TwoAddressInstructionPass.cpp revision 92a609a8e853af6edc4d5660a8451950bb2e0afb
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/STLExtras.h"
44using namespace llvm;
45
46STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
47STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
48STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
49
50namespace {
51  struct VISIBILITY_HIDDEN TwoAddressInstructionPass
52   : public MachineFunctionPass {
53    static char ID; // Pass identification, replacement for typeid
54    TwoAddressInstructionPass() : MachineFunctionPass((intptr_t)&ID) {}
55
56    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
57
58    /// runOnMachineFunction - pass entry point
59    bool runOnMachineFunction(MachineFunction&);
60  };
61
62  char TwoAddressInstructionPass::ID = 0;
63  RegisterPass<TwoAddressInstructionPass>
64  X("twoaddressinstruction", "Two-Address instruction pass");
65}
66
67const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo();
68
69void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const {
70  AU.addRequired<LiveVariables>();
71  AU.addPreserved<LiveVariables>();
72  AU.addPreservedID(MachineLoopInfoID);
73  AU.addPreservedID(MachineDominatorsID);
74  AU.addPreservedID(PHIEliminationID);
75  MachineFunctionPass::getAnalysisUsage(AU);
76}
77
78/// runOnMachineFunction - Reduce two-address instructions to two
79/// operands.
80///
81bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
82  DOUT << "Machine Function\n";
83  const TargetMachine &TM = MF.getTarget();
84  const TargetInstrInfo &TII = *TM.getInstrInfo();
85  LiveVariables &LV = getAnalysis<LiveVariables>();
86
87  bool MadeChange = false;
88
89  DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
90  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
91
92  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
93       mbbi != mbbe; ++mbbi) {
94    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
95         mi != me; ++mi) {
96      const TargetInstrDesc &TID = mi->getDesc();
97
98      bool FirstTied = true;
99      for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) {
100        int ti = TID.getOperandConstraint(si, TOI::TIED_TO);
101        if (ti == -1)
102          continue;
103
104        if (FirstTied) {
105          ++NumTwoAddressInstrs;
106          DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
107        }
108        FirstTied = false;
109
110        assert(mi->getOperand(si).isRegister() && mi->getOperand(si).getReg() &&
111               mi->getOperand(si).isUse() && "two address instruction invalid");
112
113        // if the two operands are the same we just remove the use
114        // and mark the def as def&use, otherwise we have to insert a copy.
115        if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
116          // rewrite:
117          //     a = b op c
118          // to:
119          //     a = b
120          //     a = a op c
121          unsigned regA = mi->getOperand(ti).getReg();
122          unsigned regB = mi->getOperand(si).getReg();
123
124          assert(MRegisterInfo::isVirtualRegister(regA) &&
125                 MRegisterInfo::isVirtualRegister(regB) &&
126                 "cannot update physical register live information");
127
128#ifndef NDEBUG
129          // First, verify that we don't have a use of a in the instruction (a =
130          // b + a for example) because our transformation will not work. This
131          // should never occur because we are in SSA form.
132          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
133            assert((int)i == ti ||
134                   !mi->getOperand(i).isRegister() ||
135                   mi->getOperand(i).getReg() != regA);
136#endif
137
138          // If this instruction is not the killing user of B, see if we can
139          // rearrange the code to make it so.  Making it the killing user will
140          // allow us to coalesce A and B together, eliminating the copy we are
141          // about to insert.
142          if (!LV.KillsRegister(mi, regB)) {
143            // If this instruction is commutative, check to see if C dies.  If
144            // so, swap the B and C operands.  This makes the live ranges of A
145            // and C joinable.
146            // FIXME: This code also works for A := B op C instructions.
147            if (TID.isCommutable() && mi->getNumOperands() >= 3) {
148              assert(mi->getOperand(3-si).isRegister() &&
149                     "Not a proper commutative instruction!");
150              unsigned regC = mi->getOperand(3-si).getReg();
151              if (LV.KillsRegister(mi, regC)) {
152                DOUT << "2addr: COMMUTING  : " << *mi;
153                MachineInstr *NewMI = TII.commuteInstruction(mi);
154                if (NewMI == 0) {
155                  DOUT << "2addr: COMMUTING FAILED!\n";
156                } else {
157                  DOUT << "2addr: COMMUTED TO: " << *NewMI;
158                  // If the instruction changed to commute it, update livevar.
159                  if (NewMI != mi) {
160                    LV.instructionChanged(mi, NewMI);  // Update live variables
161                    mbbi->insert(mi, NewMI);           // Insert the new inst
162                    mbbi->erase(mi);                   // Nuke the old inst.
163                    mi = NewMI;
164                  }
165
166                  ++NumCommuted;
167                  regB = regC;
168                  goto InstructionRearranged;
169                }
170              }
171            }
172
173            // If this instruction is potentially convertible to a true
174            // three-address instruction,
175            if (TID.isConvertibleTo3Addr()) {
176              // FIXME: This assumes there are no more operands which are tied
177              // to another register.
178#ifndef NDEBUG
179              for (unsigned i = si+1, e = TID.getNumOperands(); i < e; ++i)
180                assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
181#endif
182
183              if (MachineInstr *New = TII.convertToThreeAddress(mbbi, mi, LV)) {
184                DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
185                DOUT << "2addr:         TO 3-ADDR: " << *New;
186                mbbi->erase(mi);                 // Nuke the old inst.
187                mi = New;
188                ++NumConvertedTo3Addr;
189                // Done with this instruction.
190                break;
191              }
192            }
193          }
194
195        InstructionRearranged:
196          const TargetRegisterClass* rc = MF.getRegInfo().getRegClass(regA);
197          TII.copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
198
199          MachineBasicBlock::iterator prevMi = prior(mi);
200          DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM));
201
202          // update live variables for regB
203          LiveVariables::VarInfo& varInfoB = LV.getVarInfo(regB);
204          // regB is used in this BB.
205          varInfoB.UsedBlocks[mbbi->getNumber()] = true;
206          if (LV.removeVirtualRegisterKilled(regB, mbbi, mi))
207            LV.addVirtualRegisterKilled(regB, prevMi);
208
209          if (LV.removeVirtualRegisterDead(regB, mbbi, mi))
210            LV.addVirtualRegisterDead(regB, prevMi);
211
212          // replace all occurences of regB with regA
213          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
214            if (mi->getOperand(i).isRegister() &&
215                mi->getOperand(i).getReg() == regB)
216              mi->getOperand(i).setReg(regA);
217          }
218        }
219
220        assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
221        mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
222        MadeChange = true;
223
224        DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
225      }
226    }
227  }
228
229  return MadeChange;
230}
231