TwoAddressInstructionPass.cpp revision 4d96c638af0458f4de637998da942a5e166d6ea5
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/ADT/BitVector.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/ADT/STLExtras.h"
50using namespace llvm;
51
52STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
53STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
54STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
55STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
56STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
57STATISTIC(NumReMats,           "Number of instructions re-materialized");
58STATISTIC(NumDeletes,          "Number of dead instructions deleted");
59
60namespace {
61  class TwoAddressInstructionPass : public MachineFunctionPass {
62    const TargetInstrInfo *TII;
63    const TargetRegisterInfo *TRI;
64    MachineRegisterInfo *MRI;
65    LiveVariables *LV;
66    AliasAnalysis *AA;
67
68    // DistanceMap - Keep track the distance of a MI from the start of the
69    // current basic block.
70    DenseMap<MachineInstr*, unsigned> DistanceMap;
71
72    // SrcRegMap - A map from virtual registers to physical registers which
73    // are likely targets to be coalesced to due to copies from physical
74    // registers to virtual registers. e.g. v1024 = move r0.
75    DenseMap<unsigned, unsigned> SrcRegMap;
76
77    // DstRegMap - A map from virtual registers to physical registers which
78    // are likely targets to be coalesced to due to copies to physical
79    // registers from virtual registers. e.g. r1 = move v1024.
80    DenseMap<unsigned, unsigned> DstRegMap;
81
82    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83    /// during the initial walk of the machine function.
84    SmallVector<MachineInstr*, 16> RegSequences;
85
86    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
87                              unsigned Reg,
88                              MachineBasicBlock::iterator OldPos);
89
90    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
91                             MachineInstr *MI, MachineInstr *DefMI,
92                             MachineBasicBlock *MBB, unsigned Loc);
93
94    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
95                           unsigned &LastDef);
96
97    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
98                                   unsigned Dist);
99
100    bool isProfitableToCommute(unsigned regB, unsigned regC,
101                               MachineInstr *MI, MachineBasicBlock *MBB,
102                               unsigned Dist);
103
104    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
105                            MachineFunction::iterator &mbbi,
106                            unsigned RegB, unsigned RegC, unsigned Dist);
107
108    bool isProfitableToConv3Addr(unsigned RegA);
109
110    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
111                            MachineBasicBlock::iterator &nmi,
112                            MachineFunction::iterator &mbbi,
113                            unsigned RegA, unsigned RegB, unsigned Dist);
114
115    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
116    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
117                               SmallVector<NewKill, 4> &NewKills,
118                               MachineBasicBlock *MBB, unsigned Dist);
119    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
120                           MachineBasicBlock::iterator &nmi,
121                           MachineFunction::iterator &mbbi, unsigned Dist);
122
123    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
124                                 MachineBasicBlock::iterator &nmi,
125                                 MachineFunction::iterator &mbbi,
126                                 unsigned SrcIdx, unsigned DstIdx,
127                                 unsigned Dist);
128
129    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
130                     SmallPtrSet<MachineInstr*, 8> &Processed);
131
132    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
133
134    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
135    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
136    /// sub-register references of the register defined by REG_SEQUENCE.
137    bool EliminateRegSequences();
138
139  public:
140    static char ID; // Pass identification, replacement for typeid
141    TwoAddressInstructionPass() : MachineFunctionPass(ID) {
142      initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
143    }
144
145    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
146      AU.setPreservesCFG();
147      AU.addRequired<AliasAnalysis>();
148      AU.addPreserved<LiveVariables>();
149      AU.addPreservedID(MachineLoopInfoID);
150      AU.addPreservedID(MachineDominatorsID);
151      AU.addPreservedID(PHIEliminationID);
152      MachineFunctionPass::getAnalysisUsage(AU);
153    }
154
155    /// runOnMachineFunction - Pass entry point.
156    bool runOnMachineFunction(MachineFunction&);
157  };
158}
159
160char TwoAddressInstructionPass::ID = 0;
161INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
162                "Two-Address instruction pass", false, false)
163INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
164INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
165                "Two-Address instruction pass", false, false)
166
167char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
168
169/// Sink3AddrInstruction - A two-address instruction has been converted to a
170/// three-address instruction to avoid clobbering a register. Try to sink it
171/// past the instruction that would kill the above mentioned register to reduce
172/// register pressure.
173bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
174                                           MachineInstr *MI, unsigned SavedReg,
175                                           MachineBasicBlock::iterator OldPos) {
176  // Check if it's safe to move this instruction.
177  bool SeenStore = true; // Be conservative.
178  if (!MI->isSafeToMove(TII, AA, SeenStore))
179    return false;
180
181  unsigned DefReg = 0;
182  SmallSet<unsigned, 4> UseRegs;
183
184  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
185    const MachineOperand &MO = MI->getOperand(i);
186    if (!MO.isReg())
187      continue;
188    unsigned MOReg = MO.getReg();
189    if (!MOReg)
190      continue;
191    if (MO.isUse() && MOReg != SavedReg)
192      UseRegs.insert(MO.getReg());
193    if (!MO.isDef())
194      continue;
195    if (MO.isImplicit())
196      // Don't try to move it if it implicitly defines a register.
197      return false;
198    if (DefReg)
199      // For now, don't move any instructions that define multiple registers.
200      return false;
201    DefReg = MO.getReg();
202  }
203
204  // Find the instruction that kills SavedReg.
205  MachineInstr *KillMI = NULL;
206  for (MachineRegisterInfo::use_nodbg_iterator
207         UI = MRI->use_nodbg_begin(SavedReg),
208         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
209    MachineOperand &UseMO = UI.getOperand();
210    if (!UseMO.isKill())
211      continue;
212    KillMI = UseMO.getParent();
213    break;
214  }
215
216  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
217    return false;
218
219  // If any of the definitions are used by another instruction between the
220  // position and the kill use, then it's not safe to sink it.
221  //
222  // FIXME: This can be sped up if there is an easy way to query whether an
223  // instruction is before or after another instruction. Then we can use
224  // MachineRegisterInfo def / use instead.
225  MachineOperand *KillMO = NULL;
226  MachineBasicBlock::iterator KillPos = KillMI;
227  ++KillPos;
228
229  unsigned NumVisited = 0;
230  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
231    MachineInstr *OtherMI = I;
232    // DBG_VALUE cannot be counted against the limit.
233    if (OtherMI->isDebugValue())
234      continue;
235    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
236      return false;
237    ++NumVisited;
238    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
239      MachineOperand &MO = OtherMI->getOperand(i);
240      if (!MO.isReg())
241        continue;
242      unsigned MOReg = MO.getReg();
243      if (!MOReg)
244        continue;
245      if (DefReg == MOReg)
246        return false;
247
248      if (MO.isKill()) {
249        if (OtherMI == KillMI && MOReg == SavedReg)
250          // Save the operand that kills the register. We want to unset the kill
251          // marker if we can sink MI past it.
252          KillMO = &MO;
253        else if (UseRegs.count(MOReg))
254          // One of the uses is killed before the destination.
255          return false;
256      }
257    }
258  }
259
260  // Update kill and LV information.
261  KillMO->setIsKill(false);
262  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
263  KillMO->setIsKill(true);
264
265  if (LV)
266    LV->replaceKillInstruction(SavedReg, KillMI, MI);
267
268  // Move instruction to its destination.
269  MBB->remove(MI);
270  MBB->insert(KillPos, MI);
271
272  ++Num3AddrSunk;
273  return true;
274}
275
276/// isTwoAddrUse - Return true if the specified MI is using the specified
277/// register as a two-address operand.
278static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
279  const TargetInstrDesc &TID = UseMI->getDesc();
280  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
281    MachineOperand &MO = UseMI->getOperand(i);
282    if (MO.isReg() && MO.getReg() == Reg &&
283        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
284      // Earlier use is a two-address one.
285      return true;
286  }
287  return false;
288}
289
290/// isProfitableToReMat - Return true if the heuristics determines it is likely
291/// to be profitable to re-materialize the definition of Reg rather than copy
292/// the register.
293bool
294TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
295                                         const TargetRegisterClass *RC,
296                                         MachineInstr *MI, MachineInstr *DefMI,
297                                         MachineBasicBlock *MBB, unsigned Loc) {
298  bool OtherUse = false;
299  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
300         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
301    MachineOperand &UseMO = UI.getOperand();
302    MachineInstr *UseMI = UseMO.getParent();
303    MachineBasicBlock *UseMBB = UseMI->getParent();
304    if (UseMBB == MBB) {
305      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
306      if (DI != DistanceMap.end() && DI->second == Loc)
307        continue;  // Current use.
308      OtherUse = true;
309      // There is at least one other use in the MBB that will clobber the
310      // register.
311      if (isTwoAddrUse(UseMI, Reg))
312        return true;
313    }
314  }
315
316  // If other uses in MBB are not two-address uses, then don't remat.
317  if (OtherUse)
318    return false;
319
320  // No other uses in the same block, remat if it's defined in the same
321  // block so it does not unnecessarily extend the live range.
322  return MBB == DefMI->getParent();
323}
324
325/// NoUseAfterLastDef - Return true if there are no intervening uses between the
326/// last instruction in the MBB that defines the specified register and the
327/// two-address instruction which is being processed. It also returns the last
328/// def location by reference
329bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
330                                           MachineBasicBlock *MBB, unsigned Dist,
331                                           unsigned &LastDef) {
332  LastDef = 0;
333  unsigned LastUse = Dist;
334  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
335         E = MRI->reg_end(); I != E; ++I) {
336    MachineOperand &MO = I.getOperand();
337    MachineInstr *MI = MO.getParent();
338    if (MI->getParent() != MBB || MI->isDebugValue())
339      continue;
340    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
341    if (DI == DistanceMap.end())
342      continue;
343    if (MO.isUse() && DI->second < LastUse)
344      LastUse = DI->second;
345    if (MO.isDef() && DI->second > LastDef)
346      LastDef = DI->second;
347  }
348
349  return !(LastUse > LastDef && LastUse < Dist);
350}
351
352MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
353                                                         MachineBasicBlock *MBB,
354                                                         unsigned Dist) {
355  unsigned LastUseDist = 0;
356  MachineInstr *LastUse = 0;
357  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
358         E = MRI->reg_end(); I != E; ++I) {
359    MachineOperand &MO = I.getOperand();
360    MachineInstr *MI = MO.getParent();
361    if (MI->getParent() != MBB || MI->isDebugValue())
362      continue;
363    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
364    if (DI == DistanceMap.end())
365      continue;
366    if (DI->second >= Dist)
367      continue;
368
369    if (MO.isUse() && DI->second > LastUseDist) {
370      LastUse = DI->first;
371      LastUseDist = DI->second;
372    }
373  }
374  return LastUse;
375}
376
377/// isCopyToReg - Return true if the specified MI is a copy instruction or
378/// a extract_subreg instruction. It also returns the source and destination
379/// registers and whether they are physical registers by reference.
380static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
381                        unsigned &SrcReg, unsigned &DstReg,
382                        bool &IsSrcPhys, bool &IsDstPhys) {
383  SrcReg = 0;
384  DstReg = 0;
385  if (MI.isCopy()) {
386    DstReg = MI.getOperand(0).getReg();
387    SrcReg = MI.getOperand(1).getReg();
388  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
389    DstReg = MI.getOperand(0).getReg();
390    SrcReg = MI.getOperand(2).getReg();
391  } else
392    return false;
393
394  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
395  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
396  return true;
397}
398
399/// isKilled - Test if the given register value, which is used by the given
400/// instruction, is killed by the given instruction. This looks through
401/// coalescable copies to see if the original value is potentially not killed.
402///
403/// For example, in this code:
404///
405///   %reg1034 = copy %reg1024
406///   %reg1035 = copy %reg1025<kill>
407///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
408///
409/// %reg1034 is not considered to be killed, since it is copied from a
410/// register which is not killed. Treating it as not killed lets the
411/// normal heuristics commute the (two-address) add, which lets
412/// coalescing eliminate the extra copy.
413///
414static bool isKilled(MachineInstr &MI, unsigned Reg,
415                     const MachineRegisterInfo *MRI,
416                     const TargetInstrInfo *TII) {
417  MachineInstr *DefMI = &MI;
418  for (;;) {
419    if (!DefMI->killsRegister(Reg))
420      return false;
421    if (TargetRegisterInfo::isPhysicalRegister(Reg))
422      return true;
423    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
424    // If there are multiple defs, we can't do a simple analysis, so just
425    // go with what the kill flag says.
426    if (llvm::next(Begin) != MRI->def_end())
427      return true;
428    DefMI = &*Begin;
429    bool IsSrcPhys, IsDstPhys;
430    unsigned SrcReg,  DstReg;
431    // If the def is something other than a copy, then it isn't going to
432    // be coalesced, so follow the kill flag.
433    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
434      return true;
435    Reg = SrcReg;
436  }
437}
438
439/// isTwoAddrUse - Return true if the specified MI uses the specified register
440/// as a two-address use. If so, return the destination register by reference.
441static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
442  const TargetInstrDesc &TID = MI.getDesc();
443  unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
444  for (unsigned i = 0; i != NumOps; ++i) {
445    const MachineOperand &MO = MI.getOperand(i);
446    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
447      continue;
448    unsigned ti;
449    if (MI.isRegTiedToDefOperand(i, &ti)) {
450      DstReg = MI.getOperand(ti).getReg();
451      return true;
452    }
453  }
454  return false;
455}
456
457/// findOnlyInterestingUse - Given a register, if has a single in-basic block
458/// use, return the use instruction if it's a copy or a two-address use.
459static
460MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
461                                     MachineRegisterInfo *MRI,
462                                     const TargetInstrInfo *TII,
463                                     bool &IsCopy,
464                                     unsigned &DstReg, bool &IsDstPhys) {
465  if (!MRI->hasOneNonDBGUse(Reg))
466    // None or more than one use.
467    return 0;
468  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
469  if (UseMI.getParent() != MBB)
470    return 0;
471  unsigned SrcReg;
472  bool IsSrcPhys;
473  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
474    IsCopy = true;
475    return &UseMI;
476  }
477  IsDstPhys = false;
478  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
479    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
480    return &UseMI;
481  }
482  return 0;
483}
484
485/// getMappedReg - Return the physical register the specified virtual register
486/// might be mapped to.
487static unsigned
488getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
489  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
490    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
491    if (SI == RegMap.end())
492      return 0;
493    Reg = SI->second;
494  }
495  if (TargetRegisterInfo::isPhysicalRegister(Reg))
496    return Reg;
497  return 0;
498}
499
500/// regsAreCompatible - Return true if the two registers are equal or aliased.
501///
502static bool
503regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
504  if (RegA == RegB)
505    return true;
506  if (!RegA || !RegB)
507    return false;
508  return TRI->regsOverlap(RegA, RegB);
509}
510
511
512/// isProfitableToReMat - Return true if it's potentially profitable to commute
513/// the two-address instruction that's being processed.
514bool
515TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
516                                       MachineInstr *MI, MachineBasicBlock *MBB,
517                                       unsigned Dist) {
518  // Determine if it's profitable to commute this two address instruction. In
519  // general, we want no uses between this instruction and the definition of
520  // the two-address register.
521  // e.g.
522  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
523  // %reg1029<def> = MOV8rr %reg1028
524  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
525  // insert => %reg1030<def> = MOV8rr %reg1028
526  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
527  // In this case, it might not be possible to coalesce the second MOV8rr
528  // instruction if the first one is coalesced. So it would be profitable to
529  // commute it:
530  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
531  // %reg1029<def> = MOV8rr %reg1028
532  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
533  // insert => %reg1030<def> = MOV8rr %reg1029
534  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
535
536  if (!MI->killsRegister(regC))
537    return false;
538
539  // Ok, we have something like:
540  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
541  // let's see if it's worth commuting it.
542
543  // Look for situations like this:
544  // %reg1024<def> = MOV r1
545  // %reg1025<def> = MOV r0
546  // %reg1026<def> = ADD %reg1024, %reg1025
547  // r0            = MOV %reg1026
548  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
549  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
550  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
551  unsigned ToRegB = getMappedReg(regB, DstRegMap);
552  unsigned ToRegC = getMappedReg(regC, DstRegMap);
553  if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
554      ((!FromRegC && !ToRegC) ||
555       regsAreCompatible(FromRegB, ToRegC, TRI) ||
556       regsAreCompatible(FromRegC, ToRegB, TRI)))
557    return true;
558
559  // If there is a use of regC between its last def (could be livein) and this
560  // instruction, then bail.
561  unsigned LastDefC = 0;
562  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
563    return false;
564
565  // If there is a use of regB between its last def (could be livein) and this
566  // instruction, then go ahead and make this transformation.
567  unsigned LastDefB = 0;
568  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
569    return true;
570
571  // Since there are no intervening uses for both registers, then commute
572  // if the def of regC is closer. Its live interval is shorter.
573  return LastDefB && LastDefC && LastDefC > LastDefB;
574}
575
576/// CommuteInstruction - Commute a two-address instruction and update the basic
577/// block, distance map, and live variables if needed. Return true if it is
578/// successful.
579bool
580TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
581                               MachineFunction::iterator &mbbi,
582                               unsigned RegB, unsigned RegC, unsigned Dist) {
583  MachineInstr *MI = mi;
584  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
585  MachineInstr *NewMI = TII->commuteInstruction(MI);
586
587  if (NewMI == 0) {
588    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
589    return false;
590  }
591
592  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
593  // If the instruction changed to commute it, update livevar.
594  if (NewMI != MI) {
595    if (LV)
596      // Update live variables
597      LV->replaceKillInstruction(RegC, MI, NewMI);
598
599    mbbi->insert(mi, NewMI);           // Insert the new inst
600    mbbi->erase(mi);                   // Nuke the old inst.
601    mi = NewMI;
602    DistanceMap.insert(std::make_pair(NewMI, Dist));
603  }
604
605  // Update source register map.
606  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
607  if (FromRegC) {
608    unsigned RegA = MI->getOperand(0).getReg();
609    SrcRegMap[RegA] = FromRegC;
610  }
611
612  return true;
613}
614
615/// isProfitableToConv3Addr - Return true if it is profitable to convert the
616/// given 2-address instruction to a 3-address one.
617bool
618TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
619  // Look for situations like this:
620  // %reg1024<def> = MOV r1
621  // %reg1025<def> = MOV r0
622  // %reg1026<def> = ADD %reg1024, %reg1025
623  // r2            = MOV %reg1026
624  // Turn ADD into a 3-address instruction to avoid a copy.
625  unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
626  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
627  return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
628}
629
630/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
631/// three address one. Return true if this transformation was successful.
632bool
633TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
634                                              MachineBasicBlock::iterator &nmi,
635                                              MachineFunction::iterator &mbbi,
636                                              unsigned RegA, unsigned RegB,
637                                              unsigned Dist) {
638  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
639  if (NewMI) {
640    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
641    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
642    bool Sunk = false;
643
644    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
645      // FIXME: Temporary workaround. If the new instruction doesn't
646      // uses RegB, convertToThreeAddress must have created more
647      // then one instruction.
648      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
649
650    mbbi->erase(mi); // Nuke the old inst.
651
652    if (!Sunk) {
653      DistanceMap.insert(std::make_pair(NewMI, Dist));
654      mi = NewMI;
655      nmi = llvm::next(mi);
656    }
657
658    // Update source and destination register maps.
659    SrcRegMap.erase(RegA);
660    DstRegMap.erase(RegB);
661    return true;
662  }
663
664  return false;
665}
666
667/// ProcessCopy - If the specified instruction is not yet processed, process it
668/// if it's a copy. For a copy instruction, we find the physical registers the
669/// source and destination registers might be mapped to. These are kept in
670/// point-to maps used to determine future optimizations. e.g.
671/// v1024 = mov r0
672/// v1025 = mov r1
673/// v1026 = add v1024, v1025
674/// r1    = mov r1026
675/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
676/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
677/// potentially joined with r1 on the output side. It's worthwhile to commute
678/// 'add' to eliminate a copy.
679void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
680                                     MachineBasicBlock *MBB,
681                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
682  if (Processed.count(MI))
683    return;
684
685  bool IsSrcPhys, IsDstPhys;
686  unsigned SrcReg, DstReg;
687  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
688    return;
689
690  if (IsDstPhys && !IsSrcPhys)
691    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
692  else if (!IsDstPhys && IsSrcPhys) {
693    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
694    if (!isNew)
695      assert(SrcRegMap[DstReg] == SrcReg &&
696             "Can't map to two src physical registers!");
697
698    SmallVector<unsigned, 4> VirtRegPairs;
699    bool IsCopy = false;
700    unsigned NewReg = 0;
701    while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
702                                                   IsCopy, NewReg, IsDstPhys)) {
703      if (IsCopy) {
704        if (!Processed.insert(UseMI))
705          break;
706      }
707
708      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
709      if (DI != DistanceMap.end())
710        // Earlier in the same MBB.Reached via a back edge.
711        break;
712
713      if (IsDstPhys) {
714        VirtRegPairs.push_back(NewReg);
715        break;
716      }
717      bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
718      if (!isNew)
719        assert(SrcRegMap[NewReg] == DstReg &&
720               "Can't map to two src physical registers!");
721      VirtRegPairs.push_back(NewReg);
722      DstReg = NewReg;
723    }
724
725    if (!VirtRegPairs.empty()) {
726      unsigned ToReg = VirtRegPairs.back();
727      VirtRegPairs.pop_back();
728      while (!VirtRegPairs.empty()) {
729        unsigned FromReg = VirtRegPairs.back();
730        VirtRegPairs.pop_back();
731        bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
732        if (!isNew)
733          assert(DstRegMap[FromReg] == ToReg &&
734                 "Can't map to two dst physical registers!");
735        ToReg = FromReg;
736      }
737    }
738  }
739
740  Processed.insert(MI);
741}
742
743/// isSafeToDelete - If the specified instruction does not produce any side
744/// effects and all of its defs are dead, then it's safe to delete.
745static bool isSafeToDelete(MachineInstr *MI,
746                           const TargetInstrInfo *TII,
747                           SmallVector<unsigned, 4> &Kills) {
748  const TargetInstrDesc &TID = MI->getDesc();
749  if (TID.mayStore() || TID.isCall())
750    return false;
751  if (TID.isTerminator() || MI->hasUnmodeledSideEffects())
752    return false;
753
754  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
755    MachineOperand &MO = MI->getOperand(i);
756    if (!MO.isReg())
757      continue;
758    if (MO.isDef() && !MO.isDead())
759      return false;
760    if (MO.isUse() && MO.isKill())
761      Kills.push_back(MO.getReg());
762  }
763  return true;
764}
765
766/// canUpdateDeletedKills - Check if all the registers listed in Kills are
767/// killed by instructions in MBB preceding the current instruction at
768/// position Dist.  If so, return true and record information about the
769/// preceding kills in NewKills.
770bool TwoAddressInstructionPass::
771canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
772                      SmallVector<NewKill, 4> &NewKills,
773                      MachineBasicBlock *MBB, unsigned Dist) {
774  while (!Kills.empty()) {
775    unsigned Kill = Kills.back();
776    Kills.pop_back();
777    if (TargetRegisterInfo::isPhysicalRegister(Kill))
778      return false;
779
780    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
781    if (!LastKill)
782      return false;
783
784    bool isModRef = LastKill->definesRegister(Kill);
785    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
786                                      LastKill));
787  }
788  return true;
789}
790
791/// DeleteUnusedInstr - If an instruction with a tied register operand can
792/// be safely deleted, just delete it.
793bool
794TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
795                                             MachineBasicBlock::iterator &nmi,
796                                             MachineFunction::iterator &mbbi,
797                                             unsigned Dist) {
798  // Check if the instruction has no side effects and if all its defs are dead.
799  SmallVector<unsigned, 4> Kills;
800  if (!isSafeToDelete(mi, TII, Kills))
801    return false;
802
803  // If this instruction kills some virtual registers, we need to
804  // update the kill information. If it's not possible to do so,
805  // then bail out.
806  SmallVector<NewKill, 4> NewKills;
807  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
808    return false;
809
810  if (LV) {
811    while (!NewKills.empty()) {
812      MachineInstr *NewKill = NewKills.back().second;
813      unsigned Kill = NewKills.back().first.first;
814      bool isDead = NewKills.back().first.second;
815      NewKills.pop_back();
816      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
817        if (isDead)
818          LV->addVirtualRegisterDead(Kill, NewKill);
819        else
820          LV->addVirtualRegisterKilled(Kill, NewKill);
821      }
822    }
823  }
824
825  mbbi->erase(mi); // Nuke the old inst.
826  mi = nmi;
827  return true;
828}
829
830/// TryInstructionTransform - For the case where an instruction has a single
831/// pair of tied register operands, attempt some transformations that may
832/// either eliminate the tied operands or improve the opportunities for
833/// coalescing away the register copy.  Returns true if the tied operands
834/// are eliminated altogether.
835bool TwoAddressInstructionPass::
836TryInstructionTransform(MachineBasicBlock::iterator &mi,
837                        MachineBasicBlock::iterator &nmi,
838                        MachineFunction::iterator &mbbi,
839                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
840  const TargetInstrDesc &TID = mi->getDesc();
841  unsigned regA = mi->getOperand(DstIdx).getReg();
842  unsigned regB = mi->getOperand(SrcIdx).getReg();
843
844  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
845         "cannot make instruction into two-address form");
846
847  // If regA is dead and the instruction can be deleted, just delete
848  // it so it doesn't clobber regB.
849  bool regBKilled = isKilled(*mi, regB, MRI, TII);
850  if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
851      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
852    ++NumDeletes;
853    return true; // Done with this instruction.
854  }
855
856  // Check if it is profitable to commute the operands.
857  unsigned SrcOp1, SrcOp2;
858  unsigned regC = 0;
859  unsigned regCIdx = ~0U;
860  bool TryCommute = false;
861  bool AggressiveCommute = false;
862  if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
863      TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
864    if (SrcIdx == SrcOp1)
865      regCIdx = SrcOp2;
866    else if (SrcIdx == SrcOp2)
867      regCIdx = SrcOp1;
868
869    if (regCIdx != ~0U) {
870      regC = mi->getOperand(regCIdx).getReg();
871      if (!regBKilled && isKilled(*mi, regC, MRI, TII))
872        // If C dies but B does not, swap the B and C operands.
873        // This makes the live ranges of A and C joinable.
874        TryCommute = true;
875      else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
876        TryCommute = true;
877        AggressiveCommute = true;
878      }
879    }
880  }
881
882  // If it's profitable to commute, try to do so.
883  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
884    ++NumCommuted;
885    if (AggressiveCommute)
886      ++NumAggrCommuted;
887    return false;
888  }
889
890  if (TID.isConvertibleTo3Addr()) {
891    // This instruction is potentially convertible to a true
892    // three-address instruction.  Check if it is profitable.
893    if (!regBKilled || isProfitableToConv3Addr(regA)) {
894      // Try to convert it.
895      if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
896        ++NumConvertedTo3Addr;
897        return true; // Done with this instruction.
898      }
899    }
900  }
901
902  // If this is an instruction with a load folded into it, try unfolding
903  // the load, e.g. avoid this:
904  //   movq %rdx, %rcx
905  //   addq (%rax), %rcx
906  // in favor of this:
907  //   movq (%rax), %rcx
908  //   addq %rdx, %rcx
909  // because it's preferable to schedule a load than a register copy.
910  if (TID.mayLoad() && !regBKilled) {
911    // Determine if a load can be unfolded.
912    unsigned LoadRegIndex;
913    unsigned NewOpc =
914      TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
915                                      /*UnfoldLoad=*/true,
916                                      /*UnfoldStore=*/false,
917                                      &LoadRegIndex);
918    if (NewOpc != 0) {
919      const TargetInstrDesc &UnfoldTID = TII->get(NewOpc);
920      if (UnfoldTID.getNumDefs() == 1) {
921        MachineFunction &MF = *mbbi->getParent();
922
923        // Unfold the load.
924        DEBUG(dbgs() << "2addr:   UNFOLDING: " << *mi);
925        const TargetRegisterClass *RC =
926          UnfoldTID.OpInfo[LoadRegIndex].getRegClass(TRI);
927        unsigned Reg = MRI->createVirtualRegister(RC);
928        SmallVector<MachineInstr *, 2> NewMIs;
929        if (!TII->unfoldMemoryOperand(MF, mi, Reg,
930                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
931                                      NewMIs)) {
932          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
933          return false;
934        }
935        assert(NewMIs.size() == 2 &&
936               "Unfolded a load into multiple instructions!");
937        // The load was previously folded, so this is the only use.
938        NewMIs[1]->addRegisterKilled(Reg, TRI);
939
940        // Tentatively insert the instructions into the block so that they
941        // look "normal" to the transformation logic.
942        mbbi->insert(mi, NewMIs[0]);
943        mbbi->insert(mi, NewMIs[1]);
944
945        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
946                     << "2addr:    NEW INST: " << *NewMIs[1]);
947
948        // Transform the instruction, now that it no longer has a load.
949        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
950        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
951        MachineBasicBlock::iterator NewMI = NewMIs[1];
952        bool TransformSuccess =
953          TryInstructionTransform(NewMI, mi, mbbi,
954                                  NewSrcIdx, NewDstIdx, Dist);
955        if (TransformSuccess ||
956            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
957          // Success, or at least we made an improvement. Keep the unfolded
958          // instructions and discard the original.
959          if (LV) {
960            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
961              MachineOperand &MO = mi->getOperand(i);
962              if (MO.isReg() &&
963                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
964                if (MO.isUse()) {
965                  if (MO.isKill()) {
966                    if (NewMIs[0]->killsRegister(MO.getReg()))
967                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
968                    else {
969                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
970                             "Kill missing after load unfold!");
971                      LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
972                    }
973                  }
974                } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
975                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
976                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
977                  else {
978                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
979                           "Dead flag missing after load unfold!");
980                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
981                  }
982                }
983              }
984            }
985            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
986          }
987          mi->eraseFromParent();
988          mi = NewMIs[1];
989          if (TransformSuccess)
990            return true;
991        } else {
992          // Transforming didn't eliminate the tie and didn't lead to an
993          // improvement. Clean up the unfolded instructions and keep the
994          // original.
995          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
996          NewMIs[0]->eraseFromParent();
997          NewMIs[1]->eraseFromParent();
998        }
999      }
1000    }
1001  }
1002
1003  return false;
1004}
1005
1006/// runOnMachineFunction - Reduce two-address instructions to two operands.
1007///
1008bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1009  DEBUG(dbgs() << "Machine Function\n");
1010  const TargetMachine &TM = MF.getTarget();
1011  MRI = &MF.getRegInfo();
1012  TII = TM.getInstrInfo();
1013  TRI = TM.getRegisterInfo();
1014  LV = getAnalysisIfAvailable<LiveVariables>();
1015  AA = &getAnalysis<AliasAnalysis>();
1016
1017  bool MadeChange = false;
1018
1019  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1020  DEBUG(dbgs() << "********** Function: "
1021        << MF.getFunction()->getName() << '\n');
1022
1023  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1024  BitVector ReMatRegs(MRI->getNumVirtRegs());
1025
1026  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1027    TiedOperandMap;
1028  TiedOperandMap TiedOperands(4);
1029
1030  SmallPtrSet<MachineInstr*, 8> Processed;
1031  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1032       mbbi != mbbe; ++mbbi) {
1033    unsigned Dist = 0;
1034    DistanceMap.clear();
1035    SrcRegMap.clear();
1036    DstRegMap.clear();
1037    Processed.clear();
1038    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1039         mi != me; ) {
1040      MachineBasicBlock::iterator nmi = llvm::next(mi);
1041      if (mi->isDebugValue()) {
1042        mi = nmi;
1043        continue;
1044      }
1045
1046      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1047      if (mi->isRegSequence())
1048        RegSequences.push_back(&*mi);
1049
1050      const TargetInstrDesc &TID = mi->getDesc();
1051      bool FirstTied = true;
1052
1053      DistanceMap.insert(std::make_pair(mi, ++Dist));
1054
1055      ProcessCopy(&*mi, &*mbbi, Processed);
1056
1057      // First scan through all the tied register uses in this instruction
1058      // and record a list of pairs of tied operands for each register.
1059      unsigned NumOps = mi->isInlineAsm()
1060        ? mi->getNumOperands() : TID.getNumOperands();
1061      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1062        unsigned DstIdx = 0;
1063        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1064          continue;
1065
1066        if (FirstTied) {
1067          FirstTied = false;
1068          ++NumTwoAddressInstrs;
1069          DEBUG(dbgs() << '\t' << *mi);
1070        }
1071
1072        assert(mi->getOperand(SrcIdx).isReg() &&
1073               mi->getOperand(SrcIdx).getReg() &&
1074               mi->getOperand(SrcIdx).isUse() &&
1075               "two address instruction invalid");
1076
1077        unsigned regB = mi->getOperand(SrcIdx).getReg();
1078        TiedOperandMap::iterator OI = TiedOperands.find(regB);
1079        if (OI == TiedOperands.end()) {
1080          SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
1081          OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
1082        }
1083        OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
1084      }
1085
1086      // Now iterate over the information collected above.
1087      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1088             OE = TiedOperands.end(); OI != OE; ++OI) {
1089        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1090
1091        // If the instruction has a single pair of tied operands, try some
1092        // transformations that may either eliminate the tied operands or
1093        // improve the opportunities for coalescing away the register copy.
1094        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1095          unsigned SrcIdx = TiedPairs[0].first;
1096          unsigned DstIdx = TiedPairs[0].second;
1097
1098          // If the registers are already equal, nothing needs to be done.
1099          if (mi->getOperand(SrcIdx).getReg() ==
1100              mi->getOperand(DstIdx).getReg())
1101            break; // Done with this instruction.
1102
1103          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
1104            break; // The tied operands have been eliminated.
1105        }
1106
1107        bool RemovedKillFlag = false;
1108        bool AllUsesCopied = true;
1109        unsigned LastCopiedReg = 0;
1110        unsigned regB = OI->first;
1111        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1112          unsigned SrcIdx = TiedPairs[tpi].first;
1113          unsigned DstIdx = TiedPairs[tpi].second;
1114          unsigned regA = mi->getOperand(DstIdx).getReg();
1115          // Grab regB from the instruction because it may have changed if the
1116          // instruction was commuted.
1117          regB = mi->getOperand(SrcIdx).getReg();
1118
1119          if (regA == regB) {
1120            // The register is tied to multiple destinations (or else we would
1121            // not have continued this far), but this use of the register
1122            // already matches the tied destination.  Leave it.
1123            AllUsesCopied = false;
1124            continue;
1125          }
1126          LastCopiedReg = regA;
1127
1128          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1129                 "cannot make instruction into two-address form");
1130
1131#ifndef NDEBUG
1132          // First, verify that we don't have a use of "a" in the instruction
1133          // (a = b + a for example) because our transformation will not
1134          // work. This should never occur because we are in SSA form.
1135          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1136            assert(i == DstIdx ||
1137                   !mi->getOperand(i).isReg() ||
1138                   mi->getOperand(i).getReg() != regA);
1139#endif
1140
1141          // Emit a copy or rematerialize the definition.
1142          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1143          MachineInstr *DefMI = MRI->getVRegDef(regB);
1144          // If it's safe and profitable, remat the definition instead of
1145          // copying it.
1146          if (DefMI &&
1147              DefMI->getDesc().isAsCheapAsAMove() &&
1148              DefMI->isSafeToReMat(TII, AA, regB) &&
1149              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1150            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1151            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1152            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1153            ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1154            ++NumReMats;
1155          } else {
1156            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1157                    regA).addReg(regB);
1158          }
1159
1160          MachineBasicBlock::iterator prevMI = prior(mi);
1161          // Update DistanceMap.
1162          DistanceMap.insert(std::make_pair(prevMI, Dist));
1163          DistanceMap[mi] = ++Dist;
1164
1165          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1166
1167          MachineOperand &MO = mi->getOperand(SrcIdx);
1168          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1169                 "inconsistent operand info for 2-reg pass");
1170          if (MO.isKill()) {
1171            MO.setIsKill(false);
1172            RemovedKillFlag = true;
1173          }
1174          MO.setReg(regA);
1175        }
1176
1177        if (AllUsesCopied) {
1178          // Replace other (un-tied) uses of regB with LastCopiedReg.
1179          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1180            MachineOperand &MO = mi->getOperand(i);
1181            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1182              if (MO.isKill()) {
1183                MO.setIsKill(false);
1184                RemovedKillFlag = true;
1185              }
1186              MO.setReg(LastCopiedReg);
1187            }
1188          }
1189
1190          // Update live variables for regB.
1191          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1192            LV->addVirtualRegisterKilled(regB, prior(mi));
1193
1194        } else if (RemovedKillFlag) {
1195          // Some tied uses of regB matched their destination registers, so
1196          // regB is still used in this instruction, but a kill flag was
1197          // removed from a different tied use of regB, so now we need to add
1198          // a kill flag to one of the remaining uses of regB.
1199          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1200            MachineOperand &MO = mi->getOperand(i);
1201            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1202              MO.setIsKill(true);
1203              break;
1204            }
1205          }
1206        }
1207
1208        // Schedule the source copy / remat inserted to form two-address
1209        // instruction. FIXME: Does it matter the distance map may not be
1210        // accurate after it's scheduled?
1211        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1212
1213        MadeChange = true;
1214
1215        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1216      }
1217
1218      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1219      if (mi->isInsertSubreg()) {
1220        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1221        // To   %reg:subidx = COPY %subreg
1222        unsigned SubIdx = mi->getOperand(3).getImm();
1223        mi->RemoveOperand(3);
1224        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1225        mi->getOperand(0).setSubReg(SubIdx);
1226        mi->RemoveOperand(1);
1227        mi->setDesc(TII->get(TargetOpcode::COPY));
1228        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1229      }
1230
1231      // Clear TiedOperands here instead of at the top of the loop
1232      // since most instructions do not have tied operands.
1233      TiedOperands.clear();
1234      mi = nmi;
1235    }
1236  }
1237
1238  // Some remat'ed instructions are dead.
1239  for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1240    unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1241    if (MRI->use_nodbg_empty(VReg)) {
1242      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1243      DefMI->eraseFromParent();
1244    }
1245  }
1246
1247  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1248  // SSA form. It's now safe to de-SSA.
1249  MadeChange |= EliminateRegSequences();
1250
1251  return MadeChange;
1252}
1253
1254static void UpdateRegSequenceSrcs(unsigned SrcReg,
1255                                  unsigned DstReg, unsigned SubIdx,
1256                                  MachineRegisterInfo *MRI,
1257                                  const TargetRegisterInfo &TRI) {
1258  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1259         RE = MRI->reg_end(); RI != RE; ) {
1260    MachineOperand &MO = RI.getOperand();
1261    ++RI;
1262    MO.substVirtReg(DstReg, SubIdx, TRI);
1263  }
1264}
1265
1266/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1267/// EXTRACT_SUBREG from the same register and to the same virtual register
1268/// with different sub-register indices, attempt to combine the
1269/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1270/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1271/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1272/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1273/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1274/// reg1026 to reg1029.
1275void
1276TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1277                                              unsigned DstReg) {
1278  SmallSet<unsigned, 4> Seen;
1279  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1280    unsigned SrcReg = Srcs[i];
1281    if (!Seen.insert(SrcReg))
1282      continue;
1283
1284    // Check that the instructions are all in the same basic block.
1285    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1286    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1287    if (SrcDefMI->getParent() != DstDefMI->getParent())
1288      continue;
1289
1290    // If there are no other uses than copies which feed into
1291    // the reg_sequence, then we might be able to coalesce them.
1292    bool CanCoalesce = true;
1293    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1294    for (MachineRegisterInfo::use_nodbg_iterator
1295           UI = MRI->use_nodbg_begin(SrcReg),
1296           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1297      MachineInstr *UseMI = &*UI;
1298      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1299        CanCoalesce = false;
1300        break;
1301      }
1302      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1303      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1304    }
1305
1306    if (!CanCoalesce || SrcSubIndices.size() < 2)
1307      continue;
1308
1309    // Check that the source subregisters can be combined.
1310    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1311    unsigned NewSrcSubIdx = 0;
1312    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1313                                      NewSrcSubIdx))
1314      continue;
1315
1316    // Check that the destination subregisters can also be combined.
1317    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1318    unsigned NewDstSubIdx = 0;
1319    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1320                                      NewDstSubIdx))
1321      continue;
1322
1323    // If neither source nor destination can be combined to the full register,
1324    // just give up.  This could be improved if it ever matters.
1325    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1326      continue;
1327
1328    // Now that we know that all the uses are extract_subregs and that those
1329    // subregs can somehow be combined, scan all the extract_subregs again to
1330    // make sure the subregs are in the right order and can be composed.
1331    MachineInstr *SomeMI = 0;
1332    CanCoalesce = true;
1333    for (MachineRegisterInfo::use_nodbg_iterator
1334           UI = MRI->use_nodbg_begin(SrcReg),
1335           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1336      MachineInstr *UseMI = &*UI;
1337      assert(UseMI->isCopy());
1338      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1339      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1340      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1341      if ((NewDstSubIdx == 0 &&
1342           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1343          (NewSrcSubIdx == 0 &&
1344           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1345        CanCoalesce = false;
1346        break;
1347      }
1348      // Keep track of one of the uses.
1349      SomeMI = UseMI;
1350    }
1351    if (!CanCoalesce)
1352      continue;
1353
1354    // Insert a copy to replace the original.
1355    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1356                                   SomeMI->getDebugLoc(),
1357                                   TII->get(TargetOpcode::COPY))
1358      .addReg(DstReg, RegState::Define, NewDstSubIdx)
1359      .addReg(SrcReg, 0, NewSrcSubIdx);
1360
1361    // Remove all the old extract instructions.
1362    for (MachineRegisterInfo::use_nodbg_iterator
1363           UI = MRI->use_nodbg_begin(SrcReg),
1364           UE = MRI->use_nodbg_end(); UI != UE; ) {
1365      MachineInstr *UseMI = &*UI;
1366      ++UI;
1367      if (UseMI == CopyMI)
1368        continue;
1369      assert(UseMI->isCopy());
1370      // Move any kills to the new copy or extract instruction.
1371      if (UseMI->getOperand(1).isKill()) {
1372        CopyMI->getOperand(1).setIsKill();
1373        if (LV)
1374          // Update live variables
1375          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1376      }
1377      UseMI->eraseFromParent();
1378    }
1379  }
1380}
1381
1382static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1383                                    MachineRegisterInfo *MRI) {
1384  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1385         UE = MRI->use_end(); UI != UE; ++UI) {
1386    MachineInstr *UseMI = &*UI;
1387    if (UseMI != RegSeq && UseMI->isRegSequence())
1388      return true;
1389  }
1390  return false;
1391}
1392
1393/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1394/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1395/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1396///
1397/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1398/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1399/// =>
1400/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1401bool TwoAddressInstructionPass::EliminateRegSequences() {
1402  if (RegSequences.empty())
1403    return false;
1404
1405  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1406    MachineInstr *MI = RegSequences[i];
1407    unsigned DstReg = MI->getOperand(0).getReg();
1408    if (MI->getOperand(0).getSubReg() ||
1409        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1410        !(MI->getNumOperands() & 1)) {
1411      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1412      llvm_unreachable(0);
1413    }
1414
1415    bool IsImpDef = true;
1416    SmallVector<unsigned, 4> RealSrcs;
1417    SmallSet<unsigned, 4> Seen;
1418    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1419      unsigned SrcReg = MI->getOperand(i).getReg();
1420      unsigned SubIdx = MI->getOperand(i+1).getImm();
1421      if (MI->getOperand(i).getSubReg() ||
1422          TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1423        DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1424        llvm_unreachable(0);
1425      }
1426
1427      MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1428      if (DefMI->isImplicitDef()) {
1429        DefMI->eraseFromParent();
1430        continue;
1431      }
1432      IsImpDef = false;
1433
1434      // Remember COPY sources. These might be candidate for coalescing.
1435      if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1436        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1437
1438      bool isKill = MI->getOperand(i).isKill();
1439      if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1440          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1441          !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1442                                         MRI->getRegClass(SrcReg), SubIdx)) {
1443        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1444        // Also add an copy if the source is live-in the block. We don't want
1445        // to end up with a partial-redef of a livein, e.g.
1446        // BB0:
1447        // reg1051:10<def> =
1448        // ...
1449        // BB1:
1450        // ... = reg1051:10
1451        // BB2:
1452        // reg1051:9<def> =
1453        // LiveIntervalAnalysis won't like it.
1454        //
1455        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1456        // correctly up to date becomes very difficult. Insert a copy.
1457
1458        // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1459        // might insert a COPY that uses SrcReg after is was killed.
1460        if (isKill)
1461          for (unsigned j = i + 2; j < e; j += 2)
1462            if (MI->getOperand(j).getReg() == SrcReg) {
1463              MI->getOperand(j).setIsKill();
1464              isKill = false;
1465              break;
1466            }
1467
1468        MachineBasicBlock::iterator InsertLoc = MI;
1469        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1470                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1471            .addReg(DstReg, RegState::Define, SubIdx)
1472            .addReg(SrcReg, getKillRegState(isKill));
1473        MI->getOperand(i).setReg(0);
1474        if (LV && isKill)
1475          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1476        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1477      }
1478    }
1479
1480    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1481      unsigned SrcReg = MI->getOperand(i).getReg();
1482      if (!SrcReg) continue;
1483      unsigned SubIdx = MI->getOperand(i+1).getImm();
1484      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1485    }
1486
1487    if (IsImpDef) {
1488      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1489      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1490      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1491        MI->RemoveOperand(j);
1492    } else {
1493      DEBUG(dbgs() << "Eliminated: " << *MI);
1494      MI->eraseFromParent();
1495    }
1496
1497    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1498    // INSERT_SUBREG instructions that must have <undef> flags added by
1499    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1500    if (LV)
1501      CoalesceExtSubRegs(RealSrcs, DstReg);
1502  }
1503
1504  RegSequences.clear();
1505  return true;
1506}
1507