TwoAddressInstructionPass.cpp revision 518bb53485df640d7b7e3f6b0544099020c42aa7
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/Analysis/AliasAnalysis.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/DenseMap.h"
45#include "llvm/ADT/SmallSet.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/STLExtras.h"
48using namespace llvm;
49
50STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
51STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
52STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
53STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
54STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
55STATISTIC(NumReMats,           "Number of instructions re-materialized");
56STATISTIC(NumDeletes,          "Number of dead instructions deleted");
57
58namespace {
59  class TwoAddressInstructionPass : public MachineFunctionPass {
60    const TargetInstrInfo *TII;
61    const TargetRegisterInfo *TRI;
62    MachineRegisterInfo *MRI;
63    LiveVariables *LV;
64    AliasAnalysis *AA;
65
66    // DistanceMap - Keep track the distance of a MI from the start of the
67    // current basic block.
68    DenseMap<MachineInstr*, unsigned> DistanceMap;
69
70    // SrcRegMap - A map from virtual registers to physical registers which
71    // are likely targets to be coalesced to due to copies from physical
72    // registers to virtual registers. e.g. v1024 = move r0.
73    DenseMap<unsigned, unsigned> SrcRegMap;
74
75    // DstRegMap - A map from virtual registers to physical registers which
76    // are likely targets to be coalesced to due to copies to physical
77    // registers from virtual registers. e.g. r1 = move v1024.
78    DenseMap<unsigned, unsigned> DstRegMap;
79
80    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
81                              unsigned Reg,
82                              MachineBasicBlock::iterator OldPos);
83
84    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
85                             MachineInstr *MI, MachineInstr *DefMI,
86                             MachineBasicBlock *MBB, unsigned Loc);
87
88    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
89                           unsigned &LastDef);
90
91    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
92                                   unsigned Dist);
93
94    bool isProfitableToCommute(unsigned regB, unsigned regC,
95                               MachineInstr *MI, MachineBasicBlock *MBB,
96                               unsigned Dist);
97
98    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
99                            MachineFunction::iterator &mbbi,
100                            unsigned RegB, unsigned RegC, unsigned Dist);
101
102    bool isProfitableToConv3Addr(unsigned RegA);
103
104    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
105                            MachineBasicBlock::iterator &nmi,
106                            MachineFunction::iterator &mbbi,
107                            unsigned RegB, unsigned Dist);
108
109    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
110    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
111                               SmallVector<NewKill, 4> &NewKills,
112                               MachineBasicBlock *MBB, unsigned Dist);
113    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
114                           MachineBasicBlock::iterator &nmi,
115                           MachineFunction::iterator &mbbi, unsigned Dist);
116
117    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
118                                 MachineBasicBlock::iterator &nmi,
119                                 MachineFunction::iterator &mbbi,
120                                 unsigned SrcIdx, unsigned DstIdx,
121                                 unsigned Dist);
122
123    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
124                     SmallPtrSet<MachineInstr*, 8> &Processed);
125
126  public:
127    static char ID; // Pass identification, replacement for typeid
128    TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
129
130    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
131      AU.setPreservesCFG();
132      AU.addRequired<AliasAnalysis>();
133      AU.addPreserved<LiveVariables>();
134      AU.addPreservedID(MachineLoopInfoID);
135      AU.addPreservedID(MachineDominatorsID);
136      if (StrongPHIElim)
137        AU.addPreservedID(StrongPHIEliminationID);
138      else
139        AU.addPreservedID(PHIEliminationID);
140      MachineFunctionPass::getAnalysisUsage(AU);
141    }
142
143    /// runOnMachineFunction - Pass entry point.
144    bool runOnMachineFunction(MachineFunction&);
145  };
146}
147
148char TwoAddressInstructionPass::ID = 0;
149static RegisterPass<TwoAddressInstructionPass>
150X("twoaddressinstruction", "Two-Address instruction pass");
151
152const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
153
154/// Sink3AddrInstruction - A two-address instruction has been converted to a
155/// three-address instruction to avoid clobbering a register. Try to sink it
156/// past the instruction that would kill the above mentioned register to reduce
157/// register pressure.
158bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
159                                           MachineInstr *MI, unsigned SavedReg,
160                                           MachineBasicBlock::iterator OldPos) {
161  // Check if it's safe to move this instruction.
162  bool SeenStore = true; // Be conservative.
163  if (!MI->isSafeToMove(TII, SeenStore, AA))
164    return false;
165
166  unsigned DefReg = 0;
167  SmallSet<unsigned, 4> UseRegs;
168
169  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
170    const MachineOperand &MO = MI->getOperand(i);
171    if (!MO.isReg())
172      continue;
173    unsigned MOReg = MO.getReg();
174    if (!MOReg)
175      continue;
176    if (MO.isUse() && MOReg != SavedReg)
177      UseRegs.insert(MO.getReg());
178    if (!MO.isDef())
179      continue;
180    if (MO.isImplicit())
181      // Don't try to move it if it implicitly defines a register.
182      return false;
183    if (DefReg)
184      // For now, don't move any instructions that define multiple registers.
185      return false;
186    DefReg = MO.getReg();
187  }
188
189  // Find the instruction that kills SavedReg.
190  MachineInstr *KillMI = NULL;
191  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
192         UE = MRI->use_end(); UI != UE; ++UI) {
193    MachineOperand &UseMO = UI.getOperand();
194    if (!UseMO.isKill())
195      continue;
196    KillMI = UseMO.getParent();
197    break;
198  }
199
200  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
201    return false;
202
203  // If any of the definitions are used by another instruction between the
204  // position and the kill use, then it's not safe to sink it.
205  //
206  // FIXME: This can be sped up if there is an easy way to query whether an
207  // instruction is before or after another instruction. Then we can use
208  // MachineRegisterInfo def / use instead.
209  MachineOperand *KillMO = NULL;
210  MachineBasicBlock::iterator KillPos = KillMI;
211  ++KillPos;
212
213  unsigned NumVisited = 0;
214  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
215    MachineInstr *OtherMI = I;
216    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
217      return false;
218    ++NumVisited;
219    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
220      MachineOperand &MO = OtherMI->getOperand(i);
221      if (!MO.isReg())
222        continue;
223      unsigned MOReg = MO.getReg();
224      if (!MOReg)
225        continue;
226      if (DefReg == MOReg)
227        return false;
228
229      if (MO.isKill()) {
230        if (OtherMI == KillMI && MOReg == SavedReg)
231          // Save the operand that kills the register. We want to unset the kill
232          // marker if we can sink MI past it.
233          KillMO = &MO;
234        else if (UseRegs.count(MOReg))
235          // One of the uses is killed before the destination.
236          return false;
237      }
238    }
239  }
240
241  // Update kill and LV information.
242  KillMO->setIsKill(false);
243  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
244  KillMO->setIsKill(true);
245
246  if (LV)
247    LV->replaceKillInstruction(SavedReg, KillMI, MI);
248
249  // Move instruction to its destination.
250  MBB->remove(MI);
251  MBB->insert(KillPos, MI);
252
253  ++Num3AddrSunk;
254  return true;
255}
256
257/// isTwoAddrUse - Return true if the specified MI is using the specified
258/// register as a two-address operand.
259static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
260  const TargetInstrDesc &TID = UseMI->getDesc();
261  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
262    MachineOperand &MO = UseMI->getOperand(i);
263    if (MO.isReg() && MO.getReg() == Reg &&
264        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
265      // Earlier use is a two-address one.
266      return true;
267  }
268  return false;
269}
270
271/// isProfitableToReMat - Return true if the heuristics determines it is likely
272/// to be profitable to re-materialize the definition of Reg rather than copy
273/// the register.
274bool
275TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
276                                         const TargetRegisterClass *RC,
277                                         MachineInstr *MI, MachineInstr *DefMI,
278                                         MachineBasicBlock *MBB, unsigned Loc) {
279  bool OtherUse = false;
280  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
281         UE = MRI->use_end(); UI != UE; ++UI) {
282    MachineOperand &UseMO = UI.getOperand();
283    MachineInstr *UseMI = UseMO.getParent();
284    MachineBasicBlock *UseMBB = UseMI->getParent();
285    if (UseMBB == MBB) {
286      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
287      if (DI != DistanceMap.end() && DI->second == Loc)
288        continue;  // Current use.
289      OtherUse = true;
290      // There is at least one other use in the MBB that will clobber the
291      // register.
292      if (isTwoAddrUse(UseMI, Reg))
293        return true;
294    }
295  }
296
297  // If other uses in MBB are not two-address uses, then don't remat.
298  if (OtherUse)
299    return false;
300
301  // No other uses in the same block, remat if it's defined in the same
302  // block so it does not unnecessarily extend the live range.
303  return MBB == DefMI->getParent();
304}
305
306/// NoUseAfterLastDef - Return true if there are no intervening uses between the
307/// last instruction in the MBB that defines the specified register and the
308/// two-address instruction which is being processed. It also returns the last
309/// def location by reference
310bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
311                                           MachineBasicBlock *MBB, unsigned Dist,
312                                           unsigned &LastDef) {
313  LastDef = 0;
314  unsigned LastUse = Dist;
315  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
316         E = MRI->reg_end(); I != E; ++I) {
317    MachineOperand &MO = I.getOperand();
318    MachineInstr *MI = MO.getParent();
319    if (MI->getParent() != MBB || MI->isDebugValue())
320      continue;
321    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
322    if (DI == DistanceMap.end())
323      continue;
324    if (MO.isUse() && DI->second < LastUse)
325      LastUse = DI->second;
326    if (MO.isDef() && DI->second > LastDef)
327      LastDef = DI->second;
328  }
329
330  return !(LastUse > LastDef && LastUse < Dist);
331}
332
333MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
334                                                         MachineBasicBlock *MBB,
335                                                         unsigned Dist) {
336  unsigned LastUseDist = 0;
337  MachineInstr *LastUse = 0;
338  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
339         E = MRI->reg_end(); I != E; ++I) {
340    MachineOperand &MO = I.getOperand();
341    MachineInstr *MI = MO.getParent();
342    if (MI->getParent() != MBB || MI->isDebugValue())
343      continue;
344    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
345    if (DI == DistanceMap.end())
346      continue;
347    if (DI->second >= Dist)
348      continue;
349
350    if (MO.isUse() && DI->second > LastUseDist) {
351      LastUse = DI->first;
352      LastUseDist = DI->second;
353    }
354  }
355  return LastUse;
356}
357
358/// isCopyToReg - Return true if the specified MI is a copy instruction or
359/// a extract_subreg instruction. It also returns the source and destination
360/// registers and whether they are physical registers by reference.
361static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
362                        unsigned &SrcReg, unsigned &DstReg,
363                        bool &IsSrcPhys, bool &IsDstPhys) {
364  SrcReg = 0;
365  DstReg = 0;
366  unsigned SrcSubIdx, DstSubIdx;
367  if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
368    if (MI.isExtractSubreg()) {
369      DstReg = MI.getOperand(0).getReg();
370      SrcReg = MI.getOperand(1).getReg();
371    } else if (MI.isInsertSubreg()) {
372      DstReg = MI.getOperand(0).getReg();
373      SrcReg = MI.getOperand(2).getReg();
374    } else if (MI.isSubregToReg()) {
375      DstReg = MI.getOperand(0).getReg();
376      SrcReg = MI.getOperand(2).getReg();
377    }
378  }
379
380  if (DstReg) {
381    IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
382    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
383    return true;
384  }
385  return false;
386}
387
388/// isKilled - Test if the given register value, which is used by the given
389/// instruction, is killed by the given instruction. This looks through
390/// coalescable copies to see if the original value is potentially not killed.
391///
392/// For example, in this code:
393///
394///   %reg1034 = copy %reg1024
395///   %reg1035 = copy %reg1025<kill>
396///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
397///
398/// %reg1034 is not considered to be killed, since it is copied from a
399/// register which is not killed. Treating it as not killed lets the
400/// normal heuristics commute the (two-address) add, which lets
401/// coalescing eliminate the extra copy.
402///
403static bool isKilled(MachineInstr &MI, unsigned Reg,
404                     const MachineRegisterInfo *MRI,
405                     const TargetInstrInfo *TII) {
406  MachineInstr *DefMI = &MI;
407  for (;;) {
408    if (!DefMI->killsRegister(Reg))
409      return false;
410    if (TargetRegisterInfo::isPhysicalRegister(Reg))
411      return true;
412    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
413    // If there are multiple defs, we can't do a simple analysis, so just
414    // go with what the kill flag says.
415    if (llvm::next(Begin) != MRI->def_end())
416      return true;
417    DefMI = &*Begin;
418    bool IsSrcPhys, IsDstPhys;
419    unsigned SrcReg,  DstReg;
420    // If the def is something other than a copy, then it isn't going to
421    // be coalesced, so follow the kill flag.
422    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
423      return true;
424    Reg = SrcReg;
425  }
426}
427
428/// isTwoAddrUse - Return true if the specified MI uses the specified register
429/// as a two-address use. If so, return the destination register by reference.
430static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
431  const TargetInstrDesc &TID = MI.getDesc();
432  unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
433  for (unsigned i = 0; i != NumOps; ++i) {
434    const MachineOperand &MO = MI.getOperand(i);
435    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
436      continue;
437    unsigned ti;
438    if (MI.isRegTiedToDefOperand(i, &ti)) {
439      DstReg = MI.getOperand(ti).getReg();
440      return true;
441    }
442  }
443  return false;
444}
445
446/// findOnlyInterestingUse - Given a register, if has a single in-basic block
447/// use, return the use instruction if it's a copy or a two-address use.
448static
449MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
450                                     MachineRegisterInfo *MRI,
451                                     const TargetInstrInfo *TII,
452                                     bool &IsCopy,
453                                     unsigned &DstReg, bool &IsDstPhys) {
454  MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
455  if (UI == MRI->use_end())
456    return 0;
457  MachineInstr &UseMI = *UI;
458  if (++UI != MRI->use_end())
459    // More than one use.
460    return 0;
461  if (UseMI.getParent() != MBB)
462    return 0;
463  unsigned SrcReg;
464  bool IsSrcPhys;
465  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
466    IsCopy = true;
467    return &UseMI;
468  }
469  IsDstPhys = false;
470  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
471    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
472    return &UseMI;
473  }
474  return 0;
475}
476
477/// getMappedReg - Return the physical register the specified virtual register
478/// might be mapped to.
479static unsigned
480getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
481  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
482    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
483    if (SI == RegMap.end())
484      return 0;
485    Reg = SI->second;
486  }
487  if (TargetRegisterInfo::isPhysicalRegister(Reg))
488    return Reg;
489  return 0;
490}
491
492/// regsAreCompatible - Return true if the two registers are equal or aliased.
493///
494static bool
495regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
496  if (RegA == RegB)
497    return true;
498  if (!RegA || !RegB)
499    return false;
500  return TRI->regsOverlap(RegA, RegB);
501}
502
503
504/// isProfitableToReMat - Return true if it's potentially profitable to commute
505/// the two-address instruction that's being processed.
506bool
507TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
508                                       MachineInstr *MI, MachineBasicBlock *MBB,
509                                       unsigned Dist) {
510  // Determine if it's profitable to commute this two address instruction. In
511  // general, we want no uses between this instruction and the definition of
512  // the two-address register.
513  // e.g.
514  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
515  // %reg1029<def> = MOV8rr %reg1028
516  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
517  // insert => %reg1030<def> = MOV8rr %reg1028
518  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
519  // In this case, it might not be possible to coalesce the second MOV8rr
520  // instruction if the first one is coalesced. So it would be profitable to
521  // commute it:
522  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
523  // %reg1029<def> = MOV8rr %reg1028
524  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
525  // insert => %reg1030<def> = MOV8rr %reg1029
526  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
527
528  if (!MI->killsRegister(regC))
529    return false;
530
531  // Ok, we have something like:
532  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
533  // let's see if it's worth commuting it.
534
535  // Look for situations like this:
536  // %reg1024<def> = MOV r1
537  // %reg1025<def> = MOV r0
538  // %reg1026<def> = ADD %reg1024, %reg1025
539  // r0            = MOV %reg1026
540  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
541  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
542  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
543  unsigned ToRegB = getMappedReg(regB, DstRegMap);
544  unsigned ToRegC = getMappedReg(regC, DstRegMap);
545  if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
546      (regsAreCompatible(FromRegB, ToRegC, TRI) ||
547       regsAreCompatible(FromRegC, ToRegB, TRI)))
548    return true;
549
550  // If there is a use of regC between its last def (could be livein) and this
551  // instruction, then bail.
552  unsigned LastDefC = 0;
553  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
554    return false;
555
556  // If there is a use of regB between its last def (could be livein) and this
557  // instruction, then go ahead and make this transformation.
558  unsigned LastDefB = 0;
559  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
560    return true;
561
562  // Since there are no intervening uses for both registers, then commute
563  // if the def of regC is closer. Its live interval is shorter.
564  return LastDefB && LastDefC && LastDefC > LastDefB;
565}
566
567/// CommuteInstruction - Commute a two-address instruction and update the basic
568/// block, distance map, and live variables if needed. Return true if it is
569/// successful.
570bool
571TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
572                               MachineFunction::iterator &mbbi,
573                               unsigned RegB, unsigned RegC, unsigned Dist) {
574  MachineInstr *MI = mi;
575  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
576  MachineInstr *NewMI = TII->commuteInstruction(MI);
577
578  if (NewMI == 0) {
579    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
580    return false;
581  }
582
583  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
584  // If the instruction changed to commute it, update livevar.
585  if (NewMI != MI) {
586    if (LV)
587      // Update live variables
588      LV->replaceKillInstruction(RegC, MI, NewMI);
589
590    mbbi->insert(mi, NewMI);           // Insert the new inst
591    mbbi->erase(mi);                   // Nuke the old inst.
592    mi = NewMI;
593    DistanceMap.insert(std::make_pair(NewMI, Dist));
594  }
595
596  // Update source register map.
597  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
598  if (FromRegC) {
599    unsigned RegA = MI->getOperand(0).getReg();
600    SrcRegMap[RegA] = FromRegC;
601  }
602
603  return true;
604}
605
606/// isProfitableToConv3Addr - Return true if it is profitable to convert the
607/// given 2-address instruction to a 3-address one.
608bool
609TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
610  // Look for situations like this:
611  // %reg1024<def> = MOV r1
612  // %reg1025<def> = MOV r0
613  // %reg1026<def> = ADD %reg1024, %reg1025
614  // r2            = MOV %reg1026
615  // Turn ADD into a 3-address instruction to avoid a copy.
616  unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
617  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
618  return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
619}
620
621/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
622/// three address one. Return true if this transformation was successful.
623bool
624TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
625                                              MachineBasicBlock::iterator &nmi,
626                                              MachineFunction::iterator &mbbi,
627                                              unsigned RegB, unsigned Dist) {
628  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
629  if (NewMI) {
630    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
631    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
632    bool Sunk = false;
633
634    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
635      // FIXME: Temporary workaround. If the new instruction doesn't
636      // uses RegB, convertToThreeAddress must have created more
637      // then one instruction.
638      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
639
640    mbbi->erase(mi); // Nuke the old inst.
641
642    if (!Sunk) {
643      DistanceMap.insert(std::make_pair(NewMI, Dist));
644      mi = NewMI;
645      nmi = llvm::next(mi);
646    }
647    return true;
648  }
649
650  return false;
651}
652
653/// ProcessCopy - If the specified instruction is not yet processed, process it
654/// if it's a copy. For a copy instruction, we find the physical registers the
655/// source and destination registers might be mapped to. These are kept in
656/// point-to maps used to determine future optimizations. e.g.
657/// v1024 = mov r0
658/// v1025 = mov r1
659/// v1026 = add v1024, v1025
660/// r1    = mov r1026
661/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
662/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
663/// potentially joined with r1 on the output side. It's worthwhile to commute
664/// 'add' to eliminate a copy.
665void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
666                                     MachineBasicBlock *MBB,
667                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
668  if (Processed.count(MI))
669    return;
670
671  bool IsSrcPhys, IsDstPhys;
672  unsigned SrcReg, DstReg;
673  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
674    return;
675
676  if (IsDstPhys && !IsSrcPhys)
677    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
678  else if (!IsDstPhys && IsSrcPhys) {
679    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
680    if (!isNew)
681      assert(SrcRegMap[DstReg] == SrcReg &&
682             "Can't map to two src physical registers!");
683
684    SmallVector<unsigned, 4> VirtRegPairs;
685    bool IsCopy = false;
686    unsigned NewReg = 0;
687    while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
688                                                   IsCopy, NewReg, IsDstPhys)) {
689      if (IsCopy) {
690        if (!Processed.insert(UseMI))
691          break;
692      }
693
694      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
695      if (DI != DistanceMap.end())
696        // Earlier in the same MBB.Reached via a back edge.
697        break;
698
699      if (IsDstPhys) {
700        VirtRegPairs.push_back(NewReg);
701        break;
702      }
703      bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
704      if (!isNew)
705        assert(SrcRegMap[NewReg] == DstReg &&
706               "Can't map to two src physical registers!");
707      VirtRegPairs.push_back(NewReg);
708      DstReg = NewReg;
709    }
710
711    if (!VirtRegPairs.empty()) {
712      unsigned ToReg = VirtRegPairs.back();
713      VirtRegPairs.pop_back();
714      while (!VirtRegPairs.empty()) {
715        unsigned FromReg = VirtRegPairs.back();
716        VirtRegPairs.pop_back();
717        bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
718        if (!isNew)
719          assert(DstRegMap[FromReg] == ToReg &&
720                 "Can't map to two dst physical registers!");
721        ToReg = FromReg;
722      }
723    }
724  }
725
726  Processed.insert(MI);
727}
728
729/// isSafeToDelete - If the specified instruction does not produce any side
730/// effects and all of its defs are dead, then it's safe to delete.
731static bool isSafeToDelete(MachineInstr *MI,
732                           const TargetInstrInfo *TII,
733                           SmallVector<unsigned, 4> &Kills) {
734  const TargetInstrDesc &TID = MI->getDesc();
735  if (TID.mayStore() || TID.isCall())
736    return false;
737  if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
738    return false;
739
740  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
741    MachineOperand &MO = MI->getOperand(i);
742    if (!MO.isReg())
743      continue;
744    if (MO.isDef() && !MO.isDead())
745      return false;
746    if (MO.isUse() && MO.isKill())
747      Kills.push_back(MO.getReg());
748  }
749  return true;
750}
751
752/// canUpdateDeletedKills - Check if all the registers listed in Kills are
753/// killed by instructions in MBB preceding the current instruction at
754/// position Dist.  If so, return true and record information about the
755/// preceding kills in NewKills.
756bool TwoAddressInstructionPass::
757canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
758                      SmallVector<NewKill, 4> &NewKills,
759                      MachineBasicBlock *MBB, unsigned Dist) {
760  while (!Kills.empty()) {
761    unsigned Kill = Kills.back();
762    Kills.pop_back();
763    if (TargetRegisterInfo::isPhysicalRegister(Kill))
764      return false;
765
766    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
767    if (!LastKill)
768      return false;
769
770    bool isModRef = LastKill->modifiesRegister(Kill);
771    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
772                                      LastKill));
773  }
774  return true;
775}
776
777/// DeleteUnusedInstr - If an instruction with a tied register operand can
778/// be safely deleted, just delete it.
779bool
780TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
781                                             MachineBasicBlock::iterator &nmi,
782                                             MachineFunction::iterator &mbbi,
783                                             unsigned Dist) {
784  // Check if the instruction has no side effects and if all its defs are dead.
785  SmallVector<unsigned, 4> Kills;
786  if (!isSafeToDelete(mi, TII, Kills))
787    return false;
788
789  // If this instruction kills some virtual registers, we need to
790  // update the kill information. If it's not possible to do so,
791  // then bail out.
792  SmallVector<NewKill, 4> NewKills;
793  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
794    return false;
795
796  if (LV) {
797    while (!NewKills.empty()) {
798      MachineInstr *NewKill = NewKills.back().second;
799      unsigned Kill = NewKills.back().first.first;
800      bool isDead = NewKills.back().first.second;
801      NewKills.pop_back();
802      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
803        if (isDead)
804          LV->addVirtualRegisterDead(Kill, NewKill);
805        else
806          LV->addVirtualRegisterKilled(Kill, NewKill);
807      }
808    }
809  }
810
811  mbbi->erase(mi); // Nuke the old inst.
812  mi = nmi;
813  return true;
814}
815
816/// TryInstructionTransform - For the case where an instruction has a single
817/// pair of tied register operands, attempt some transformations that may
818/// either eliminate the tied operands or improve the opportunities for
819/// coalescing away the register copy.  Returns true if the tied operands
820/// are eliminated altogether.
821bool TwoAddressInstructionPass::
822TryInstructionTransform(MachineBasicBlock::iterator &mi,
823                        MachineBasicBlock::iterator &nmi,
824                        MachineFunction::iterator &mbbi,
825                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
826  const TargetInstrDesc &TID = mi->getDesc();
827  unsigned regA = mi->getOperand(DstIdx).getReg();
828  unsigned regB = mi->getOperand(SrcIdx).getReg();
829
830  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
831         "cannot make instruction into two-address form");
832
833  // If regA is dead and the instruction can be deleted, just delete
834  // it so it doesn't clobber regB.
835  bool regBKilled = isKilled(*mi, regB, MRI, TII);
836  if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
837      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
838    ++NumDeletes;
839    return true; // Done with this instruction.
840  }
841
842  // Check if it is profitable to commute the operands.
843  unsigned SrcOp1, SrcOp2;
844  unsigned regC = 0;
845  unsigned regCIdx = ~0U;
846  bool TryCommute = false;
847  bool AggressiveCommute = false;
848  if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
849      TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
850    if (SrcIdx == SrcOp1)
851      regCIdx = SrcOp2;
852    else if (SrcIdx == SrcOp2)
853      regCIdx = SrcOp1;
854
855    if (regCIdx != ~0U) {
856      regC = mi->getOperand(regCIdx).getReg();
857      if (!regBKilled && isKilled(*mi, regC, MRI, TII))
858        // If C dies but B does not, swap the B and C operands.
859        // This makes the live ranges of A and C joinable.
860        TryCommute = true;
861      else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
862        TryCommute = true;
863        AggressiveCommute = true;
864      }
865    }
866  }
867
868  // If it's profitable to commute, try to do so.
869  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
870    ++NumCommuted;
871    if (AggressiveCommute)
872      ++NumAggrCommuted;
873    return false;
874  }
875
876  if (TID.isConvertibleTo3Addr()) {
877    // This instruction is potentially convertible to a true
878    // three-address instruction.  Check if it is profitable.
879    if (!regBKilled || isProfitableToConv3Addr(regA)) {
880      // Try to convert it.
881      if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
882        ++NumConvertedTo3Addr;
883        return true; // Done with this instruction.
884      }
885    }
886  }
887  return false;
888}
889
890/// runOnMachineFunction - Reduce two-address instructions to two operands.
891///
892bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
893  DEBUG(dbgs() << "Machine Function\n");
894  const TargetMachine &TM = MF.getTarget();
895  MRI = &MF.getRegInfo();
896  TII = TM.getInstrInfo();
897  TRI = TM.getRegisterInfo();
898  LV = getAnalysisIfAvailable<LiveVariables>();
899  AA = &getAnalysis<AliasAnalysis>();
900
901  bool MadeChange = false;
902
903  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
904  DEBUG(dbgs() << "********** Function: "
905        << MF.getFunction()->getName() << '\n');
906
907  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
908  BitVector ReMatRegs;
909  ReMatRegs.resize(MRI->getLastVirtReg()+1);
910
911  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
912    TiedOperandMap;
913  TiedOperandMap TiedOperands(4);
914
915  SmallPtrSet<MachineInstr*, 8> Processed;
916  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
917       mbbi != mbbe; ++mbbi) {
918    unsigned Dist = 0;
919    DistanceMap.clear();
920    SrcRegMap.clear();
921    DstRegMap.clear();
922    Processed.clear();
923    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
924         mi != me; ) {
925      MachineBasicBlock::iterator nmi = llvm::next(mi);
926      const TargetInstrDesc &TID = mi->getDesc();
927      bool FirstTied = true;
928
929      DistanceMap.insert(std::make_pair(mi, ++Dist));
930
931      ProcessCopy(&*mi, &*mbbi, Processed);
932
933      // First scan through all the tied register uses in this instruction
934      // and record a list of pairs of tied operands for each register.
935      unsigned NumOps = mi->isInlineAsm()
936        ? mi->getNumOperands() : TID.getNumOperands();
937      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
938        unsigned DstIdx = 0;
939        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
940          continue;
941
942        if (FirstTied) {
943          FirstTied = false;
944          ++NumTwoAddressInstrs;
945          DEBUG(dbgs() << '\t' << *mi);
946        }
947
948        assert(mi->getOperand(SrcIdx).isReg() &&
949               mi->getOperand(SrcIdx).getReg() &&
950               mi->getOperand(SrcIdx).isUse() &&
951               "two address instruction invalid");
952
953        unsigned regB = mi->getOperand(SrcIdx).getReg();
954        TiedOperandMap::iterator OI = TiedOperands.find(regB);
955        if (OI == TiedOperands.end()) {
956          SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
957          OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
958        }
959        OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
960      }
961
962      // Now iterate over the information collected above.
963      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
964             OE = TiedOperands.end(); OI != OE; ++OI) {
965        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
966
967        // If the instruction has a single pair of tied operands, try some
968        // transformations that may either eliminate the tied operands or
969        // improve the opportunities for coalescing away the register copy.
970        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
971          unsigned SrcIdx = TiedPairs[0].first;
972          unsigned DstIdx = TiedPairs[0].second;
973
974          // If the registers are already equal, nothing needs to be done.
975          if (mi->getOperand(SrcIdx).getReg() ==
976              mi->getOperand(DstIdx).getReg())
977            break; // Done with this instruction.
978
979          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
980            break; // The tied operands have been eliminated.
981        }
982
983        bool RemovedKillFlag = false;
984        bool AllUsesCopied = true;
985        unsigned LastCopiedReg = 0;
986        unsigned regB = OI->first;
987        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
988          unsigned SrcIdx = TiedPairs[tpi].first;
989          unsigned DstIdx = TiedPairs[tpi].second;
990          unsigned regA = mi->getOperand(DstIdx).getReg();
991          // Grab regB from the instruction because it may have changed if the
992          // instruction was commuted.
993          regB = mi->getOperand(SrcIdx).getReg();
994
995          if (regA == regB) {
996            // The register is tied to multiple destinations (or else we would
997            // not have continued this far), but this use of the register
998            // already matches the tied destination.  Leave it.
999            AllUsesCopied = false;
1000            continue;
1001          }
1002          LastCopiedReg = regA;
1003
1004          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1005                 "cannot make instruction into two-address form");
1006
1007#ifndef NDEBUG
1008          // First, verify that we don't have a use of "a" in the instruction
1009          // (a = b + a for example) because our transformation will not
1010          // work. This should never occur because we are in SSA form.
1011          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1012            assert(i == DstIdx ||
1013                   !mi->getOperand(i).isReg() ||
1014                   mi->getOperand(i).getReg() != regA);
1015#endif
1016
1017          // Emit a copy or rematerialize the definition.
1018          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1019          MachineInstr *DefMI = MRI->getVRegDef(regB);
1020          // If it's safe and profitable, remat the definition instead of
1021          // copying it.
1022          if (DefMI &&
1023              DefMI->getDesc().isAsCheapAsAMove() &&
1024              DefMI->isSafeToReMat(TII, regB, AA) &&
1025              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1026            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1027            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1028            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, TRI);
1029            ReMatRegs.set(regB);
1030            ++NumReMats;
1031          } else {
1032            bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
1033            (void)Emitted;
1034            assert(Emitted && "Unable to issue a copy instruction!\n");
1035          }
1036
1037          MachineBasicBlock::iterator prevMI = prior(mi);
1038          // Update DistanceMap.
1039          DistanceMap.insert(std::make_pair(prevMI, Dist));
1040          DistanceMap[mi] = ++Dist;
1041
1042          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1043
1044          MachineOperand &MO = mi->getOperand(SrcIdx);
1045          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1046                 "inconsistent operand info for 2-reg pass");
1047          if (MO.isKill()) {
1048            MO.setIsKill(false);
1049            RemovedKillFlag = true;
1050          }
1051          MO.setReg(regA);
1052        }
1053
1054        if (AllUsesCopied) {
1055          // Replace other (un-tied) uses of regB with LastCopiedReg.
1056          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1057            MachineOperand &MO = mi->getOperand(i);
1058            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1059              if (MO.isKill()) {
1060                MO.setIsKill(false);
1061                RemovedKillFlag = true;
1062              }
1063              MO.setReg(LastCopiedReg);
1064            }
1065          }
1066
1067          // Update live variables for regB.
1068          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1069            LV->addVirtualRegisterKilled(regB, prior(mi));
1070
1071        } else if (RemovedKillFlag) {
1072          // Some tied uses of regB matched their destination registers, so
1073          // regB is still used in this instruction, but a kill flag was
1074          // removed from a different tied use of regB, so now we need to add
1075          // a kill flag to one of the remaining uses of regB.
1076          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1077            MachineOperand &MO = mi->getOperand(i);
1078            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1079              MO.setIsKill(true);
1080              break;
1081            }
1082          }
1083        }
1084
1085        MadeChange = true;
1086
1087        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1088      }
1089
1090      // Clear TiedOperands here instead of at the top of the loop
1091      // since most instructions do not have tied operands.
1092      TiedOperands.clear();
1093      mi = nmi;
1094    }
1095  }
1096
1097  // Some remat'ed instructions are dead.
1098  int VReg = ReMatRegs.find_first();
1099  while (VReg != -1) {
1100    if (MRI->use_empty(VReg)) {
1101      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1102      DefMI->eraseFromParent();
1103    }
1104    VReg = ReMatRegs.find_next(VReg);
1105  }
1106
1107  return MadeChange;
1108}
1109