TwoAddressInstructionPass.cpp revision 8247e0dca6759d9a22ac4c5cf305fac052b285ac
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/MC/MCInstrItineraries.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/ADT/STLExtras.h"
51using namespace llvm;
52
53STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
54STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
55STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
56STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
57STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
58STATISTIC(NumReMats,           "Number of instructions re-materialized");
59STATISTIC(NumDeletes,          "Number of dead instructions deleted");
60STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
61STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
62
63namespace {
64  class TwoAddressInstructionPass : public MachineFunctionPass {
65    const TargetInstrInfo *TII;
66    const TargetRegisterInfo *TRI;
67    const InstrItineraryData *InstrItins;
68    MachineRegisterInfo *MRI;
69    LiveVariables *LV;
70    AliasAnalysis *AA;
71    CodeGenOpt::Level OptLevel;
72
73    // DistanceMap - Keep track the distance of a MI from the start of the
74    // current basic block.
75    DenseMap<MachineInstr*, unsigned> DistanceMap;
76
77    // SrcRegMap - A map from virtual registers to physical registers which
78    // are likely targets to be coalesced to due to copies from physical
79    // registers to virtual registers. e.g. v1024 = move r0.
80    DenseMap<unsigned, unsigned> SrcRegMap;
81
82    // DstRegMap - A map from virtual registers to physical registers which
83    // are likely targets to be coalesced to due to copies to physical
84    // registers from virtual registers. e.g. r1 = move v1024.
85    DenseMap<unsigned, unsigned> DstRegMap;
86
87    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
88    /// during the initial walk of the machine function.
89    SmallVector<MachineInstr*, 16> RegSequences;
90
91    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
92                              unsigned Reg,
93                              MachineBasicBlock::iterator OldPos);
94
95    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
96                             MachineInstr *MI, MachineInstr *DefMI,
97                             MachineBasicBlock *MBB, unsigned Loc);
98
99    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
100                           unsigned &LastDef);
101
102    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
103                                   unsigned Dist);
104
105    bool isProfitableToCommute(unsigned regB, unsigned regC,
106                               MachineInstr *MI, MachineBasicBlock *MBB,
107                               unsigned Dist);
108
109    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
110                            MachineFunction::iterator &mbbi,
111                            unsigned RegB, unsigned RegC, unsigned Dist);
112
113    bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
114
115    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
116                            MachineBasicBlock::iterator &nmi,
117                            MachineFunction::iterator &mbbi,
118                            unsigned RegA, unsigned RegB, unsigned Dist);
119
120    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
121    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
122                               SmallVector<NewKill, 4> &NewKills,
123                               MachineBasicBlock *MBB, unsigned Dist);
124    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
125                           MachineBasicBlock::iterator &nmi,
126                           MachineFunction::iterator &mbbi, unsigned Dist);
127
128    bool isDefTooClose(unsigned Reg, unsigned Dist,
129                       MachineInstr *MI, MachineBasicBlock *MBB);
130
131    bool RescheduleMIBelowKill(MachineBasicBlock *MBB,
132                               MachineBasicBlock::iterator &mi,
133                               MachineBasicBlock::iterator &nmi,
134                               unsigned Reg);
135    bool RescheduleKillAboveMI(MachineBasicBlock *MBB,
136                               MachineBasicBlock::iterator &mi,
137                               MachineBasicBlock::iterator &nmi,
138                               unsigned Reg);
139
140    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
141                                 MachineBasicBlock::iterator &nmi,
142                                 MachineFunction::iterator &mbbi,
143                                 unsigned SrcIdx, unsigned DstIdx,
144                                 unsigned Dist,
145                                 SmallPtrSet<MachineInstr*, 8> &Processed);
146
147    void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
148                  SmallPtrSet<MachineInstr*, 8> &Processed);
149
150    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
151                     SmallPtrSet<MachineInstr*, 8> &Processed);
152
153    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
154
155    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
156    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
157    /// sub-register references of the register defined by REG_SEQUENCE.
158    bool EliminateRegSequences();
159
160  public:
161    static char ID; // Pass identification, replacement for typeid
162    TwoAddressInstructionPass() : MachineFunctionPass(ID) {
163      initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
164    }
165
166    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
167      AU.setPreservesCFG();
168      AU.addRequired<AliasAnalysis>();
169      AU.addPreserved<LiveVariables>();
170      AU.addPreservedID(MachineLoopInfoID);
171      AU.addPreservedID(MachineDominatorsID);
172      AU.addPreservedID(PHIEliminationID);
173      MachineFunctionPass::getAnalysisUsage(AU);
174    }
175
176    /// runOnMachineFunction - Pass entry point.
177    bool runOnMachineFunction(MachineFunction&);
178  };
179}
180
181char TwoAddressInstructionPass::ID = 0;
182INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
183                "Two-Address instruction pass", false, false)
184INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
185INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
186                "Two-Address instruction pass", false, false)
187
188char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
189
190/// Sink3AddrInstruction - A two-address instruction has been converted to a
191/// three-address instruction to avoid clobbering a register. Try to sink it
192/// past the instruction that would kill the above mentioned register to reduce
193/// register pressure.
194bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
195                                           MachineInstr *MI, unsigned SavedReg,
196                                           MachineBasicBlock::iterator OldPos) {
197  // FIXME: Shouldn't we be trying to do this before we three-addressify the
198  // instruction?  After this transformation is done, we no longer need
199  // the instruction to be in three-address form.
200
201  // Check if it's safe to move this instruction.
202  bool SeenStore = true; // Be conservative.
203  if (!MI->isSafeToMove(TII, AA, SeenStore))
204    return false;
205
206  unsigned DefReg = 0;
207  SmallSet<unsigned, 4> UseRegs;
208
209  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
210    const MachineOperand &MO = MI->getOperand(i);
211    if (!MO.isReg())
212      continue;
213    unsigned MOReg = MO.getReg();
214    if (!MOReg)
215      continue;
216    if (MO.isUse() && MOReg != SavedReg)
217      UseRegs.insert(MO.getReg());
218    if (!MO.isDef())
219      continue;
220    if (MO.isImplicit())
221      // Don't try to move it if it implicitly defines a register.
222      return false;
223    if (DefReg)
224      // For now, don't move any instructions that define multiple registers.
225      return false;
226    DefReg = MO.getReg();
227  }
228
229  // Find the instruction that kills SavedReg.
230  MachineInstr *KillMI = NULL;
231  for (MachineRegisterInfo::use_nodbg_iterator
232         UI = MRI->use_nodbg_begin(SavedReg),
233         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
234    MachineOperand &UseMO = UI.getOperand();
235    if (!UseMO.isKill())
236      continue;
237    KillMI = UseMO.getParent();
238    break;
239  }
240
241  // If we find the instruction that kills SavedReg, and it is in an
242  // appropriate location, we can try to sink the current instruction
243  // past it.
244  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
245      KillMI->isTerminator())
246    return false;
247
248  // If any of the definitions are used by another instruction between the
249  // position and the kill use, then it's not safe to sink it.
250  //
251  // FIXME: This can be sped up if there is an easy way to query whether an
252  // instruction is before or after another instruction. Then we can use
253  // MachineRegisterInfo def / use instead.
254  MachineOperand *KillMO = NULL;
255  MachineBasicBlock::iterator KillPos = KillMI;
256  ++KillPos;
257
258  unsigned NumVisited = 0;
259  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
260    MachineInstr *OtherMI = I;
261    // DBG_VALUE cannot be counted against the limit.
262    if (OtherMI->isDebugValue())
263      continue;
264    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
265      return false;
266    ++NumVisited;
267    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
268      MachineOperand &MO = OtherMI->getOperand(i);
269      if (!MO.isReg())
270        continue;
271      unsigned MOReg = MO.getReg();
272      if (!MOReg)
273        continue;
274      if (DefReg == MOReg)
275        return false;
276
277      if (MO.isKill()) {
278        if (OtherMI == KillMI && MOReg == SavedReg)
279          // Save the operand that kills the register. We want to unset the kill
280          // marker if we can sink MI past it.
281          KillMO = &MO;
282        else if (UseRegs.count(MOReg))
283          // One of the uses is killed before the destination.
284          return false;
285      }
286    }
287  }
288
289  // Update kill and LV information.
290  KillMO->setIsKill(false);
291  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
292  KillMO->setIsKill(true);
293
294  if (LV)
295    LV->replaceKillInstruction(SavedReg, KillMI, MI);
296
297  // Move instruction to its destination.
298  MBB->remove(MI);
299  MBB->insert(KillPos, MI);
300
301  ++Num3AddrSunk;
302  return true;
303}
304
305/// isTwoAddrUse - Return true if the specified MI is using the specified
306/// register as a two-address operand.
307static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
308  const MCInstrDesc &MCID = UseMI->getDesc();
309  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
310    MachineOperand &MO = UseMI->getOperand(i);
311    if (MO.isReg() && MO.getReg() == Reg &&
312        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
313      // Earlier use is a two-address one.
314      return true;
315  }
316  return false;
317}
318
319/// isProfitableToReMat - Return true if the heuristics determines it is likely
320/// to be profitable to re-materialize the definition of Reg rather than copy
321/// the register.
322bool
323TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
324                                         const TargetRegisterClass *RC,
325                                         MachineInstr *MI, MachineInstr *DefMI,
326                                         MachineBasicBlock *MBB, unsigned Loc) {
327  bool OtherUse = false;
328  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
329         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
330    MachineOperand &UseMO = UI.getOperand();
331    MachineInstr *UseMI = UseMO.getParent();
332    MachineBasicBlock *UseMBB = UseMI->getParent();
333    if (UseMBB == MBB) {
334      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
335      if (DI != DistanceMap.end() && DI->second == Loc)
336        continue;  // Current use.
337      OtherUse = true;
338      // There is at least one other use in the MBB that will clobber the
339      // register.
340      if (isTwoAddrUse(UseMI, Reg))
341        return true;
342    }
343  }
344
345  // If other uses in MBB are not two-address uses, then don't remat.
346  if (OtherUse)
347    return false;
348
349  // No other uses in the same block, remat if it's defined in the same
350  // block so it does not unnecessarily extend the live range.
351  return MBB == DefMI->getParent();
352}
353
354/// NoUseAfterLastDef - Return true if there are no intervening uses between the
355/// last instruction in the MBB that defines the specified register and the
356/// two-address instruction which is being processed. It also returns the last
357/// def location by reference
358bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
359                                           MachineBasicBlock *MBB, unsigned Dist,
360                                           unsigned &LastDef) {
361  LastDef = 0;
362  unsigned LastUse = Dist;
363  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
364         E = MRI->reg_end(); I != E; ++I) {
365    MachineOperand &MO = I.getOperand();
366    MachineInstr *MI = MO.getParent();
367    if (MI->getParent() != MBB || MI->isDebugValue())
368      continue;
369    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
370    if (DI == DistanceMap.end())
371      continue;
372    if (MO.isUse() && DI->second < LastUse)
373      LastUse = DI->second;
374    if (MO.isDef() && DI->second > LastDef)
375      LastDef = DI->second;
376  }
377
378  return !(LastUse > LastDef && LastUse < Dist);
379}
380
381MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
382                                                         MachineBasicBlock *MBB,
383                                                         unsigned Dist) {
384  unsigned LastUseDist = 0;
385  MachineInstr *LastUse = 0;
386  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
387         E = MRI->reg_end(); I != E; ++I) {
388    MachineOperand &MO = I.getOperand();
389    MachineInstr *MI = MO.getParent();
390    if (MI->getParent() != MBB || MI->isDebugValue())
391      continue;
392    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
393    if (DI == DistanceMap.end())
394      continue;
395    if (DI->second >= Dist)
396      continue;
397
398    if (MO.isUse() && DI->second > LastUseDist) {
399      LastUse = DI->first;
400      LastUseDist = DI->second;
401    }
402  }
403  return LastUse;
404}
405
406/// isCopyToReg - Return true if the specified MI is a copy instruction or
407/// a extract_subreg instruction. It also returns the source and destination
408/// registers and whether they are physical registers by reference.
409static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
410                        unsigned &SrcReg, unsigned &DstReg,
411                        bool &IsSrcPhys, bool &IsDstPhys) {
412  SrcReg = 0;
413  DstReg = 0;
414  if (MI.isCopy()) {
415    DstReg = MI.getOperand(0).getReg();
416    SrcReg = MI.getOperand(1).getReg();
417  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
418    DstReg = MI.getOperand(0).getReg();
419    SrcReg = MI.getOperand(2).getReg();
420  } else
421    return false;
422
423  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
424  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
425  return true;
426}
427
428/// isKilled - Test if the given register value, which is used by the given
429/// instruction, is killed by the given instruction. This looks through
430/// coalescable copies to see if the original value is potentially not killed.
431///
432/// For example, in this code:
433///
434///   %reg1034 = copy %reg1024
435///   %reg1035 = copy %reg1025<kill>
436///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
437///
438/// %reg1034 is not considered to be killed, since it is copied from a
439/// register which is not killed. Treating it as not killed lets the
440/// normal heuristics commute the (two-address) add, which lets
441/// coalescing eliminate the extra copy.
442///
443static bool isKilled(MachineInstr &MI, unsigned Reg,
444                     const MachineRegisterInfo *MRI,
445                     const TargetInstrInfo *TII) {
446  MachineInstr *DefMI = &MI;
447  for (;;) {
448    if (!DefMI->killsRegister(Reg))
449      return false;
450    if (TargetRegisterInfo::isPhysicalRegister(Reg))
451      return true;
452    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
453    // If there are multiple defs, we can't do a simple analysis, so just
454    // go with what the kill flag says.
455    if (llvm::next(Begin) != MRI->def_end())
456      return true;
457    DefMI = &*Begin;
458    bool IsSrcPhys, IsDstPhys;
459    unsigned SrcReg,  DstReg;
460    // If the def is something other than a copy, then it isn't going to
461    // be coalesced, so follow the kill flag.
462    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
463      return true;
464    Reg = SrcReg;
465  }
466}
467
468/// isTwoAddrUse - Return true if the specified MI uses the specified register
469/// as a two-address use. If so, return the destination register by reference.
470static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
471  const MCInstrDesc &MCID = MI.getDesc();
472  unsigned NumOps = MI.isInlineAsm()
473    ? MI.getNumOperands() : MCID.getNumOperands();
474  for (unsigned i = 0; i != NumOps; ++i) {
475    const MachineOperand &MO = MI.getOperand(i);
476    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
477      continue;
478    unsigned ti;
479    if (MI.isRegTiedToDefOperand(i, &ti)) {
480      DstReg = MI.getOperand(ti).getReg();
481      return true;
482    }
483  }
484  return false;
485}
486
487/// findLocalKill - Look for an instruction below MI in the MBB that kills the
488/// specified register. Returns null if there are any other Reg use between the
489/// instructions.
490static
491MachineInstr *findLocalKill(unsigned Reg, MachineBasicBlock *MBB,
492                            MachineInstr *MI, MachineRegisterInfo *MRI,
493                            DenseMap<MachineInstr*, unsigned> &DistanceMap) {
494  MachineInstr *KillMI = 0;
495  for (MachineRegisterInfo::use_nodbg_iterator
496         UI = MRI->use_nodbg_begin(Reg),
497         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
498    MachineInstr *UseMI = &*UI;
499    if (UseMI == MI || UseMI->getParent() != MBB)
500      continue;
501    if (DistanceMap.count(UseMI))
502      continue;
503    if (!UI.getOperand().isKill())
504      return 0;
505    if (KillMI)
506      return 0;  // -O0 kill markers cannot be trusted?
507    KillMI = UseMI;
508  }
509
510  return KillMI;
511}
512
513/// findOnlyInterestingUse - Given a register, if has a single in-basic block
514/// use, return the use instruction if it's a copy or a two-address use.
515static
516MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
517                                     MachineRegisterInfo *MRI,
518                                     const TargetInstrInfo *TII,
519                                     bool &IsCopy,
520                                     unsigned &DstReg, bool &IsDstPhys) {
521  if (!MRI->hasOneNonDBGUse(Reg))
522    // None or more than one use.
523    return 0;
524  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
525  if (UseMI.getParent() != MBB)
526    return 0;
527  unsigned SrcReg;
528  bool IsSrcPhys;
529  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
530    IsCopy = true;
531    return &UseMI;
532  }
533  IsDstPhys = false;
534  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
535    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
536    return &UseMI;
537  }
538  return 0;
539}
540
541/// getMappedReg - Return the physical register the specified virtual register
542/// might be mapped to.
543static unsigned
544getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
545  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
546    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
547    if (SI == RegMap.end())
548      return 0;
549    Reg = SI->second;
550  }
551  if (TargetRegisterInfo::isPhysicalRegister(Reg))
552    return Reg;
553  return 0;
554}
555
556/// regsAreCompatible - Return true if the two registers are equal or aliased.
557///
558static bool
559regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
560  if (RegA == RegB)
561    return true;
562  if (!RegA || !RegB)
563    return false;
564  return TRI->regsOverlap(RegA, RegB);
565}
566
567
568/// isProfitableToReMat - Return true if it's potentially profitable to commute
569/// the two-address instruction that's being processed.
570bool
571TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
572                                       MachineInstr *MI, MachineBasicBlock *MBB,
573                                       unsigned Dist) {
574  if (OptLevel == CodeGenOpt::None)
575    return false;
576
577  // Determine if it's profitable to commute this two address instruction. In
578  // general, we want no uses between this instruction and the definition of
579  // the two-address register.
580  // e.g.
581  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
582  // %reg1029<def> = MOV8rr %reg1028
583  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
584  // insert => %reg1030<def> = MOV8rr %reg1028
585  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
586  // In this case, it might not be possible to coalesce the second MOV8rr
587  // instruction if the first one is coalesced. So it would be profitable to
588  // commute it:
589  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
590  // %reg1029<def> = MOV8rr %reg1028
591  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
592  // insert => %reg1030<def> = MOV8rr %reg1029
593  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
594
595  if (!MI->killsRegister(regC))
596    return false;
597
598  // Ok, we have something like:
599  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
600  // let's see if it's worth commuting it.
601
602  // Look for situations like this:
603  // %reg1024<def> = MOV r1
604  // %reg1025<def> = MOV r0
605  // %reg1026<def> = ADD %reg1024, %reg1025
606  // r0            = MOV %reg1026
607  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
608  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
609  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
610  unsigned ToRegB = getMappedReg(regB, DstRegMap);
611  unsigned ToRegC = getMappedReg(regC, DstRegMap);
612  if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
613      ((!FromRegC && !ToRegC) ||
614       regsAreCompatible(FromRegB, ToRegC, TRI) ||
615       regsAreCompatible(FromRegC, ToRegB, TRI)))
616    return true;
617
618  // If there is a use of regC between its last def (could be livein) and this
619  // instruction, then bail.
620  unsigned LastDefC = 0;
621  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
622    return false;
623
624  // If there is a use of regB between its last def (could be livein) and this
625  // instruction, then go ahead and make this transformation.
626  unsigned LastDefB = 0;
627  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
628    return true;
629
630  // Since there are no intervening uses for both registers, then commute
631  // if the def of regC is closer. Its live interval is shorter.
632  return LastDefB && LastDefC && LastDefC > LastDefB;
633}
634
635/// CommuteInstruction - Commute a two-address instruction and update the basic
636/// block, distance map, and live variables if needed. Return true if it is
637/// successful.
638bool
639TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
640                               MachineFunction::iterator &mbbi,
641                               unsigned RegB, unsigned RegC, unsigned Dist) {
642  MachineInstr *MI = mi;
643  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
644  MachineInstr *NewMI = TII->commuteInstruction(MI);
645
646  if (NewMI == 0) {
647    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
648    return false;
649  }
650
651  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
652  // If the instruction changed to commute it, update livevar.
653  if (NewMI != MI) {
654    if (LV)
655      // Update live variables
656      LV->replaceKillInstruction(RegC, MI, NewMI);
657
658    mbbi->insert(mi, NewMI);           // Insert the new inst
659    mbbi->erase(mi);                   // Nuke the old inst.
660    mi = NewMI;
661    DistanceMap.insert(std::make_pair(NewMI, Dist));
662  }
663
664  // Update source register map.
665  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
666  if (FromRegC) {
667    unsigned RegA = MI->getOperand(0).getReg();
668    SrcRegMap[RegA] = FromRegC;
669  }
670
671  return true;
672}
673
674/// isProfitableToConv3Addr - Return true if it is profitable to convert the
675/// given 2-address instruction to a 3-address one.
676bool
677TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
678  // Look for situations like this:
679  // %reg1024<def> = MOV r1
680  // %reg1025<def> = MOV r0
681  // %reg1026<def> = ADD %reg1024, %reg1025
682  // r2            = MOV %reg1026
683  // Turn ADD into a 3-address instruction to avoid a copy.
684  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
685  if (!FromRegB)
686    return false;
687  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
688  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
689}
690
691/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
692/// three address one. Return true if this transformation was successful.
693bool
694TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
695                                              MachineBasicBlock::iterator &nmi,
696                                              MachineFunction::iterator &mbbi,
697                                              unsigned RegA, unsigned RegB,
698                                              unsigned Dist) {
699  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
700  if (NewMI) {
701    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
702    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
703    bool Sunk = false;
704
705    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
706      // FIXME: Temporary workaround. If the new instruction doesn't
707      // uses RegB, convertToThreeAddress must have created more
708      // then one instruction.
709      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
710
711    mbbi->erase(mi); // Nuke the old inst.
712
713    if (!Sunk) {
714      DistanceMap.insert(std::make_pair(NewMI, Dist));
715      mi = NewMI;
716      nmi = llvm::next(mi);
717    }
718
719    // Update source and destination register maps.
720    SrcRegMap.erase(RegA);
721    DstRegMap.erase(RegB);
722    return true;
723  }
724
725  return false;
726}
727
728/// ScanUses - Scan forward recursively for only uses, update maps if the use
729/// is a copy or a two-address instruction.
730void
731TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
732                                    SmallPtrSet<MachineInstr*, 8> &Processed) {
733  SmallVector<unsigned, 4> VirtRegPairs;
734  bool IsDstPhys;
735  bool IsCopy = false;
736  unsigned NewReg = 0;
737  unsigned Reg = DstReg;
738  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
739                                                      NewReg, IsDstPhys)) {
740    if (IsCopy && !Processed.insert(UseMI))
741      break;
742
743    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
744    if (DI != DistanceMap.end())
745      // Earlier in the same MBB.Reached via a back edge.
746      break;
747
748    if (IsDstPhys) {
749      VirtRegPairs.push_back(NewReg);
750      break;
751    }
752    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
753    if (!isNew)
754      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
755    VirtRegPairs.push_back(NewReg);
756    Reg = NewReg;
757  }
758
759  if (!VirtRegPairs.empty()) {
760    unsigned ToReg = VirtRegPairs.back();
761    VirtRegPairs.pop_back();
762    while (!VirtRegPairs.empty()) {
763      unsigned FromReg = VirtRegPairs.back();
764      VirtRegPairs.pop_back();
765      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
766      if (!isNew)
767        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
768      ToReg = FromReg;
769    }
770    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
771    if (!isNew)
772      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
773  }
774}
775
776/// ProcessCopy - If the specified instruction is not yet processed, process it
777/// if it's a copy. For a copy instruction, we find the physical registers the
778/// source and destination registers might be mapped to. These are kept in
779/// point-to maps used to determine future optimizations. e.g.
780/// v1024 = mov r0
781/// v1025 = mov r1
782/// v1026 = add v1024, v1025
783/// r1    = mov r1026
784/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
785/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
786/// potentially joined with r1 on the output side. It's worthwhile to commute
787/// 'add' to eliminate a copy.
788void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
789                                     MachineBasicBlock *MBB,
790                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
791  if (Processed.count(MI))
792    return;
793
794  bool IsSrcPhys, IsDstPhys;
795  unsigned SrcReg, DstReg;
796  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
797    return;
798
799  if (IsDstPhys && !IsSrcPhys)
800    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
801  else if (!IsDstPhys && IsSrcPhys) {
802    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
803    if (!isNew)
804      assert(SrcRegMap[DstReg] == SrcReg &&
805             "Can't map to two src physical registers!");
806
807    ScanUses(DstReg, MBB, Processed);
808  }
809
810  Processed.insert(MI);
811  return;
812}
813
814/// isSafeToDelete - If the specified instruction does not produce any side
815/// effects and all of its defs are dead, then it's safe to delete.
816static bool isSafeToDelete(MachineInstr *MI,
817                           const TargetInstrInfo *TII,
818                           SmallVector<unsigned, 4> &Kills) {
819  if (MI->mayStore() || MI->isCall())
820    return false;
821  if (MI->isTerminator() || MI->hasUnmodeledSideEffects())
822    return false;
823
824  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
825    MachineOperand &MO = MI->getOperand(i);
826    if (!MO.isReg())
827      continue;
828    if (MO.isDef() && !MO.isDead())
829      return false;
830    if (MO.isUse() && MO.isKill())
831      Kills.push_back(MO.getReg());
832  }
833  return true;
834}
835
836/// canUpdateDeletedKills - Check if all the registers listed in Kills are
837/// killed by instructions in MBB preceding the current instruction at
838/// position Dist.  If so, return true and record information about the
839/// preceding kills in NewKills.
840bool TwoAddressInstructionPass::
841canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
842                      SmallVector<NewKill, 4> &NewKills,
843                      MachineBasicBlock *MBB, unsigned Dist) {
844  while (!Kills.empty()) {
845    unsigned Kill = Kills.back();
846    Kills.pop_back();
847    if (TargetRegisterInfo::isPhysicalRegister(Kill))
848      return false;
849
850    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
851    if (!LastKill)
852      return false;
853
854    bool isModRef = LastKill->definesRegister(Kill);
855    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
856                                      LastKill));
857  }
858  return true;
859}
860
861/// DeleteUnusedInstr - If an instruction with a tied register operand can
862/// be safely deleted, just delete it.
863bool
864TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
865                                             MachineBasicBlock::iterator &nmi,
866                                             MachineFunction::iterator &mbbi,
867                                             unsigned Dist) {
868  // Check if the instruction has no side effects and if all its defs are dead.
869  SmallVector<unsigned, 4> Kills;
870  if (!isSafeToDelete(mi, TII, Kills))
871    return false;
872
873  // If this instruction kills some virtual registers, we need to
874  // update the kill information. If it's not possible to do so,
875  // then bail out.
876  SmallVector<NewKill, 4> NewKills;
877  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
878    return false;
879
880  if (LV) {
881    while (!NewKills.empty()) {
882      MachineInstr *NewKill = NewKills.back().second;
883      unsigned Kill = NewKills.back().first.first;
884      bool isDead = NewKills.back().first.second;
885      NewKills.pop_back();
886      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
887        if (isDead)
888          LV->addVirtualRegisterDead(Kill, NewKill);
889        else
890          LV->addVirtualRegisterKilled(Kill, NewKill);
891      }
892    }
893  }
894
895  mbbi->erase(mi); // Nuke the old inst.
896  mi = nmi;
897  return true;
898}
899
900/// RescheduleMIBelowKill - If there is one more local instruction that reads
901/// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
902/// instruction in order to eliminate the need for the copy.
903bool
904TwoAddressInstructionPass::RescheduleMIBelowKill(MachineBasicBlock *MBB,
905                                     MachineBasicBlock::iterator &mi,
906                                     MachineBasicBlock::iterator &nmi,
907                                     unsigned Reg) {
908  MachineInstr *MI = &*mi;
909  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
910  if (DI == DistanceMap.end())
911    // Must be created from unfolded load. Don't waste time trying this.
912    return false;
913
914  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
915  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
916    // Don't mess with copies, they may be coalesced later.
917    return false;
918
919  if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
920      KillMI->isBranch() || KillMI->isTerminator())
921    // Don't move pass calls, etc.
922    return false;
923
924  unsigned DstReg;
925  if (isTwoAddrUse(*KillMI, Reg, DstReg))
926    return false;
927
928  bool SeenStore = true;
929  if (!MI->isSafeToMove(TII, AA, SeenStore))
930    return false;
931
932  if (TII->getInstrLatency(InstrItins, MI) > 1)
933    // FIXME: Needs more sophisticated heuristics.
934    return false;
935
936  SmallSet<unsigned, 2> Uses;
937  SmallSet<unsigned, 2> Kills;
938  SmallSet<unsigned, 2> Defs;
939  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
940    const MachineOperand &MO = MI->getOperand(i);
941    if (!MO.isReg())
942      continue;
943    unsigned MOReg = MO.getReg();
944    if (!MOReg)
945      continue;
946    if (MO.isDef())
947      Defs.insert(MOReg);
948    else {
949      Uses.insert(MOReg);
950      if (MO.isKill() && MOReg != Reg)
951        Kills.insert(MOReg);
952    }
953  }
954
955  // Move the copies connected to MI down as well.
956  MachineBasicBlock::iterator From = MI;
957  MachineBasicBlock::iterator To = llvm::next(From);
958  while (To->isCopy() && Defs.count(To->getOperand(1).getReg())) {
959    Defs.insert(To->getOperand(0).getReg());
960    ++To;
961  }
962
963  // Check if the reschedule will not break depedencies.
964  unsigned NumVisited = 0;
965  MachineBasicBlock::iterator KillPos = KillMI;
966  ++KillPos;
967  for (MachineBasicBlock::iterator I = To; I != KillPos; ++I) {
968    MachineInstr *OtherMI = I;
969    // DBG_VALUE cannot be counted against the limit.
970    if (OtherMI->isDebugValue())
971      continue;
972    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
973      return false;
974    ++NumVisited;
975    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
976        OtherMI->isBranch() || OtherMI->isTerminator())
977      // Don't move pass calls, etc.
978      return false;
979    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
980      const MachineOperand &MO = OtherMI->getOperand(i);
981      if (!MO.isReg())
982        continue;
983      unsigned MOReg = MO.getReg();
984      if (!MOReg)
985        continue;
986      if (MO.isDef()) {
987        if (Uses.count(MOReg))
988          // Physical register use would be clobbered.
989          return false;
990        if (!MO.isDead() && Defs.count(MOReg))
991          // May clobber a physical register def.
992          // FIXME: This may be too conservative. It's ok if the instruction
993          // is sunken completely below the use.
994          return false;
995      } else {
996        if (Defs.count(MOReg))
997          return false;
998        if (MOReg != Reg &&
999            ((MO.isKill() && Uses.count(MOReg)) || Kills.count(MOReg)))
1000          // Don't want to extend other live ranges and update kills.
1001          return false;
1002      }
1003    }
1004  }
1005
1006  // Move debug info as well.
1007  while (From != MBB->begin() && llvm::prior(From)->isDebugValue())
1008    --From;
1009
1010  // Copies following MI may have been moved as well.
1011  nmi = To;
1012  MBB->splice(KillPos, MBB, From, To);
1013  DistanceMap.erase(DI);
1014
1015  if (LV) {
1016    // Update live variables
1017    LV->removeVirtualRegisterKilled(Reg, KillMI);
1018    LV->addVirtualRegisterKilled(Reg, MI);
1019  } else {
1020    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1021      MachineOperand &MO = KillMI->getOperand(i);
1022      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1023        continue;
1024      MO.setIsKill(false);
1025    }
1026    MI->addRegisterKilled(Reg, 0);
1027  }
1028
1029  return true;
1030}
1031
1032/// isDefTooClose - Return true if the re-scheduling will put the given
1033/// instruction too close to the defs of its register dependencies.
1034bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1035                                              MachineInstr *MI,
1036                                              MachineBasicBlock *MBB) {
1037  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
1038         DE = MRI->def_end(); DI != DE; ++DI) {
1039    MachineInstr *DefMI = &*DI;
1040    if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
1041      continue;
1042    if (DefMI == MI)
1043      return true; // MI is defining something KillMI uses
1044    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
1045    if (DDI == DistanceMap.end())
1046      return true;  // Below MI
1047    unsigned DefDist = DDI->second;
1048    assert(Dist > DefDist && "Visited def already?");
1049    if (TII->getInstrLatency(InstrItins, DefMI) > (int)(Dist - DefDist))
1050      return true;
1051  }
1052  return false;
1053}
1054
1055/// RescheduleKillAboveMI - If there is one more local instruction that reads
1056/// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
1057/// current two-address instruction in order to eliminate the need for the
1058/// copy.
1059bool
1060TwoAddressInstructionPass::RescheduleKillAboveMI(MachineBasicBlock *MBB,
1061                                     MachineBasicBlock::iterator &mi,
1062                                     MachineBasicBlock::iterator &nmi,
1063                                     unsigned Reg) {
1064  MachineInstr *MI = &*mi;
1065  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1066  if (DI == DistanceMap.end())
1067    // Must be created from unfolded load. Don't waste time trying this.
1068    return false;
1069
1070  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
1071  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1072    // Don't mess with copies, they may be coalesced later.
1073    return false;
1074
1075  unsigned DstReg;
1076  if (isTwoAddrUse(*KillMI, Reg, DstReg))
1077    return false;
1078
1079  bool SeenStore = true;
1080  if (!KillMI->isSafeToMove(TII, AA, SeenStore))
1081    return false;
1082
1083  SmallSet<unsigned, 2> Uses;
1084  SmallSet<unsigned, 2> Kills;
1085  SmallSet<unsigned, 2> Defs;
1086  SmallSet<unsigned, 2> LiveDefs;
1087  for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1088    const MachineOperand &MO = KillMI->getOperand(i);
1089    if (!MO.isReg())
1090      continue;
1091    unsigned MOReg = MO.getReg();
1092    if (MO.isUse()) {
1093      if (!MOReg)
1094        continue;
1095      if (isDefTooClose(MOReg, DI->second, MI, MBB))
1096        return false;
1097      Uses.insert(MOReg);
1098      if (MO.isKill() && MOReg != Reg)
1099        Kills.insert(MOReg);
1100    } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1101      Defs.insert(MOReg);
1102      if (!MO.isDead())
1103        LiveDefs.insert(MOReg);
1104    }
1105  }
1106
1107  // Check if the reschedule will not break depedencies.
1108  unsigned NumVisited = 0;
1109  MachineBasicBlock::iterator KillPos = KillMI;
1110  for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1111    MachineInstr *OtherMI = I;
1112    // DBG_VALUE cannot be counted against the limit.
1113    if (OtherMI->isDebugValue())
1114      continue;
1115    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1116      return false;
1117    ++NumVisited;
1118    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
1119        OtherMI->isBranch() || OtherMI->isTerminator())
1120      // Don't move pass calls, etc.
1121      return false;
1122    SmallVector<unsigned, 2> OtherDefs;
1123    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1124      const MachineOperand &MO = OtherMI->getOperand(i);
1125      if (!MO.isReg())
1126        continue;
1127      unsigned MOReg = MO.getReg();
1128      if (!MOReg)
1129        continue;
1130      if (MO.isUse()) {
1131        if (Defs.count(MOReg))
1132          // Moving KillMI can clobber the physical register if the def has
1133          // not been seen.
1134          return false;
1135        if (Kills.count(MOReg))
1136          // Don't want to extend other live ranges and update kills.
1137          return false;
1138      } else {
1139        OtherDefs.push_back(MOReg);
1140      }
1141    }
1142
1143    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1144      unsigned MOReg = OtherDefs[i];
1145      if (Uses.count(MOReg))
1146        return false;
1147      if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1148          LiveDefs.count(MOReg))
1149        return false;
1150      // Physical register def is seen.
1151      Defs.erase(MOReg);
1152    }
1153  }
1154
1155  // Move the old kill above MI, don't forget to move debug info as well.
1156  MachineBasicBlock::iterator InsertPos = mi;
1157  while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
1158    --InsertPos;
1159  MachineBasicBlock::iterator From = KillMI;
1160  MachineBasicBlock::iterator To = llvm::next(From);
1161  while (llvm::prior(From)->isDebugValue())
1162    --From;
1163  MBB->splice(InsertPos, MBB, From, To);
1164
1165  nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
1166  DistanceMap.erase(DI);
1167
1168  if (LV) {
1169    // Update live variables
1170    LV->removeVirtualRegisterKilled(Reg, KillMI);
1171    LV->addVirtualRegisterKilled(Reg, MI);
1172  } else {
1173    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1174      MachineOperand &MO = KillMI->getOperand(i);
1175      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1176        continue;
1177      MO.setIsKill(false);
1178    }
1179    MI->addRegisterKilled(Reg, 0);
1180  }
1181  return true;
1182}
1183
1184/// TryInstructionTransform - For the case where an instruction has a single
1185/// pair of tied register operands, attempt some transformations that may
1186/// either eliminate the tied operands or improve the opportunities for
1187/// coalescing away the register copy.  Returns true if the tied operands
1188/// are eliminated altogether.
1189bool TwoAddressInstructionPass::
1190TryInstructionTransform(MachineBasicBlock::iterator &mi,
1191                        MachineBasicBlock::iterator &nmi,
1192                        MachineFunction::iterator &mbbi,
1193                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
1194                        SmallPtrSet<MachineInstr*, 8> &Processed) {
1195  if (OptLevel == CodeGenOpt::None)
1196    return false;
1197
1198  MachineInstr &MI = *mi;
1199  unsigned regA = MI.getOperand(DstIdx).getReg();
1200  unsigned regB = MI.getOperand(SrcIdx).getReg();
1201
1202  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1203         "cannot make instruction into two-address form");
1204
1205  // If regA is dead and the instruction can be deleted, just delete
1206  // it so it doesn't clobber regB.
1207  bool regBKilled = isKilled(MI, regB, MRI, TII);
1208  if (!regBKilled && MI.getOperand(DstIdx).isDead() &&
1209      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
1210    ++NumDeletes;
1211    return true; // Done with this instruction.
1212  }
1213
1214  // Check if it is profitable to commute the operands.
1215  unsigned SrcOp1, SrcOp2;
1216  unsigned regC = 0;
1217  unsigned regCIdx = ~0U;
1218  bool TryCommute = false;
1219  bool AggressiveCommute = false;
1220  if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
1221      TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1222    if (SrcIdx == SrcOp1)
1223      regCIdx = SrcOp2;
1224    else if (SrcIdx == SrcOp2)
1225      regCIdx = SrcOp1;
1226
1227    if (regCIdx != ~0U) {
1228      regC = MI.getOperand(regCIdx).getReg();
1229      if (!regBKilled && isKilled(MI, regC, MRI, TII))
1230        // If C dies but B does not, swap the B and C operands.
1231        // This makes the live ranges of A and C joinable.
1232        TryCommute = true;
1233      else if (isProfitableToCommute(regB, regC, &MI, mbbi, Dist)) {
1234        TryCommute = true;
1235        AggressiveCommute = true;
1236      }
1237    }
1238  }
1239
1240  // If it's profitable to commute, try to do so.
1241  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
1242    ++NumCommuted;
1243    if (AggressiveCommute)
1244      ++NumAggrCommuted;
1245    return false;
1246  }
1247
1248  // If there is one more use of regB later in the same MBB, consider
1249  // re-schedule this MI below it.
1250  if (RescheduleMIBelowKill(mbbi, mi, nmi, regB)) {
1251    ++NumReSchedDowns;
1252    return true;
1253  }
1254
1255  if (TargetRegisterInfo::isVirtualRegister(regA))
1256    ScanUses(regA, &*mbbi, Processed);
1257
1258  if (MI.isConvertibleTo3Addr()) {
1259    // This instruction is potentially convertible to a true
1260    // three-address instruction.  Check if it is profitable.
1261    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1262      // Try to convert it.
1263      if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
1264        ++NumConvertedTo3Addr;
1265        return true; // Done with this instruction.
1266      }
1267    }
1268  }
1269
1270  // If there is one more use of regB later in the same MBB, consider
1271  // re-schedule it before this MI if it's legal.
1272  if (RescheduleKillAboveMI(mbbi, mi, nmi, regB)) {
1273    ++NumReSchedUps;
1274    return true;
1275  }
1276
1277  // If this is an instruction with a load folded into it, try unfolding
1278  // the load, e.g. avoid this:
1279  //   movq %rdx, %rcx
1280  //   addq (%rax), %rcx
1281  // in favor of this:
1282  //   movq (%rax), %rcx
1283  //   addq %rdx, %rcx
1284  // because it's preferable to schedule a load than a register copy.
1285  if (MI.mayLoad() && !regBKilled) {
1286    // Determine if a load can be unfolded.
1287    unsigned LoadRegIndex;
1288    unsigned NewOpc =
1289      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1290                                      /*UnfoldLoad=*/true,
1291                                      /*UnfoldStore=*/false,
1292                                      &LoadRegIndex);
1293    if (NewOpc != 0) {
1294      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1295      if (UnfoldMCID.getNumDefs() == 1) {
1296        MachineFunction &MF = *mbbi->getParent();
1297
1298        // Unfold the load.
1299        DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1300        const TargetRegisterClass *RC =
1301          TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
1302        unsigned Reg = MRI->createVirtualRegister(RC);
1303        SmallVector<MachineInstr *, 2> NewMIs;
1304        if (!TII->unfoldMemoryOperand(MF, &MI, Reg,
1305                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1306                                      NewMIs)) {
1307          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1308          return false;
1309        }
1310        assert(NewMIs.size() == 2 &&
1311               "Unfolded a load into multiple instructions!");
1312        // The load was previously folded, so this is the only use.
1313        NewMIs[1]->addRegisterKilled(Reg, TRI);
1314
1315        // Tentatively insert the instructions into the block so that they
1316        // look "normal" to the transformation logic.
1317        mbbi->insert(mi, NewMIs[0]);
1318        mbbi->insert(mi, NewMIs[1]);
1319
1320        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1321                     << "2addr:    NEW INST: " << *NewMIs[1]);
1322
1323        // Transform the instruction, now that it no longer has a load.
1324        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1325        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1326        MachineBasicBlock::iterator NewMI = NewMIs[1];
1327        bool TransformSuccess =
1328          TryInstructionTransform(NewMI, mi, mbbi,
1329                                  NewSrcIdx, NewDstIdx, Dist, Processed);
1330        if (TransformSuccess ||
1331            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1332          // Success, or at least we made an improvement. Keep the unfolded
1333          // instructions and discard the original.
1334          if (LV) {
1335            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1336              MachineOperand &MO = MI.getOperand(i);
1337              if (MO.isReg() &&
1338                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1339                if (MO.isUse()) {
1340                  if (MO.isKill()) {
1341                    if (NewMIs[0]->killsRegister(MO.getReg()))
1342                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1343                    else {
1344                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1345                             "Kill missing after load unfold!");
1346                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1347                    }
1348                  }
1349                } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1350                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1351                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1352                  else {
1353                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1354                           "Dead flag missing after load unfold!");
1355                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1356                  }
1357                }
1358              }
1359            }
1360            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1361          }
1362          MI.eraseFromParent();
1363          mi = NewMIs[1];
1364          if (TransformSuccess)
1365            return true;
1366        } else {
1367          // Transforming didn't eliminate the tie and didn't lead to an
1368          // improvement. Clean up the unfolded instructions and keep the
1369          // original.
1370          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1371          NewMIs[0]->eraseFromParent();
1372          NewMIs[1]->eraseFromParent();
1373        }
1374      }
1375    }
1376  }
1377
1378  return false;
1379}
1380
1381/// runOnMachineFunction - Reduce two-address instructions to two operands.
1382///
1383bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1384  DEBUG(dbgs() << "Machine Function\n");
1385  const TargetMachine &TM = MF.getTarget();
1386  MRI = &MF.getRegInfo();
1387  TII = TM.getInstrInfo();
1388  TRI = TM.getRegisterInfo();
1389  InstrItins = TM.getInstrItineraryData();
1390  LV = getAnalysisIfAvailable<LiveVariables>();
1391  AA = &getAnalysis<AliasAnalysis>();
1392  OptLevel = TM.getOptLevel();
1393
1394  bool MadeChange = false;
1395
1396  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1397  DEBUG(dbgs() << "********** Function: "
1398        << MF.getFunction()->getName() << '\n');
1399
1400  // This pass takes the function out of SSA form.
1401  MRI->leaveSSA();
1402
1403  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1404  BitVector ReMatRegs(MRI->getNumVirtRegs());
1405
1406  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1407    TiedOperandMap;
1408  TiedOperandMap TiedOperands(4);
1409
1410  SmallPtrSet<MachineInstr*, 8> Processed;
1411  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1412       mbbi != mbbe; ++mbbi) {
1413    unsigned Dist = 0;
1414    DistanceMap.clear();
1415    SrcRegMap.clear();
1416    DstRegMap.clear();
1417    Processed.clear();
1418    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1419         mi != me; ) {
1420      MachineBasicBlock::iterator nmi = llvm::next(mi);
1421      if (mi->isDebugValue()) {
1422        mi = nmi;
1423        continue;
1424      }
1425
1426      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1427      if (mi->isRegSequence())
1428        RegSequences.push_back(&*mi);
1429
1430      const MCInstrDesc &MCID = mi->getDesc();
1431      bool FirstTied = true;
1432
1433      DistanceMap.insert(std::make_pair(mi, ++Dist));
1434
1435      ProcessCopy(&*mi, &*mbbi, Processed);
1436
1437      // First scan through all the tied register uses in this instruction
1438      // and record a list of pairs of tied operands for each register.
1439      unsigned NumOps = mi->isInlineAsm()
1440        ? mi->getNumOperands() : MCID.getNumOperands();
1441      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1442        unsigned DstIdx = 0;
1443        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1444          continue;
1445
1446        if (FirstTied) {
1447          FirstTied = false;
1448          ++NumTwoAddressInstrs;
1449          DEBUG(dbgs() << '\t' << *mi);
1450        }
1451
1452        assert(mi->getOperand(SrcIdx).isReg() &&
1453               mi->getOperand(SrcIdx).getReg() &&
1454               mi->getOperand(SrcIdx).isUse() &&
1455               "two address instruction invalid");
1456
1457        unsigned regB = mi->getOperand(SrcIdx).getReg();
1458        TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1459      }
1460
1461      // Now iterate over the information collected above.
1462      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1463             OE = TiedOperands.end(); OI != OE; ++OI) {
1464        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1465
1466        // If the instruction has a single pair of tied operands, try some
1467        // transformations that may either eliminate the tied operands or
1468        // improve the opportunities for coalescing away the register copy.
1469        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1470          unsigned SrcIdx = TiedPairs[0].first;
1471          unsigned DstIdx = TiedPairs[0].second;
1472
1473          // If the registers are already equal, nothing needs to be done.
1474          if (mi->getOperand(SrcIdx).getReg() ==
1475              mi->getOperand(DstIdx).getReg())
1476            break; // Done with this instruction.
1477
1478          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1479                                      Processed))
1480            break; // The tied operands have been eliminated.
1481        }
1482
1483        bool IsEarlyClobber = false;
1484        bool RemovedKillFlag = false;
1485        bool AllUsesCopied = true;
1486        unsigned LastCopiedReg = 0;
1487        unsigned regB = OI->first;
1488        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1489          unsigned SrcIdx = TiedPairs[tpi].first;
1490          unsigned DstIdx = TiedPairs[tpi].second;
1491
1492          const MachineOperand &DstMO = mi->getOperand(DstIdx);
1493          unsigned regA = DstMO.getReg();
1494          IsEarlyClobber |= DstMO.isEarlyClobber();
1495
1496          // Grab regB from the instruction because it may have changed if the
1497          // instruction was commuted.
1498          regB = mi->getOperand(SrcIdx).getReg();
1499
1500          if (regA == regB) {
1501            // The register is tied to multiple destinations (or else we would
1502            // not have continued this far), but this use of the register
1503            // already matches the tied destination.  Leave it.
1504            AllUsesCopied = false;
1505            continue;
1506          }
1507          LastCopiedReg = regA;
1508
1509          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1510                 "cannot make instruction into two-address form");
1511
1512#ifndef NDEBUG
1513          // First, verify that we don't have a use of "a" in the instruction
1514          // (a = b + a for example) because our transformation will not
1515          // work. This should never occur because we are in SSA form.
1516          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1517            assert(i == DstIdx ||
1518                   !mi->getOperand(i).isReg() ||
1519                   mi->getOperand(i).getReg() != regA);
1520#endif
1521
1522          // Emit a copy or rematerialize the definition.
1523          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1524          MachineInstr *DefMI = MRI->getVRegDef(regB);
1525          // If it's safe and profitable, remat the definition instead of
1526          // copying it.
1527          if (DefMI &&
1528              DefMI->isAsCheapAsAMove() &&
1529              DefMI->isSafeToReMat(TII, AA, regB) &&
1530              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1531            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1532            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1533            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1534            ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1535            ++NumReMats;
1536          } else {
1537            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1538                    regA).addReg(regB);
1539          }
1540
1541          MachineBasicBlock::iterator prevMI = prior(mi);
1542          // Update DistanceMap.
1543          DistanceMap.insert(std::make_pair(prevMI, Dist));
1544          DistanceMap[mi] = ++Dist;
1545
1546          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1547
1548          MachineOperand &MO = mi->getOperand(SrcIdx);
1549          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1550                 "inconsistent operand info for 2-reg pass");
1551          if (MO.isKill()) {
1552            MO.setIsKill(false);
1553            RemovedKillFlag = true;
1554          }
1555          MO.setReg(regA);
1556        }
1557
1558        if (AllUsesCopied) {
1559          if (!IsEarlyClobber) {
1560            // Replace other (un-tied) uses of regB with LastCopiedReg.
1561            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1562              MachineOperand &MO = mi->getOperand(i);
1563              if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1564                if (MO.isKill()) {
1565                  MO.setIsKill(false);
1566                  RemovedKillFlag = true;
1567                }
1568                MO.setReg(LastCopiedReg);
1569              }
1570            }
1571          }
1572
1573          // Update live variables for regB.
1574          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1575            LV->addVirtualRegisterKilled(regB, prior(mi));
1576
1577        } else if (RemovedKillFlag) {
1578          // Some tied uses of regB matched their destination registers, so
1579          // regB is still used in this instruction, but a kill flag was
1580          // removed from a different tied use of regB, so now we need to add
1581          // a kill flag to one of the remaining uses of regB.
1582          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1583            MachineOperand &MO = mi->getOperand(i);
1584            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1585              MO.setIsKill(true);
1586              break;
1587            }
1588          }
1589        }
1590
1591        // Schedule the source copy / remat inserted to form two-address
1592        // instruction. FIXME: Does it matter the distance map may not be
1593        // accurate after it's scheduled?
1594        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1595
1596        MadeChange = true;
1597
1598        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1599      }
1600
1601      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1602      if (mi->isInsertSubreg()) {
1603        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1604        // To   %reg:subidx = COPY %subreg
1605        unsigned SubIdx = mi->getOperand(3).getImm();
1606        mi->RemoveOperand(3);
1607        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1608        mi->getOperand(0).setSubReg(SubIdx);
1609        mi->RemoveOperand(1);
1610        mi->setDesc(TII->get(TargetOpcode::COPY));
1611        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1612      }
1613
1614      // Clear TiedOperands here instead of at the top of the loop
1615      // since most instructions do not have tied operands.
1616      TiedOperands.clear();
1617      mi = nmi;
1618    }
1619  }
1620
1621  // Some remat'ed instructions are dead.
1622  for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1623    unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1624    if (MRI->use_nodbg_empty(VReg)) {
1625      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1626      DefMI->eraseFromParent();
1627    }
1628  }
1629
1630  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1631  // SSA form. It's now safe to de-SSA.
1632  MadeChange |= EliminateRegSequences();
1633
1634  return MadeChange;
1635}
1636
1637static void UpdateRegSequenceSrcs(unsigned SrcReg,
1638                                  unsigned DstReg, unsigned SubIdx,
1639                                  MachineRegisterInfo *MRI,
1640                                  const TargetRegisterInfo &TRI) {
1641  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1642         RE = MRI->reg_end(); RI != RE; ) {
1643    MachineOperand &MO = RI.getOperand();
1644    ++RI;
1645    MO.substVirtReg(DstReg, SubIdx, TRI);
1646  }
1647}
1648
1649// Find the first def of Reg, assuming they are all in the same basic block.
1650static MachineInstr *findFirstDef(unsigned Reg, MachineRegisterInfo *MRI) {
1651  SmallPtrSet<MachineInstr*, 8> Defs;
1652  MachineInstr *First = 0;
1653  for (MachineRegisterInfo::def_iterator RI = MRI->def_begin(Reg);
1654       MachineInstr *MI = RI.skipInstruction(); Defs.insert(MI))
1655    First = MI;
1656  if (!First)
1657    return 0;
1658
1659  MachineBasicBlock *MBB = First->getParent();
1660  MachineBasicBlock::iterator A = First, B = First;
1661  bool Moving;
1662  do {
1663    Moving = false;
1664    if (A != MBB->begin()) {
1665      Moving = true;
1666      --A;
1667      if (Defs.erase(A)) First = A;
1668    }
1669    if (B != MBB->end()) {
1670      Defs.erase(B);
1671      ++B;
1672      Moving = true;
1673    }
1674  } while (Moving && !Defs.empty());
1675  assert(Defs.empty() && "Instructions outside basic block!");
1676  return First;
1677}
1678
1679/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1680/// EXTRACT_SUBREG from the same register and to the same virtual register
1681/// with different sub-register indices, attempt to combine the
1682/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1683/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1684/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1685/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1686/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1687/// reg1026 to reg1029.
1688void
1689TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1690                                              unsigned DstReg) {
1691  SmallSet<unsigned, 4> Seen;
1692  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1693    unsigned SrcReg = Srcs[i];
1694    if (!Seen.insert(SrcReg))
1695      continue;
1696
1697    // Check that the instructions are all in the same basic block.
1698    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1699    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1700    if (SrcDefMI->getParent() != DstDefMI->getParent())
1701      continue;
1702
1703    // If there are no other uses than copies which feed into
1704    // the reg_sequence, then we might be able to coalesce them.
1705    bool CanCoalesce = true;
1706    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1707    for (MachineRegisterInfo::use_nodbg_iterator
1708           UI = MRI->use_nodbg_begin(SrcReg),
1709           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1710      MachineInstr *UseMI = &*UI;
1711      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1712        CanCoalesce = false;
1713        break;
1714      }
1715      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1716      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1717    }
1718
1719    if (!CanCoalesce || SrcSubIndices.size() < 2)
1720      continue;
1721
1722    // Check that the source subregisters can be combined.
1723    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1724    unsigned NewSrcSubIdx = 0;
1725    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1726                                      NewSrcSubIdx))
1727      continue;
1728
1729    // Check that the destination subregisters can also be combined.
1730    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1731    unsigned NewDstSubIdx = 0;
1732    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1733                                      NewDstSubIdx))
1734      continue;
1735
1736    // If neither source nor destination can be combined to the full register,
1737    // just give up.  This could be improved if it ever matters.
1738    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1739      continue;
1740
1741    // Now that we know that all the uses are extract_subregs and that those
1742    // subregs can somehow be combined, scan all the extract_subregs again to
1743    // make sure the subregs are in the right order and can be composed.
1744    MachineInstr *SomeMI = 0;
1745    CanCoalesce = true;
1746    for (MachineRegisterInfo::use_nodbg_iterator
1747           UI = MRI->use_nodbg_begin(SrcReg),
1748           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1749      MachineInstr *UseMI = &*UI;
1750      assert(UseMI->isCopy());
1751      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1752      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1753      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1754      if ((NewDstSubIdx == 0 &&
1755           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1756          (NewSrcSubIdx == 0 &&
1757           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1758        CanCoalesce = false;
1759        break;
1760      }
1761      // Keep track of one of the uses.  Preferably the first one which has a
1762      // <def,undef> flag.
1763      if (!SomeMI || UseMI->getOperand(0).isUndef())
1764        SomeMI = UseMI;
1765    }
1766    if (!CanCoalesce)
1767      continue;
1768
1769    // Insert a copy to replace the original.
1770    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1771                                   SomeMI->getDebugLoc(),
1772                                   TII->get(TargetOpcode::COPY))
1773      .addReg(DstReg, RegState::Define |
1774                      getUndefRegState(SomeMI->getOperand(0).isUndef()),
1775              NewDstSubIdx)
1776      .addReg(SrcReg, 0, NewSrcSubIdx);
1777
1778    // Remove all the old extract instructions.
1779    for (MachineRegisterInfo::use_nodbg_iterator
1780           UI = MRI->use_nodbg_begin(SrcReg),
1781           UE = MRI->use_nodbg_end(); UI != UE; ) {
1782      MachineInstr *UseMI = &*UI;
1783      ++UI;
1784      if (UseMI == CopyMI)
1785        continue;
1786      assert(UseMI->isCopy());
1787      // Move any kills to the new copy or extract instruction.
1788      if (UseMI->getOperand(1).isKill()) {
1789        CopyMI->getOperand(1).setIsKill();
1790        if (LV)
1791          // Update live variables
1792          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1793      }
1794      UseMI->eraseFromParent();
1795    }
1796  }
1797}
1798
1799static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1800                                    MachineRegisterInfo *MRI) {
1801  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1802         UE = MRI->use_end(); UI != UE; ++UI) {
1803    MachineInstr *UseMI = &*UI;
1804    if (UseMI != RegSeq && UseMI->isRegSequence())
1805      return true;
1806  }
1807  return false;
1808}
1809
1810/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1811/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1812/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1813///
1814/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1815/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1816/// =>
1817/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1818bool TwoAddressInstructionPass::EliminateRegSequences() {
1819  if (RegSequences.empty())
1820    return false;
1821
1822  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1823    MachineInstr *MI = RegSequences[i];
1824    unsigned DstReg = MI->getOperand(0).getReg();
1825    if (MI->getOperand(0).getSubReg() ||
1826        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1827        !(MI->getNumOperands() & 1)) {
1828      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1829      llvm_unreachable(0);
1830    }
1831
1832    bool IsImpDef = true;
1833    SmallVector<unsigned, 4> RealSrcs;
1834    SmallSet<unsigned, 4> Seen;
1835    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1836      unsigned SrcReg = MI->getOperand(i).getReg();
1837      unsigned SubIdx = MI->getOperand(i+1).getImm();
1838      // DefMI of NULL means the value does not have a vreg in this block
1839      // i.e., its a physical register or a subreg.
1840      // In either case we force a copy to be generated.
1841      MachineInstr *DefMI = NULL;
1842      if (!MI->getOperand(i).getSubReg() &&
1843          !TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1844        DefMI = MRI->getVRegDef(SrcReg);
1845      }
1846
1847      if (DefMI && DefMI->isImplicitDef()) {
1848        DefMI->eraseFromParent();
1849        continue;
1850      }
1851      IsImpDef = false;
1852
1853      // Remember COPY sources. These might be candidate for coalescing.
1854      if (DefMI && DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1855        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1856
1857      bool isKill = MI->getOperand(i).isKill();
1858      if (!DefMI || !Seen.insert(SrcReg) ||
1859          MI->getParent() != DefMI->getParent() ||
1860          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1861          !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1862                                         MRI->getRegClass(SrcReg), SubIdx)) {
1863        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1864        // Also add an copy if the source is live-in the block. We don't want
1865        // to end up with a partial-redef of a livein, e.g.
1866        // BB0:
1867        // reg1051:10<def> =
1868        // ...
1869        // BB1:
1870        // ... = reg1051:10
1871        // BB2:
1872        // reg1051:9<def> =
1873        // LiveIntervalAnalysis won't like it.
1874        //
1875        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1876        // correctly up to date becomes very difficult. Insert a copy.
1877
1878        // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1879        // might insert a COPY that uses SrcReg after is was killed.
1880        if (isKill)
1881          for (unsigned j = i + 2; j < e; j += 2)
1882            if (MI->getOperand(j).getReg() == SrcReg) {
1883              MI->getOperand(j).setIsKill();
1884              isKill = false;
1885              break;
1886            }
1887
1888        MachineBasicBlock::iterator InsertLoc = MI;
1889        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1890                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1891            .addReg(DstReg, RegState::Define, SubIdx)
1892            .addReg(SrcReg, getKillRegState(isKill));
1893        MI->getOperand(i).setReg(0);
1894        if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1895          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1896        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1897      }
1898    }
1899
1900    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1901      unsigned SrcReg = MI->getOperand(i).getReg();
1902      if (!SrcReg) continue;
1903      unsigned SubIdx = MI->getOperand(i+1).getImm();
1904      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1905    }
1906
1907    // Set <def,undef> flags on the first DstReg def in the basic block.
1908    // It marks the beginning of the live range. All the other defs are
1909    // read-modify-write.
1910    if (MachineInstr *Def = findFirstDef(DstReg, MRI)) {
1911      for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
1912        MachineOperand &MO = Def->getOperand(i);
1913        if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1914          MO.setIsUndef();
1915      }
1916      // Make sure there is a full non-subreg imp-def operand on the
1917      // instruction.  This shouldn't be necessary, but it seems that at least
1918      // RAFast requires it.
1919      Def->addRegisterDefined(DstReg, TRI);
1920      DEBUG(dbgs() << "First def: " << *Def);
1921    }
1922
1923    if (IsImpDef) {
1924      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1925      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1926      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1927        MI->RemoveOperand(j);
1928    } else {
1929      DEBUG(dbgs() << "Eliminated: " << *MI);
1930      MI->eraseFromParent();
1931    }
1932
1933    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1934    // INSERT_SUBREG instructions that must have <undef> flags added by
1935    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1936    if (LV)
1937      CoalesceExtSubRegs(RealSrcs, DstReg);
1938  }
1939
1940  RegSequences.clear();
1941  return true;
1942}
1943