886        else
887          LV->addVirtualRegisterKilled(Kill, NewKill);
888      }
889    }
890  }
891
892  mbbi->erase(mi); // Nuke the old inst.
893  mi = nmi;
894  return true;
895}
896
897/// RescheduleMIBelowKill - If there is one more local instruction that reads
898/// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
899/// instruction in order to eliminate the need for the copy.
900bool
901TwoAddressInstructionPass::RescheduleMIBelowKill(MachineBasicBlock *MBB,
902                                     MachineBasicBlock::iterator &mi,
903                                     MachineBasicBlock::iterator &nmi,
904                                     unsigned Reg) {
905  MachineInstr *MI = &*mi;
906  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
907  if (DI == DistanceMap.end())
908    // Must be created from unfolded load. Don't waste time trying this.
909    return false;
910
911  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
912  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
913    // Don't mess with copies, they may be coalesced later.
914    return false;
915
916  const MCInstrDesc &MCID = KillMI->getDesc();
917  if (MCID.hasUnmodeledSideEffects() || MCID.isCall() || MCID.isBranch() ||
918      MCID.isTerminator())
919    // Don't move pass calls, etc.
920    return false;
921
922  unsigned DstReg;
923  if (isTwoAddrUse(*KillMI, Reg, DstReg))
924    return false;
925
926  bool SeenStore;
927  if (!MI->isSafeToMove(TII, AA, SeenStore))
928    return false;
929
930  if (TII->getInstrLatency(InstrItins, MI) > 1)
931    // FIXME: Needs more sophisticated heuristics.
932    return false;
933
934  SmallSet<unsigned, 2> Uses;
935  SmallSet<unsigned, 2> Defs;
936  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
937    const MachineOperand &MO = MI->getOperand(i);
938    if (!MO.isReg())
939      continue;
940    unsigned MOReg = MO.getReg();
941    if (!MOReg)
942      continue;
943    if (MO.isDef())
944      Defs.insert(MOReg);
945    else
946      Uses.insert(MOReg);
947  }
948
949  // Move the copies connected to MI down as well.
950  MachineBasicBlock::iterator From = MI;
951  MachineBasicBlock::iterator To = llvm::next(From);
952  while (To->isCopy() && Defs.count(To->getOperand(1).getReg())) {
953    Defs.insert(To->getOperand(0).getReg());
954    ++To;
955  }
956
957  // Check if the reschedule will not break depedencies.
958  unsigned NumVisited = 0;
959  MachineBasicBlock::iterator KillPos = KillMI;
960  ++KillPos;
961  for (MachineBasicBlock::iterator I = To; I != KillPos; ++I) {
962    MachineInstr *OtherMI = I;
963    // DBG_VALUE cannot be counted against the limit.
964    if (OtherMI->isDebugValue())
965      continue;
966    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
967      return false;
968    ++NumVisited;
969    const MCInstrDesc &OMCID = OtherMI->getDesc();
970    if (OMCID.hasUnmodeledSideEffects() || OMCID.isCall() || OMCID.isBranch() ||
971        OMCID.isTerminator())
972      // Don't move pass calls, etc.
973      return false;
974    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
975      const MachineOperand &MO = OtherMI->getOperand(i);
976      if (!MO.isReg())
977        continue;
978      unsigned MOReg = MO.getReg();
979      if (!MOReg)
980        continue;
981      if (MO.isDef()) {
982        if (Uses.count(MOReg))
983          // Physical register use would be clobbered.
984          return false;
985        if (!MO.isDead() && Defs.count(MOReg))
986          // May clobber a physical register def.
987          // FIXME: This may be too conservative. It's ok if the instruction
988          // is sunken completely below the use.
989          return false;
990      } else {
991        if (Defs.count(MOReg))
992          return false;
993        if (MOReg != Reg && MO.isKill() && Uses.count(MOReg))
994          // Don't want to extend other live ranges and update kills.
995          return false;
996      }
997    }
998  }
999
1000  // Move debug info as well.
1001  if (From != MBB->begin()) {
1002    while (llvm::prior(From)->isDebugValue())
1003      --From;
1004  }
1005
1006  // Copies following MI may have been moved as well.
1007  nmi = To;
1008  MBB->splice(KillPos, MBB, From, To);
1009  DistanceMap.erase(DI);
1010
1011  if (LV) {
1012    // Update live variables
1013    LV->removeVirtualRegisterKilled(Reg, KillMI);
1014    LV->addVirtualRegisterKilled(Reg, MI);
1015  } else {
1016    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1017      MachineOperand &MO = KillMI->getOperand(i);
1018      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1019        continue;
1020      MO.setIsKill(false);
1021    }
1022    MI->addRegisterKilled(Reg, 0);
1023  }
1024
1025  return true;
1026}
1027
1028/// isDefTooClose - Return true if the re-scheduling will put the given
1029/// instruction too close to the defs of its register dependencies.
1030bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1031                                              MachineInstr *MI,
1032                                              MachineBasicBlock *MBB) {
1033  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
1034         DE = MRI->def_end(); DI != DE; ++DI) {
1035    MachineInstr *DefMI = &*DI;
1036    if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
1037      continue;
1038    if (DefMI == MI)
1039      return true; // MI is defining something KillMI uses
1040    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
1041    if (DDI == DistanceMap.end())
1042      return true;  // Below MI
1043    unsigned DefDist = DDI->second;
1044    assert(Dist > DefDist && "Visited def already?");
1045    if (TII->getInstrLatency(InstrItins, DefMI) > (int)(Dist - DefDist))
1046      return true;
1047  }
1048  return false;
1049}
1050
1051/// RescheduleKillAboveMI - If there is one more local instruction that reads
1052/// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
1053/// current two-address instruction in order to eliminate the need for the
1054/// copy.
1055bool
1056TwoAddressInstructionPass::RescheduleKillAboveMI(MachineBasicBlock *MBB,
1057                                     MachineBasicBlock::iterator &mi,
1058                                     MachineBasicBlock::iterator &nmi,
1059                                     unsigned Reg) {
1060  MachineInstr *MI = &*mi;
1061  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1062  if (DI == DistanceMap.end())
1063    // Must be created from unfolded load. Don't waste time trying this.
1064    return false;
1065
1066  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
1067  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1068    // Don't mess with copies, they may be coalesced later.
1069    return false;
1070
1071  unsigned DstReg;
1072  if (isTwoAddrUse(*KillMI, Reg, DstReg))
1073    return false;
1074
1075  bool SeenStore;
1076  if (!KillMI->isSafeToMove(TII, AA, SeenStore))
1077    return false;
1078
1079  SmallSet<unsigned, 2> Uses;
1080  SmallSet<unsigned, 2> Kills;
1081  SmallSet<unsigned, 2> Defs;
1082  SmallSet<unsigned, 2> LiveDefs;
1083  for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1084    const MachineOperand &MO = KillMI->getOperand(i);
1085    if (!MO.isReg())
1086      continue;
1087    unsigned MOReg = MO.getReg();
1088    if (MO.isUse()) {
1089      if (!MOReg)
1090        continue;
1091      if (isDefTooClose(MOReg, DI->second, MI, MBB))
1092        return false;
1093      Uses.insert(MOReg);
1094      if (MO.isKill() && MOReg != Reg)
1095        Kills.insert(MOReg);
1096    } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1097      Defs.insert(MOReg);
1098      if (!MO.isDead())
1099        LiveDefs.insert(MOReg);
1100    }
1101  }
1102
1103  // Check if the reschedule will not break depedencies.
1104  unsigned NumVisited = 0;
1105  MachineBasicBlock::iterator KillPos = KillMI;
1106  for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1107    MachineInstr *OtherMI = I;
1108    // DBG_VALUE cannot be counted against the limit.
1109    if (OtherMI->isDebugValue())
1110      continue;
1111    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1112      return false;
1113    ++NumVisited;
1114    const MCInstrDesc &MCID = OtherMI->getDesc();
1115    if (MCID.hasUnmodeledSideEffects() || MCID.isCall() || MCID.isBranch() ||
1116        MCID.isTerminator())
1117      // Don't move pass calls, etc.
1118      return false;
1119    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1120      const MachineOperand &MO = OtherMI->getOperand(i);
1121      if (!MO.isReg())
1122        continue;
1123      unsigned MOReg = MO.getReg();
1124      if (!MOReg)
1125        continue;
1126      if (MO.isUse()) {
1127        if (Defs.count(MOReg))
1128          // Moving KillMI can clobber the physical register if the def has
1129          // not been seen.
1130          return false;
1131        if (Kills.count(MOReg))
1132          // Don't want to extend other live ranges and update kills.
1133          return false;
1134      } else {
1135        if (Uses.count(MOReg))
1136          return false;
1137        if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1138            LiveDefs.count(MOReg))
1139          return false;
1140        // Physical register def is seen.
1141        Defs.erase(MOReg);
1142      }
1143    }
1144  }
1145
1146  // Move the old kill above MI, don't forget to move debug info as well.
1147  MachineBasicBlock::iterator InsertPos = mi;
1148  if (InsertPos != MBB->begin())
1149    while (llvm::prior(InsertPos)->isDebugValue())
1150      --InsertPos;
1151  MachineBasicBlock::iterator From = KillMI;
1152  MachineBasicBlock::iterator To = llvm::next(From);
1153  while (llvm::prior(From)->isDebugValue())
1154    --From;
1155  MBB->splice(InsertPos, MBB, From, To);
1156
1157  nmi = llvm::prior(mi); // Backtrack so we process the moved instruction.
1158  DistanceMap.erase(DI);
1159
1160  if (LV) {
1161    // Update live variables
1162    LV->removeVirtualRegisterKilled(Reg, KillMI);
1163    LV->addVirtualRegisterKilled(Reg, MI);
1164  } else {
1165    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1166      MachineOperand &MO = KillMI->getOperand(i);
1167      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1168        continue;
1169      MO.setIsKill(false);
1170    }
1171    MI->addRegisterKilled(Reg, 0);
1172  }
1173  return true;
1174}
1175
1176/// TryInstructionTransform - For the case where an instruction has a single
1177/// pair of tied register operands, attempt some transformations that may
1178/// either eliminate the tied operands or improve the opportunities for
1179/// coalescing away the register copy.  Returns true if the tied operands
1180/// are eliminated altogether.
1181bool TwoAddressInstructionPass::
1182TryInstructionTransform(MachineBasicBlock::iterator &mi,
1183                        MachineBasicBlock::iterator &nmi,
1184                        MachineFunction::iterator &mbbi,
1185                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
1186                        SmallPtrSet<MachineInstr*, 8> &Processed) {
1187  MachineInstr &MI = *mi;
1188  const MCInstrDesc &MCID = MI.getDesc();
1189  unsigned regA = MI.getOperand(DstIdx).getReg();
1190  unsigned regB = MI.getOperand(SrcIdx).getReg();
1191
1192  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1193         "cannot make instruction into two-address form");
1194
1195  // If regA is dead and the instruction can be deleted, just delete
1196  // it so it doesn't clobber regB.
1197  bool regBKilled = isKilled(MI, regB, MRI, TII);
1198  if (!regBKilled && MI.getOperand(DstIdx).isDead() &&
1199      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
1200    ++NumDeletes;
1201    return true; // Done with this instruction.
1202  }
1203
1204  // Check if it is profitable to commute the operands.
1205  unsigned SrcOp1, SrcOp2;
1206  unsigned regC = 0;
1207  unsigned regCIdx = ~0U;
1208  bool TryCommute = false;
1209  bool AggressiveCommute = false;
1210  if (MCID.isCommutable() && MI.getNumOperands() >= 3 &&
1211      TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1212    if (SrcIdx == SrcOp1)
1213      regCIdx = SrcOp2;
1214    else if (SrcIdx == SrcOp2)
1215      regCIdx = SrcOp1;
1216
1217    if (regCIdx != ~0U) {
1218      regC = MI.getOperand(regCIdx).getReg();
1219      if (!regBKilled && isKilled(MI, regC, MRI, TII))
1220        // If C dies but B does not, swap the B and C operands.
1221        // This makes the live ranges of A and C joinable.
1222        TryCommute = true;
1223      else if (isProfitableToCommute(regB, regC, &MI, mbbi, Dist)) {
1224        TryCommute = true;
1225        AggressiveCommute = true;
1226      }
1227    }
1228  }
1229
1230  // If it's profitable to commute, try to do so.
1231  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
1232    ++NumCommuted;
1233    if (AggressiveCommute)
1234      ++NumAggrCommuted;
1235    return false;
1236  }
1237
1238  // If there is one more use of regB later in the same MBB, consider
1239  // re-schedule this MI below it.
1240  if (RescheduleMIBelowKill(mbbi, mi, nmi, regB)) {
1241    ++NumReSchedDowns;
1242    return true;
1243  }
1244
1245  if (TargetRegisterInfo::isVirtualRegister(regA))
1246    ScanUses(regA, &*mbbi, Processed);
1247
1248  if (MCID.isConvertibleTo3Addr()) {
1249    // This instruction is potentially convertible to a true
1250    // three-address instruction.  Check if it is profitable.
1251    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1252      // Try to convert it.
1253      if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
1254        ++NumConvertedTo3Addr;
1255        return true; // Done with this instruction.
1256      }
1257    }
1258  }
1259
1260  // If there is one more use of regB later in the same MBB, consider
1261  // re-schedule it before this MI if it's legal.
1262  if (RescheduleKillAboveMI(mbbi, mi, nmi, regB)) {
1263    ++NumReSchedUps;
1264    return true;
1265  }
1266
1267  // If this is an instruction with a load folded into it, try unfolding
1268  // the load, e.g. avoid this:
1269  //   movq %rdx, %rcx
1270  //   addq (%rax), %rcx
1271  // in favor of this:
1272  //   movq (%rax), %rcx
1273  //   addq %rdx, %rcx
1274  // because it's preferable to schedule a load than a register copy.
1275  if (MCID.mayLoad() && !regBKilled) {
1276    // Determine if a load can be unfolded.
1277    unsigned LoadRegIndex;
1278    unsigned NewOpc =
1279      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1280                                      /*UnfoldLoad=*/true,
1281                                      /*UnfoldStore=*/false,
1282                                      &LoadRegIndex);
1283    if (NewOpc != 0) {
1284      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1285      if (UnfoldMCID.getNumDefs() == 1) {
1286        MachineFunction &MF = *mbbi->getParent();
1287
1288        // Unfold the load.
1289        DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1290        const TargetRegisterClass *RC =
1291          TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
1292        unsigned Reg = MRI->createVirtualRegister(RC);
1293        SmallVector<MachineInstr *, 2> NewMIs;
1294        if (!TII->unfoldMemoryOperand(MF, &MI, Reg,
1295                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1296                                      NewMIs)) {
1297          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1298          return false;
1299        }
1300        assert(NewMIs.size() == 2 &&
1301               "Unfolded a load into multiple instructions!");
1302        // The load was previously folded, so this is the only use.
1303        NewMIs[1]->addRegisterKilled(Reg, TRI);
1304
1305        // Tentatively insert the instructions into the block so that they
1306        // look "normal" to the transformation logic.
1307        mbbi->insert(mi, NewMIs[0]);
1308        mbbi->insert(mi, NewMIs[1]);
1309
1310        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1311                     << "2addr:    NEW INST: " << *NewMIs[1]);
1312
1313        // Transform the instruction, now that it no longer has a load.
1314        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1315        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1316        MachineBasicBlock::iterator NewMI = NewMIs[1];
1317        bool TransformSuccess =
1318          TryInstructionTransform(NewMI, mi, mbbi,
1319                                  NewSrcIdx, NewDstIdx, Dist, Processed);
1320        if (TransformSuccess ||
1321            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1322          // Success, or at least we made an improvement. Keep the unfolded
1323          // instructions and discard the original.
1324          if (LV) {
1325            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1326              MachineOperand &MO = MI.getOperand(i);
1327              if (MO.isReg() &&
1328                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1329                if (MO.isUse()) {
1330                  if (MO.isKill()) {
1331                    if (NewMIs[0]->killsRegister(MO.getReg()))
1332                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1333                    else {
1334                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1335                             "Kill missing after load unfold!");
1336                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1337                    }
1338                  }
1339                } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1340                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1341                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1342                  else {
1343                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1344                           "Dead flag missing after load unfold!");
1345                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1346                  }
1347                }
1348              }
1349            }
1350            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1351          }
1352          MI.eraseFromParent();
1353          mi = NewMIs[1];
1354          if (TransformSuccess)
1355            return true;
1356        } else {
1357          // Transforming didn't eliminate the tie and didn't lead to an
1358          // improvement. Clean up the unfolded instructions and keep the
1359          // original.
1360          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1361          NewMIs[0]->eraseFromParent();
1362          NewMIs[1]->eraseFromParent();
1363        }
1364      }
1365    }
1366  }
1367
1368  return false;
1369}
1370
1371/// runOnMachineFunction - Reduce two-address instructions to two operands.
1372///
1373bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1374  DEBUG(dbgs() << "Machine Function\n");
1375  const TargetMachine &TM = MF.getTarget();
1376  MRI = &MF.getRegInfo();
1377  TII = TM.getInstrInfo();
1378  TRI = TM.getRegisterInfo();
1379  InstrItins = TM.getInstrItineraryData();
1380  LV = getAnalysisIfAvailable<LiveVariables>();
1381  AA = &getAnalysis<AliasAnalysis>();
1382
1383  bool MadeChange = false;
1384
1385  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1386  DEBUG(dbgs() << "********** Function: "
1387        << MF.getFunction()->getName() << '\n');
1388
1389  // This pass takes the function out of SSA form.
1390  MRI->leaveSSA();
1391
1392  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1393  BitVector ReMatRegs(MRI->getNumVirtRegs());
1394
1395  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1396    TiedOperandMap;
1397  TiedOperandMap TiedOperands(4);
1398
1399  SmallPtrSet<MachineInstr*, 8> Processed;
1400  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1401       mbbi != mbbe; ++mbbi) {
1402    unsigned Dist = 0;
1403    DistanceMap.clear();
1404    SrcRegMap.clear();
1405    DstRegMap.clear();
1406    Processed.clear();
1407    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1408         mi != me; ) {
1409      MachineBasicBlock::iterator nmi = llvm::next(mi);
1410      if (mi->isDebugValue()) {
1411        mi = nmi;
1412        continue;
1413      }
1414
1415      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1416      if (mi->isRegSequence())
1417        RegSequences.push_back(&*mi);
1418
1419      const MCInstrDesc &MCID = mi->getDesc();
1420      bool FirstTied = true;
1421
1422      DistanceMap.insert(std::make_pair(mi, ++Dist));
1423
1424      ProcessCopy(&*mi, &*mbbi, Processed);
1425
1426      // First scan through all the tied register uses in this instruction
1427      // and record a list of pairs of tied operands for each register.
1428      unsigned NumOps = mi->isInlineAsm()
1429        ? mi->getNumOperands() : MCID.getNumOperands();
1430      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1431        unsigned DstIdx = 0;
1432        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1433          continue;
1434
1435        if (FirstTied) {
1436          FirstTied = false;
1437          ++NumTwoAddressInstrs;
1438          DEBUG(dbgs() << '\t' << *mi);
1439        }
1440
1441        assert(mi->getOperand(SrcIdx).isReg() &&
1442               mi->getOperand(SrcIdx).getReg() &&
1443               mi->getOperand(SrcIdx).isUse() &&
1444               "two address instruction invalid");
1445
1446        unsigned regB = mi->getOperand(SrcIdx).getReg();
1447        TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1448      }
1449
1450      // Now iterate over the information collected above.
1451      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1452             OE = TiedOperands.end(); OI != OE; ++OI) {
1453        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1454
1455        // If the instruction has a single pair of tied operands, try some
1456        // transformations that may either eliminate the tied operands or
1457        // improve the opportunities for coalescing away the register copy.
1458        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1459          unsigned SrcIdx = TiedPairs[0].first;
1460          unsigned DstIdx = TiedPairs[0].second;
1461
1462          // If the registers are already equal, nothing needs to be done.
1463          if (mi->getOperand(SrcIdx).getReg() ==
1464              mi->getOperand(DstIdx).getReg())
1465            break; // Done with this instruction.
1466
1467          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1468                                      Processed))
1469            break; // The tied operands have been eliminated.
1470        }
1471
1472        bool IsEarlyClobber = false;
1473        bool RemovedKillFlag = false;
1474        bool AllUsesCopied = true;
1475        unsigned LastCopiedReg = 0;
1476        unsigned regB = OI->first;
1477        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1478          unsigned SrcIdx = TiedPairs[tpi].first;
1479          unsigned DstIdx = TiedPairs[tpi].second;
1480
1481          const MachineOperand &DstMO = mi->getOperand(DstIdx);
1482          unsigned regA = DstMO.getReg();
1483          IsEarlyClobber |= DstMO.isEarlyClobber();
1484
1485          // Grab regB from the instruction because it may have changed if the
1486          // instruction was commuted.
1487          regB = mi->getOperand(SrcIdx).getReg();
1488
1489          if (regA == regB) {
1490            // The register is tied to multiple destinations (or else we would
1491            // not have continued this far), but this use of the register
1492            // already matches the tied destination.  Leave it.
1493            AllUsesCopied = false;
1494            continue;
1495          }
1496          LastCopiedReg = regA;
1497
1498          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1499                 "cannot make instruction into two-address form");
1500
1501#ifndef NDEBUG
1502          // First, verify that we don't have a use of "a" in the instruction
1503          // (a = b + a for example) because our transformation will not
1504          // work. This should never occur because we are in SSA form.
1505          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1506            assert(i == DstIdx ||
1507                   !mi->getOperand(i).isReg() ||
1508                   mi->getOperand(i).getReg() != regA);
1509#endif
1510
1511          // Emit a copy or rematerialize the definition.
1512          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1513          MachineInstr *DefMI = MRI->getVRegDef(regB);
1514          // If it's safe and profitable, remat the definition instead of
1515          // copying it.
1516          if (DefMI &&
1517              DefMI->getDesc().isAsCheapAsAMove() &&
1518              DefMI->isSafeToReMat(TII, AA, regB) &&
1519              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1520            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1521            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1522            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1523            ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1524            ++NumReMats;
1525          } else {
1526            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1527                    regA).addReg(regB);
1528          }
1529
1530          MachineBasicBlock::iterator prevMI = prior(mi);
1531          // Update DistanceMap.
1532          DistanceMap.insert(std::make_pair(prevMI, Dist));
1533          DistanceMap[mi] = ++Dist;
1534
1535          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1536
1537          MachineOperand &MO = mi->getOperand(SrcIdx);
1538          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1539                 "inconsistent operand info for 2-reg pass");
1540          if (MO.isKill()) {
1541            MO.setIsKill(false);
1542            RemovedKillFlag = true;
1543          }
1544          MO.setReg(regA);
1545        }
1546
1547        if (AllUsesCopied) {
1548          if (!IsEarlyClobber) {
1549            // Replace other (un-tied) uses of regB with LastCopiedReg.
1550            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1551              MachineOperand &MO = mi->getOperand(i);
1552              if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1553                if (MO.isKill()) {
1554                  MO.setIsKill(false);
1555                  RemovedKillFlag = true;
1556                }
1557                MO.setReg(LastCopiedReg);
1558              }
1559            }
1560          }
1561
1562          // Update live variables for regB.
1563          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1564            LV->addVirtualRegisterKilled(regB, prior(mi));
1565
1566        } else if (RemovedKillFlag) {
1567          // Some tied uses of regB matched their destination registers, so
1568          // regB is still used in this instruction, but a kill flag was
1569          // removed from a different tied use of regB, so now we need to add
1570          // a kill flag to one of the remaining uses of regB.
1571          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1572            MachineOperand &MO = mi->getOperand(i);
1573            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1574              MO.setIsKill(true);
1575              break;
1576            }
1577          }
1578        }
1579
1580        // Schedule the source copy / remat inserted to form two-address
1581        // instruction. FIXME: Does it matter the distance map may not be
1582        // accurate after it's scheduled?
1583        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1584
1585        MadeChange = true;
1586
1587        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1588      }
1589
1590      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1591      if (mi->isInsertSubreg()) {
1592        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1593        // To   %reg:subidx = COPY %subreg
1594        unsigned SubIdx = mi->getOperand(3).getImm();
1595        mi->RemoveOperand(3);
1596        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1597        mi->getOperand(0).setSubReg(SubIdx);
1598        mi->RemoveOperand(1);
1599        mi->setDesc(TII->get(TargetOpcode::COPY));
1600        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1601      }
1602
1603      // Clear TiedOperands here instead of at the top of the loop
1604      // since most instructions do not have tied operands.
1605      TiedOperands.clear();
1606      mi = nmi;
1607    }
1608  }
1609
1610  // Some remat'ed instructions are dead.
1611  for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1612    unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1613    if (MRI->use_nodbg_empty(VReg)) {
1614      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1615      DefMI->eraseFromParent();
1616    }
1617  }
1618
1619  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1620  // SSA form. It's now safe to de-SSA.
1621  MadeChange |= EliminateRegSequences();
1622
1623  return MadeChange;
1624}
1625
1626static void UpdateRegSequenceSrcs(unsigned SrcReg,
1627                                  unsigned DstReg, unsigned SubIdx,
1628                                  MachineRegisterInfo *MRI,
1629                                  const TargetRegisterInfo &TRI) {
1630  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1631         RE = MRI->reg_end(); RI != RE; ) {
1632    MachineOperand &MO = RI.getOperand();
1633    ++RI;
1634    MO.substVirtReg(DstReg, SubIdx, TRI);
1635  }
1636}
1637
1638/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1639/// EXTRACT_SUBREG from the same register and to the same virtual register
1640/// with different sub-register indices, attempt to combine the
1641/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1642/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1643/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1644/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1645/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1646/// reg1026 to reg1029.
1647void
1648TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1649                                              unsigned DstReg) {
1650  SmallSet<unsigned, 4> Seen;
1651  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1652    unsigned SrcReg = Srcs[i];
1653    if (!Seen.insert(SrcReg))
1654      continue;
1655
1656    // Check that the instructions are all in the same basic block.
1657    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1658    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1659    if (SrcDefMI->getParent() != DstDefMI->getParent())
1660      continue;
1661
1662    // If there are no other uses than copies which feed into
1663    // the reg_sequence, then we might be able to coalesce them.
1664    bool CanCoalesce = true;
1665    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1666    for (MachineRegisterInfo::use_nodbg_iterator
1667           UI = MRI->use_nodbg_begin(SrcReg),
1668           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1669      MachineInstr *UseMI = &*UI;
1670      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1671        CanCoalesce = false;
1672        break;
1673      }
1674      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1675      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1676    }
1677
1678    if (!CanCoalesce || SrcSubIndices.size() < 2)
1679      continue;
1680
1681    // Check that the source subregisters can be combined.
1682    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1683    unsigned NewSrcSubIdx = 0;
1684    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1685                                      NewSrcSubIdx))
1686      continue;
1687
1688    // Check that the destination subregisters can also be combined.
1689    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1690    unsigned NewDstSubIdx = 0;
1691    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1692                                      NewDstSubIdx))
1693      continue;
1694
1695    // If neither source nor destination can be combined to the full register,
1696    // just give up.  This could be improved if it ever matters.
1697    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1698      continue;
1699
1700    // Now that we know that all the uses are extract_subregs and that those
1701    // subregs can somehow be combined, scan all the extract_subregs again to
1702    // make sure the subregs are in the right order and can be composed.
1703    MachineInstr *SomeMI = 0;
1704    CanCoalesce = true;
1705    for (MachineRegisterInfo::use_nodbg_iterator
1706           UI = MRI->use_nodbg_begin(SrcReg),
1707           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1708      MachineInstr *UseMI = &*UI;
1709      assert(UseMI->isCopy());
1710      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1711      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1712      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1713      if ((NewDstSubIdx == 0 &&
1714           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1715          (NewSrcSubIdx == 0 &&
1716           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1717        CanCoalesce = false;
1718        break;
1719      }
1720      // Keep track of one of the uses.
1721      SomeMI = UseMI;
1722    }
1723    if (!CanCoalesce)
1724      continue;
1725
1726    // Insert a copy to replace the original.
1727    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1728                                   SomeMI->getDebugLoc(),
1729                                   TII->get(TargetOpcode::COPY))
1730      .addReg(DstReg, RegState::Define, NewDstSubIdx)
1731      .addReg(SrcReg, 0, NewSrcSubIdx);
1732
1733    // Remove all the old extract instructions.
1734    for (MachineRegisterInfo::use_nodbg_iterator
1735           UI = MRI->use_nodbg_begin(SrcReg),
1736           UE = MRI->use_nodbg_end(); UI != UE; ) {
1737      MachineInstr *UseMI = &*UI;
1738      ++UI;
1739      if (UseMI == CopyMI)
1740        continue;
1741      assert(UseMI->isCopy());
1742      // Move any kills to the new copy or extract instruction.
1743      if (UseMI->getOperand(1).isKill()) {
1744        CopyMI->getOperand(1).setIsKill();
1745        if (LV)
1746          // Update live variables
1747          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1748      }
1749      UseMI->eraseFromParent();
1750    }
1751  }
1752}
1753
1754static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1755                                    MachineRegisterInfo *MRI) {
1756  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1757         UE = MRI->use_end(); UI != UE; ++UI) {
1758    MachineInstr *UseMI = &*UI;
1759    if (UseMI != RegSeq && UseMI->isRegSequence())
1760      return true;
1761  }
1762  return false;
1763}
1764
1765/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1766/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1767/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1768///
1769/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1770/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1771/// =>
1772/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1773bool TwoAddressInstructionPass::EliminateRegSequences() {
1774  if (RegSequences.empty())
1775    return false;
1776
1777  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1778    MachineInstr *MI = RegSequences[i];
1779    unsigned DstReg = MI->getOperand(0).getReg();
1780    if (MI->getOperand(0).getSubReg() ||
1781        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1782        !(MI->getNumOperands() & 1)) {
1783      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1784      llvm_unreachable(0);
1785    }
1786
1787    bool IsImpDef = true;
1788    SmallVector<unsigned, 4> RealSrcs;
1789    SmallSet<unsigned, 4> Seen;
1790    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1791      unsigned SrcReg = MI->getOperand(i).getReg();
1792      unsigned SubIdx = MI->getOperand(i+1).getImm();
1793      if (MI->getOperand(i).getSubReg() ||
1794          TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1795        DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1796        llvm_unreachable(0);
1797      }
1798
1799      MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1800      if (DefMI->isImplicitDef()) {
1801        DefMI->eraseFromParent();
1802        continue;
1803      }
1804      IsImpDef = false;
1805
1806      // Remember COPY sources. These might be candidate for coalescing.
1807      if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1808        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1809
1810      bool isKill = MI->getOperand(i).isKill();
1811      if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1812          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1813          !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1814                                         MRI->getRegClass(SrcReg), SubIdx)) {
1815        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1816        // Also add an copy if the source is live-in the block. We don't want
1817        // to end up with a partial-redef of a livein, e.g.
1818        // BB0:
1819        // reg1051:10<def> =
1820        // ...
1821        // BB1:
1822        // ... = reg1051:10
1823        // BB2:
1824        // reg1051:9<def> =
1825        // LiveIntervalAnalysis won't like it.
1826        //
1827        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1828        // correctly up to date becomes very difficult. Insert a copy.
1829
1830        // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1831        // might insert a COPY that uses SrcReg after is was killed.
1832        if (isKill)
1833          for (unsigned j = i + 2; j < e; j += 2)
1834            if (MI->getOperand(j).getReg() == SrcReg) {
1835              MI->getOperand(j).setIsKill();
1836              isKill = false;
1837              break;
1838            }
1839
1840        MachineBasicBlock::iterator InsertLoc = MI;
1841        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1842                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1843            .addReg(DstReg, RegState::Define, SubIdx)
1844            .addReg(SrcReg, getKillRegState(isKill));
1845        MI->getOperand(i).setReg(0);
1846        if (LV && isKill)
1847          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1848        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1849      }
1850    }
1851
1852    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1853      unsigned SrcReg = MI->getOperand(i).getReg();
1854      if (!SrcReg) continue;
1855      unsigned SubIdx = MI->getOperand(i+1).getImm();
1856      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1857    }
1858
1859    if (IsImpDef) {
1860      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1861      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1862      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1863        MI->RemoveOperand(j);
1864    } else {
1865      DEBUG(dbgs() << "Eliminated: " << *MI);
1866      MI->eraseFromParent();
1867    }
1868
1869    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1870    // INSERT_SUBREG instructions that must have <undef> flags added by
1871    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1872    if (LV)
1873      CoalesceExtSubRegs(RealSrcs, DstReg);
1874  }
1875
1876  RegSequences.clear();
1877  return true;
1878}
1879