TwoAddressInstructionPass.cpp revision 9bad88a9def4abaa87e7e5e7178bd680354043f8
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/MC/MCInstrItineraries.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/ADT/BitVector.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/ADT/STLExtras.h"
51using namespace llvm;
52
53STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
54STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
55STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
56STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
57STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
58STATISTIC(NumReMats,           "Number of instructions re-materialized");
59STATISTIC(NumDeletes,          "Number of dead instructions deleted");
60STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
61STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
62
63namespace {
64  class TwoAddressInstructionPass : public MachineFunctionPass {
65    const TargetInstrInfo *TII;
66    const TargetRegisterInfo *TRI;
67    const InstrItineraryData *InstrItins;
68    MachineRegisterInfo *MRI;
69    LiveVariables *LV;
70    AliasAnalysis *AA;
71
72    // DistanceMap - Keep track the distance of a MI from the start of the
73    // current basic block.
74    DenseMap<MachineInstr*, unsigned> DistanceMap;
75
76    // SrcRegMap - A map from virtual registers to physical registers which
77    // are likely targets to be coalesced to due to copies from physical
78    // registers to virtual registers. e.g. v1024 = move r0.
79    DenseMap<unsigned, unsigned> SrcRegMap;
80
81    // DstRegMap - A map from virtual registers to physical registers which
82    // are likely targets to be coalesced to due to copies to physical
83    // registers from virtual registers. e.g. r1 = move v1024.
84    DenseMap<unsigned, unsigned> DstRegMap;
85
86    /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
87    /// during the initial walk of the machine function.
88    SmallVector<MachineInstr*, 16> RegSequences;
89
90    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
91                              unsigned Reg,
92                              MachineBasicBlock::iterator OldPos);
93
94    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
95                             MachineInstr *MI, MachineInstr *DefMI,
96                             MachineBasicBlock *MBB, unsigned Loc);
97
98    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
99                           unsigned &LastDef);
100
101    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
102                                   unsigned Dist);
103
104    bool isProfitableToCommute(unsigned regB, unsigned regC,
105                               MachineInstr *MI, MachineBasicBlock *MBB,
106                               unsigned Dist);
107
108    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
109                            MachineFunction::iterator &mbbi,
110                            unsigned RegB, unsigned RegC, unsigned Dist);
111
112    bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
113
114    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
115                            MachineBasicBlock::iterator &nmi,
116                            MachineFunction::iterator &mbbi,
117                            unsigned RegA, unsigned RegB, unsigned Dist);
118
119    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
120    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
121                               SmallVector<NewKill, 4> &NewKills,
122                               MachineBasicBlock *MBB, unsigned Dist);
123    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
124                           MachineBasicBlock::iterator &nmi,
125                           MachineFunction::iterator &mbbi, unsigned Dist);
126
127    bool isDefTooClose(unsigned Reg, unsigned Dist,
128                       MachineInstr *MI, MachineBasicBlock *MBB);
129
130    bool RescheduleMIBelowKill(MachineBasicBlock *MBB,
131                               MachineBasicBlock::iterator &mi,
132                               MachineBasicBlock::iterator &nmi,
133                               unsigned Reg);
134    bool RescheduleKillAboveMI(MachineBasicBlock *MBB,
135                               MachineBasicBlock::iterator &mi,
136                               MachineBasicBlock::iterator &nmi,
137                               unsigned Reg);
138
139    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
140                                 MachineBasicBlock::iterator &nmi,
141                                 MachineFunction::iterator &mbbi,
142                                 unsigned SrcIdx, unsigned DstIdx,
143                                 unsigned Dist,
144                                 SmallPtrSet<MachineInstr*, 8> &Processed);
145
146    void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
147                  SmallPtrSet<MachineInstr*, 8> &Processed);
148
149    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
150                     SmallPtrSet<MachineInstr*, 8> &Processed);
151
152    void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
153
154    /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
155    /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
156    /// sub-register references of the register defined by REG_SEQUENCE.
157    bool EliminateRegSequences();
158
159  public:
160    static char ID; // Pass identification, replacement for typeid
161    TwoAddressInstructionPass() : MachineFunctionPass(ID) {
162      initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
163    }
164
165    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
166      AU.setPreservesCFG();
167      AU.addRequired<AliasAnalysis>();
168      AU.addPreserved<LiveVariables>();
169      AU.addPreservedID(MachineLoopInfoID);
170      AU.addPreservedID(MachineDominatorsID);
171      AU.addPreservedID(PHIEliminationID);
172      MachineFunctionPass::getAnalysisUsage(AU);
173    }
174
175    /// runOnMachineFunction - Pass entry point.
176    bool runOnMachineFunction(MachineFunction&);
177  };
178}
179
180char TwoAddressInstructionPass::ID = 0;
181INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
182                "Two-Address instruction pass", false, false)
183INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
184INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
185                "Two-Address instruction pass", false, false)
186
187char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
188
189/// Sink3AddrInstruction - A two-address instruction has been converted to a
190/// three-address instruction to avoid clobbering a register. Try to sink it
191/// past the instruction that would kill the above mentioned register to reduce
192/// register pressure.
193bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
194                                           MachineInstr *MI, unsigned SavedReg,
195                                           MachineBasicBlock::iterator OldPos) {
196  // FIXME: Shouldn't we be trying to do this before we three-addressify the
197  // instruction?  After this transformation is done, we no longer need
198  // the instruction to be in three-address form.
199
200  // Check if it's safe to move this instruction.
201  bool SeenStore = true; // Be conservative.
202  if (!MI->isSafeToMove(TII, AA, SeenStore))
203    return false;
204
205  unsigned DefReg = 0;
206  SmallSet<unsigned, 4> UseRegs;
207
208  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
209    const MachineOperand &MO = MI->getOperand(i);
210    if (!MO.isReg())
211      continue;
212    unsigned MOReg = MO.getReg();
213    if (!MOReg)
214      continue;
215    if (MO.isUse() && MOReg != SavedReg)
216      UseRegs.insert(MO.getReg());
217    if (!MO.isDef())
218      continue;
219    if (MO.isImplicit())
220      // Don't try to move it if it implicitly defines a register.
221      return false;
222    if (DefReg)
223      // For now, don't move any instructions that define multiple registers.
224      return false;
225    DefReg = MO.getReg();
226  }
227
228  // Find the instruction that kills SavedReg.
229  MachineInstr *KillMI = NULL;
230  for (MachineRegisterInfo::use_nodbg_iterator
231         UI = MRI->use_nodbg_begin(SavedReg),
232         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
233    MachineOperand &UseMO = UI.getOperand();
234    if (!UseMO.isKill())
235      continue;
236    KillMI = UseMO.getParent();
237    break;
238  }
239
240  // If we find the instruction that kills SavedReg, and it is in an
241  // appropriate location, we can try to sink the current instruction
242  // past it.
243  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
244      KillMI->getDesc().isTerminator())
245    return false;
246
247  // If any of the definitions are used by another instruction between the
248  // position and the kill use, then it's not safe to sink it.
249  //
250  // FIXME: This can be sped up if there is an easy way to query whether an
251  // instruction is before or after another instruction. Then we can use
252  // MachineRegisterInfo def / use instead.
253  MachineOperand *KillMO = NULL;
254  MachineBasicBlock::iterator KillPos = KillMI;
255  ++KillPos;
256
257  unsigned NumVisited = 0;
258  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
259    MachineInstr *OtherMI = I;
260    // DBG_VALUE cannot be counted against the limit.
261    if (OtherMI->isDebugValue())
262      continue;
263    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
264      return false;
265    ++NumVisited;
266    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
267      MachineOperand &MO = OtherMI->getOperand(i);
268      if (!MO.isReg())
269        continue;
270      unsigned MOReg = MO.getReg();
271      if (!MOReg)
272        continue;
273      if (DefReg == MOReg)
274        return false;
275
276      if (MO.isKill()) {
277        if (OtherMI == KillMI && MOReg == SavedReg)
278          // Save the operand that kills the register. We want to unset the kill
279          // marker if we can sink MI past it.
280          KillMO = &MO;
281        else if (UseRegs.count(MOReg))
282          // One of the uses is killed before the destination.
283          return false;
284      }
285    }
286  }
287
288  // Update kill and LV information.
289  KillMO->setIsKill(false);
290  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
291  KillMO->setIsKill(true);
292
293  if (LV)
294    LV->replaceKillInstruction(SavedReg, KillMI, MI);
295
296  // Move instruction to its destination.
297  MBB->remove(MI);
298  MBB->insert(KillPos, MI);
299
300  ++Num3AddrSunk;
301  return true;
302}
303
304/// isTwoAddrUse - Return true if the specified MI is using the specified
305/// register as a two-address operand.
306static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
307  const MCInstrDesc &MCID = UseMI->getDesc();
308  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
309    MachineOperand &MO = UseMI->getOperand(i);
310    if (MO.isReg() && MO.getReg() == Reg &&
311        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
312      // Earlier use is a two-address one.
313      return true;
314  }
315  return false;
316}
317
318/// isProfitableToReMat - Return true if the heuristics determines it is likely
319/// to be profitable to re-materialize the definition of Reg rather than copy
320/// the register.
321bool
322TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
323                                         const TargetRegisterClass *RC,
324                                         MachineInstr *MI, MachineInstr *DefMI,
325                                         MachineBasicBlock *MBB, unsigned Loc) {
326  bool OtherUse = false;
327  for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
328         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
329    MachineOperand &UseMO = UI.getOperand();
330    MachineInstr *UseMI = UseMO.getParent();
331    MachineBasicBlock *UseMBB = UseMI->getParent();
332    if (UseMBB == MBB) {
333      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
334      if (DI != DistanceMap.end() && DI->second == Loc)
335        continue;  // Current use.
336      OtherUse = true;
337      // There is at least one other use in the MBB that will clobber the
338      // register.
339      if (isTwoAddrUse(UseMI, Reg))
340        return true;
341    }
342  }
343
344  // If other uses in MBB are not two-address uses, then don't remat.
345  if (OtherUse)
346    return false;
347
348  // No other uses in the same block, remat if it's defined in the same
349  // block so it does not unnecessarily extend the live range.
350  return MBB == DefMI->getParent();
351}
352
353/// NoUseAfterLastDef - Return true if there are no intervening uses between the
354/// last instruction in the MBB that defines the specified register and the
355/// two-address instruction which is being processed. It also returns the last
356/// def location by reference
357bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
358                                           MachineBasicBlock *MBB, unsigned Dist,
359                                           unsigned &LastDef) {
360  LastDef = 0;
361  unsigned LastUse = Dist;
362  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
363         E = MRI->reg_end(); I != E; ++I) {
364    MachineOperand &MO = I.getOperand();
365    MachineInstr *MI = MO.getParent();
366    if (MI->getParent() != MBB || MI->isDebugValue())
367      continue;
368    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
369    if (DI == DistanceMap.end())
370      continue;
371    if (MO.isUse() && DI->second < LastUse)
372      LastUse = DI->second;
373    if (MO.isDef() && DI->second > LastDef)
374      LastDef = DI->second;
375  }
376
377  return !(LastUse > LastDef && LastUse < Dist);
378}
379
380MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
381                                                         MachineBasicBlock *MBB,
382                                                         unsigned Dist) {
383  unsigned LastUseDist = 0;
384  MachineInstr *LastUse = 0;
385  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
386         E = MRI->reg_end(); I != E; ++I) {
387    MachineOperand &MO = I.getOperand();
388    MachineInstr *MI = MO.getParent();
389    if (MI->getParent() != MBB || MI->isDebugValue())
390      continue;
391    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
392    if (DI == DistanceMap.end())
393      continue;
394    if (DI->second >= Dist)
395      continue;
396
397    if (MO.isUse() && DI->second > LastUseDist) {
398      LastUse = DI->first;
399      LastUseDist = DI->second;
400    }
401  }
402  return LastUse;
403}
404
405/// isCopyToReg - Return true if the specified MI is a copy instruction or
406/// a extract_subreg instruction. It also returns the source and destination
407/// registers and whether they are physical registers by reference.
408static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
409                        unsigned &SrcReg, unsigned &DstReg,
410                        bool &IsSrcPhys, bool &IsDstPhys) {
411  SrcReg = 0;
412  DstReg = 0;
413  if (MI.isCopy()) {
414    DstReg = MI.getOperand(0).getReg();
415    SrcReg = MI.getOperand(1).getReg();
416  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
417    DstReg = MI.getOperand(0).getReg();
418    SrcReg = MI.getOperand(2).getReg();
419  } else
420    return false;
421
422  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
423  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
424  return true;
425}
426
427/// isKilled - Test if the given register value, which is used by the given
428/// instruction, is killed by the given instruction. This looks through
429/// coalescable copies to see if the original value is potentially not killed.
430///
431/// For example, in this code:
432///
433///   %reg1034 = copy %reg1024
434///   %reg1035 = copy %reg1025<kill>
435///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
436///
437/// %reg1034 is not considered to be killed, since it is copied from a
438/// register which is not killed. Treating it as not killed lets the
439/// normal heuristics commute the (two-address) add, which lets
440/// coalescing eliminate the extra copy.
441///
442static bool isKilled(MachineInstr &MI, unsigned Reg,
443                     const MachineRegisterInfo *MRI,
444                     const TargetInstrInfo *TII) {
445  MachineInstr *DefMI = &MI;
446  for (;;) {
447    if (!DefMI->killsRegister(Reg))
448      return false;
449    if (TargetRegisterInfo::isPhysicalRegister(Reg))
450      return true;
451    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
452    // If there are multiple defs, we can't do a simple analysis, so just
453    // go with what the kill flag says.
454    if (llvm::next(Begin) != MRI->def_end())
455      return true;
456    DefMI = &*Begin;
457    bool IsSrcPhys, IsDstPhys;
458    unsigned SrcReg,  DstReg;
459    // If the def is something other than a copy, then it isn't going to
460    // be coalesced, so follow the kill flag.
461    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
462      return true;
463    Reg = SrcReg;
464  }
465}
466
467/// isTwoAddrUse - Return true if the specified MI uses the specified register
468/// as a two-address use. If so, return the destination register by reference.
469static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
470  const MCInstrDesc &MCID = MI.getDesc();
471  unsigned NumOps = MI.isInlineAsm()
472    ? MI.getNumOperands() : MCID.getNumOperands();
473  for (unsigned i = 0; i != NumOps; ++i) {
474    const MachineOperand &MO = MI.getOperand(i);
475    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
476      continue;
477    unsigned ti;
478    if (MI.isRegTiedToDefOperand(i, &ti)) {
479      DstReg = MI.getOperand(ti).getReg();
480      return true;
481    }
482  }
483  return false;
484}
485
486/// findLocalKill - Look for an instruction below MI in the MBB that kills the
487/// specified register. Returns null if there are any other Reg use between the
488/// instructions.
489static
490MachineInstr *findLocalKill(unsigned Reg, MachineBasicBlock *MBB,
491                            MachineInstr *MI, MachineRegisterInfo *MRI,
492                            DenseMap<MachineInstr*, unsigned> &DistanceMap) {
493  MachineInstr *KillMI = 0;
494  for (MachineRegisterInfo::use_nodbg_iterator
495         UI = MRI->use_nodbg_begin(Reg),
496         UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
497    MachineInstr *UseMI = &*UI;
498    if (UseMI == MI || UseMI->getParent() != MBB)
499      continue;
500    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
501    if (DI != DistanceMap.end())
502      continue;
503    if (!UI.getOperand().isKill())
504      return 0;
505    if (KillMI)
506      return 0;  // -O0 kill markers cannot be trusted?
507    KillMI = UseMI;
508  }
509
510  return KillMI;
511}
512
513/// findOnlyInterestingUse - Given a register, if has a single in-basic block
514/// use, return the use instruction if it's a copy or a two-address use.
515static
516MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
517                                     MachineRegisterInfo *MRI,
518                                     const TargetInstrInfo *TII,
519                                     bool &IsCopy,
520                                     unsigned &DstReg, bool &IsDstPhys) {
521  if (!MRI->hasOneNonDBGUse(Reg))
522    // None or more than one use.
523    return 0;
524  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
525  if (UseMI.getParent() != MBB)
526    return 0;
527  unsigned SrcReg;
528  bool IsSrcPhys;
529  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
530    IsCopy = true;
531    return &UseMI;
532  }
533  IsDstPhys = false;
534  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
535    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
536    return &UseMI;
537  }
538  return 0;
539}
540
541/// getMappedReg - Return the physical register the specified virtual register
542/// might be mapped to.
543static unsigned
544getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
545  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
546    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
547    if (SI == RegMap.end())
548      return 0;
549    Reg = SI->second;
550  }
551  if (TargetRegisterInfo::isPhysicalRegister(Reg))
552    return Reg;
553  return 0;
554}
555
556/// regsAreCompatible - Return true if the two registers are equal or aliased.
557///
558static bool
559regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
560  if (RegA == RegB)
561    return true;
562  if (!RegA || !RegB)
563    return false;
564  return TRI->regsOverlap(RegA, RegB);
565}
566
567
568/// isProfitableToReMat - Return true if it's potentially profitable to commute
569/// the two-address instruction that's being processed.
570bool
571TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
572                                       MachineInstr *MI, MachineBasicBlock *MBB,
573                                       unsigned Dist) {
574  // Determine if it's profitable to commute this two address instruction. In
575  // general, we want no uses between this instruction and the definition of
576  // the two-address register.
577  // e.g.
578  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
579  // %reg1029<def> = MOV8rr %reg1028
580  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
581  // insert => %reg1030<def> = MOV8rr %reg1028
582  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
583  // In this case, it might not be possible to coalesce the second MOV8rr
584  // instruction if the first one is coalesced. So it would be profitable to
585  // commute it:
586  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
587  // %reg1029<def> = MOV8rr %reg1028
588  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
589  // insert => %reg1030<def> = MOV8rr %reg1029
590  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
591
592  if (!MI->killsRegister(regC))
593    return false;
594
595  // Ok, we have something like:
596  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
597  // let's see if it's worth commuting it.
598
599  // Look for situations like this:
600  // %reg1024<def> = MOV r1
601  // %reg1025<def> = MOV r0
602  // %reg1026<def> = ADD %reg1024, %reg1025
603  // r0            = MOV %reg1026
604  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
605  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
606  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
607  unsigned ToRegB = getMappedReg(regB, DstRegMap);
608  unsigned ToRegC = getMappedReg(regC, DstRegMap);
609  if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
610      ((!FromRegC && !ToRegC) ||
611       regsAreCompatible(FromRegB, ToRegC, TRI) ||
612       regsAreCompatible(FromRegC, ToRegB, TRI)))
613    return true;
614
615  // If there is a use of regC between its last def (could be livein) and this
616  // instruction, then bail.
617  unsigned LastDefC = 0;
618  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
619    return false;
620
621  // If there is a use of regB between its last def (could be livein) and this
622  // instruction, then go ahead and make this transformation.
623  unsigned LastDefB = 0;
624  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
625    return true;
626
627  // Since there are no intervening uses for both registers, then commute
628  // if the def of regC is closer. Its live interval is shorter.
629  return LastDefB && LastDefC && LastDefC > LastDefB;
630}
631
632/// CommuteInstruction - Commute a two-address instruction and update the basic
633/// block, distance map, and live variables if needed. Return true if it is
634/// successful.
635bool
636TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
637                               MachineFunction::iterator &mbbi,
638                               unsigned RegB, unsigned RegC, unsigned Dist) {
639  MachineInstr *MI = mi;
640  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
641  MachineInstr *NewMI = TII->commuteInstruction(MI);
642
643  if (NewMI == 0) {
644    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
645    return false;
646  }
647
648  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
649  // If the instruction changed to commute it, update livevar.
650  if (NewMI != MI) {
651    if (LV)
652      // Update live variables
653      LV->replaceKillInstruction(RegC, MI, NewMI);
654
655    mbbi->insert(mi, NewMI);           // Insert the new inst
656    mbbi->erase(mi);                   // Nuke the old inst.
657    mi = NewMI;
658    DistanceMap.insert(std::make_pair(NewMI, Dist));
659  }
660
661  // Update source register map.
662  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
663  if (FromRegC) {
664    unsigned RegA = MI->getOperand(0).getReg();
665    SrcRegMap[RegA] = FromRegC;
666  }
667
668  return true;
669}
670
671/// isProfitableToConv3Addr - Return true if it is profitable to convert the
672/// given 2-address instruction to a 3-address one.
673bool
674TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
675  // Look for situations like this:
676  // %reg1024<def> = MOV r1
677  // %reg1025<def> = MOV r0
678  // %reg1026<def> = ADD %reg1024, %reg1025
679  // r2            = MOV %reg1026
680  // Turn ADD into a 3-address instruction to avoid a copy.
681  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
682  if (!FromRegB)
683    return false;
684  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
685  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
686}
687
688/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
689/// three address one. Return true if this transformation was successful.
690bool
691TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
692                                              MachineBasicBlock::iterator &nmi,
693                                              MachineFunction::iterator &mbbi,
694                                              unsigned RegA, unsigned RegB,
695                                              unsigned Dist) {
696  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
697  if (NewMI) {
698    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
699    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
700    bool Sunk = false;
701
702    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
703      // FIXME: Temporary workaround. If the new instruction doesn't
704      // uses RegB, convertToThreeAddress must have created more
705      // then one instruction.
706      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
707
708    mbbi->erase(mi); // Nuke the old inst.
709
710    if (!Sunk) {
711      DistanceMap.insert(std::make_pair(NewMI, Dist));
712      mi = NewMI;
713      nmi = llvm::next(mi);
714    }
715
716    // Update source and destination register maps.
717    SrcRegMap.erase(RegA);
718    DstRegMap.erase(RegB);
719    return true;
720  }
721
722  return false;
723}
724
725/// ScanUses - Scan forward recursively for only uses, update maps if the use
726/// is a copy or a two-address instruction.
727void
728TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
729                                    SmallPtrSet<MachineInstr*, 8> &Processed) {
730  SmallVector<unsigned, 4> VirtRegPairs;
731  bool IsDstPhys;
732  bool IsCopy = false;
733  unsigned NewReg = 0;
734  unsigned Reg = DstReg;
735  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
736                                                      NewReg, IsDstPhys)) {
737    if (IsCopy && !Processed.insert(UseMI))
738      break;
739
740    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
741    if (DI != DistanceMap.end())
742      // Earlier in the same MBB.Reached via a back edge.
743      break;
744
745    if (IsDstPhys) {
746      VirtRegPairs.push_back(NewReg);
747      break;
748    }
749    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
750    if (!isNew)
751      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
752    VirtRegPairs.push_back(NewReg);
753    Reg = NewReg;
754  }
755
756  if (!VirtRegPairs.empty()) {
757    unsigned ToReg = VirtRegPairs.back();
758    VirtRegPairs.pop_back();
759    while (!VirtRegPairs.empty()) {
760      unsigned FromReg = VirtRegPairs.back();
761      VirtRegPairs.pop_back();
762      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
763      if (!isNew)
764        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
765      ToReg = FromReg;
766    }
767    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
768    if (!isNew)
769      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
770  }
771}
772
773/// ProcessCopy - If the specified instruction is not yet processed, process it
774/// if it's a copy. For a copy instruction, we find the physical registers the
775/// source and destination registers might be mapped to. These are kept in
776/// point-to maps used to determine future optimizations. e.g.
777/// v1024 = mov r0
778/// v1025 = mov r1
779/// v1026 = add v1024, v1025
780/// r1    = mov r1026
781/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
782/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
783/// potentially joined with r1 on the output side. It's worthwhile to commute
784/// 'add' to eliminate a copy.
785void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
786                                     MachineBasicBlock *MBB,
787                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
788  if (Processed.count(MI))
789    return;
790
791  bool IsSrcPhys, IsDstPhys;
792  unsigned SrcReg, DstReg;
793  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
794    return;
795
796  if (IsDstPhys && !IsSrcPhys)
797    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
798  else if (!IsDstPhys && IsSrcPhys) {
799    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
800    if (!isNew)
801      assert(SrcRegMap[DstReg] == SrcReg &&
802             "Can't map to two src physical registers!");
803
804    ScanUses(DstReg, MBB, Processed);
805  }
806
807  Processed.insert(MI);
808  return;
809}
810
811/// isSafeToDelete - If the specified instruction does not produce any side
812/// effects and all of its defs are dead, then it's safe to delete.
813static bool isSafeToDelete(MachineInstr *MI,
814                           const TargetInstrInfo *TII,
815                           SmallVector<unsigned, 4> &Kills) {
816  const MCInstrDesc &MCID = MI->getDesc();
817  if (MCID.mayStore() || MCID.isCall())
818    return false;
819  if (MCID.isTerminator() || MI->hasUnmodeledSideEffects())
820    return false;
821
822  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
823    MachineOperand &MO = MI->getOperand(i);
824    if (!MO.isReg())
825      continue;
826    if (MO.isDef() && !MO.isDead())
827      return false;
828    if (MO.isUse() && MO.isKill())
829      Kills.push_back(MO.getReg());
830  }
831  return true;
832}
833
834/// canUpdateDeletedKills - Check if all the registers listed in Kills are
835/// killed by instructions in MBB preceding the current instruction at
836/// position Dist.  If so, return true and record information about the
837/// preceding kills in NewKills.
838bool TwoAddressInstructionPass::
839canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
840                      SmallVector<NewKill, 4> &NewKills,
841                      MachineBasicBlock *MBB, unsigned Dist) {
842  while (!Kills.empty()) {
843    unsigned Kill = Kills.back();
844    Kills.pop_back();
845    if (TargetRegisterInfo::isPhysicalRegister(Kill))
846      return false;
847
848    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
849    if (!LastKill)
850      return false;
851
852    bool isModRef = LastKill->definesRegister(Kill);
853    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
854                                      LastKill));
855  }
856  return true;
857}
858
859/// DeleteUnusedInstr - If an instruction with a tied register operand can
860/// be safely deleted, just delete it.
861bool
862TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
863                                             MachineBasicBlock::iterator &nmi,
864                                             MachineFunction::iterator &mbbi,
865                                             unsigned Dist) {
866  // Check if the instruction has no side effects and if all its defs are dead.
867  SmallVector<unsigned, 4> Kills;
868  if (!isSafeToDelete(mi, TII, Kills))
869    return false;
870
871  // If this instruction kills some virtual registers, we need to
872  // update the kill information. If it's not possible to do so,
873  // then bail out.
874  SmallVector<NewKill, 4> NewKills;
875  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
876    return false;
877
878  if (LV) {
879    while (!NewKills.empty()) {
880      MachineInstr *NewKill = NewKills.back().second;
881      unsigned Kill = NewKills.back().first.first;
882      bool isDead = NewKills.back().first.second;
883      NewKills.pop_back();
884      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
885        if (isDead)
886          LV->addVirtualRegisterDead(Kill, NewKill);
887        else
888          LV->addVirtualRegisterKilled(Kill, NewKill);
889      }
890    }
891  }
892
893  mbbi->erase(mi); // Nuke the old inst.
894  mi = nmi;
895  return true;
896}
897
898/// RescheduleMIBelowKill - If there is one more local instruction that reads
899/// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
900/// instruction in order to eliminate the need for the copy.
901bool
902TwoAddressInstructionPass::RescheduleMIBelowKill(MachineBasicBlock *MBB,
903                                     MachineBasicBlock::iterator &mi,
904                                     MachineBasicBlock::iterator &nmi,
905                                     unsigned Reg) {
906  MachineInstr *MI = &*mi;
907  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
908  if (DI == DistanceMap.end())
909    // Must be created from unfolded load. Don't waste time trying this.
910    return false;
911
912  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
913  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
914    // Don't mess with copies, they may be coalesced later.
915    return false;
916
917  const MCInstrDesc &MCID = KillMI->getDesc();
918  if (MCID.hasUnmodeledSideEffects() || MCID.isCall() || MCID.isBranch() ||
919      MCID.isTerminator())
920    // Don't move pass calls, etc.
921    return false;
922
923  unsigned DstReg;
924  if (isTwoAddrUse(*KillMI, Reg, DstReg))
925    return false;
926
927  bool SeenStore = true;
928  if (!MI->isSafeToMove(TII, AA, SeenStore))
929    return false;
930
931  if (TII->getInstrLatency(InstrItins, MI) > 1)
932    // FIXME: Needs more sophisticated heuristics.
933    return false;
934
935  SmallSet<unsigned, 2> Uses;
936  SmallSet<unsigned, 2> Kills;
937  SmallSet<unsigned, 2> Defs;
938  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
939    const MachineOperand &MO = MI->getOperand(i);
940    if (!MO.isReg())
941      continue;
942    unsigned MOReg = MO.getReg();
943    if (!MOReg)
944      continue;
945    if (MO.isDef())
946      Defs.insert(MOReg);
947    else {
948      Uses.insert(MOReg);
949      if (MO.isKill() && MOReg != Reg)
950        Kills.insert(MOReg);
951    }
952  }
953
954  // Move the copies connected to MI down as well.
955  MachineBasicBlock::iterator From = MI;
956  MachineBasicBlock::iterator To = llvm::next(From);
957  while (To->isCopy() && Defs.count(To->getOperand(1).getReg())) {
958    Defs.insert(To->getOperand(0).getReg());
959    ++To;
960  }
961
962  // Check if the reschedule will not break depedencies.
963  unsigned NumVisited = 0;
964  MachineBasicBlock::iterator KillPos = KillMI;
965  ++KillPos;
966  for (MachineBasicBlock::iterator I = To; I != KillPos; ++I) {
967    MachineInstr *OtherMI = I;
968    // DBG_VALUE cannot be counted against the limit.
969    if (OtherMI->isDebugValue())
970      continue;
971    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
972      return false;
973    ++NumVisited;
974    const MCInstrDesc &OMCID = OtherMI->getDesc();
975    if (OMCID.hasUnmodeledSideEffects() || OMCID.isCall() || OMCID.isBranch() ||
976        OMCID.isTerminator())
977      // Don't move pass calls, etc.
978      return false;
979    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
980      const MachineOperand &MO = OtherMI->getOperand(i);
981      if (!MO.isReg())
982        continue;
983      unsigned MOReg = MO.getReg();
984      if (!MOReg)
985        continue;
986      if (MO.isDef()) {
987        if (Uses.count(MOReg))
988          // Physical register use would be clobbered.
989          return false;
990        if (!MO.isDead() && Defs.count(MOReg))
991          // May clobber a physical register def.
992          // FIXME: This may be too conservative. It's ok if the instruction
993          // is sunken completely below the use.
994          return false;
995      } else {
996        if (Defs.count(MOReg))
997          return false;
998        if (MOReg != Reg &&
999            ((MO.isKill() && Uses.count(MOReg)) || Kills.count(MOReg)))
1000          // Don't want to extend other live ranges and update kills.
1001          return false;
1002      }
1003    }
1004  }
1005
1006  // Move debug info as well.
1007  while (From != MBB->begin() && llvm::prior(From)->isDebugValue())
1008    --From;
1009
1010  // Copies following MI may have been moved as well.
1011  nmi = To;
1012  MBB->splice(KillPos, MBB, From, To);
1013  DistanceMap.erase(DI);
1014
1015  if (LV) {
1016    // Update live variables
1017    LV->removeVirtualRegisterKilled(Reg, KillMI);
1018    LV->addVirtualRegisterKilled(Reg, MI);
1019  } else {
1020    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1021      MachineOperand &MO = KillMI->getOperand(i);
1022      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1023        continue;
1024      MO.setIsKill(false);
1025    }
1026    MI->addRegisterKilled(Reg, 0);
1027  }
1028
1029  return true;
1030}
1031
1032/// isDefTooClose - Return true if the re-scheduling will put the given
1033/// instruction too close to the defs of its register dependencies.
1034bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1035                                              MachineInstr *MI,
1036                                              MachineBasicBlock *MBB) {
1037  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
1038         DE = MRI->def_end(); DI != DE; ++DI) {
1039    MachineInstr *DefMI = &*DI;
1040    if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
1041      continue;
1042    if (DefMI == MI)
1043      return true; // MI is defining something KillMI uses
1044    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
1045    if (DDI == DistanceMap.end())
1046      return true;  // Below MI
1047    unsigned DefDist = DDI->second;
1048    assert(Dist > DefDist && "Visited def already?");
1049    if (TII->getInstrLatency(InstrItins, DefMI) > (int)(Dist - DefDist))
1050      return true;
1051  }
1052  return false;
1053}
1054
1055/// RescheduleKillAboveMI - If there is one more local instruction that reads
1056/// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
1057/// current two-address instruction in order to eliminate the need for the
1058/// copy.
1059bool
1060TwoAddressInstructionPass::RescheduleKillAboveMI(MachineBasicBlock *MBB,
1061                                     MachineBasicBlock::iterator &mi,
1062                                     MachineBasicBlock::iterator &nmi,
1063                                     unsigned Reg) {
1064  MachineInstr *MI = &*mi;
1065  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1066  if (DI == DistanceMap.end())
1067    // Must be created from unfolded load. Don't waste time trying this.
1068    return false;
1069
1070  MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
1071  if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1072    // Don't mess with copies, they may be coalesced later.
1073    return false;
1074
1075  unsigned DstReg;
1076  if (isTwoAddrUse(*KillMI, Reg, DstReg))
1077    return false;
1078
1079  bool SeenStore = true;
1080  if (!KillMI->isSafeToMove(TII, AA, SeenStore))
1081    return false;
1082
1083  SmallSet<unsigned, 2> Uses;
1084  SmallSet<unsigned, 2> Kills;
1085  SmallSet<unsigned, 2> Defs;
1086  SmallSet<unsigned, 2> LiveDefs;
1087  for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1088    const MachineOperand &MO = KillMI->getOperand(i);
1089    if (!MO.isReg())
1090      continue;
1091    unsigned MOReg = MO.getReg();
1092    if (MO.isUse()) {
1093      if (!MOReg)
1094        continue;
1095      if (isDefTooClose(MOReg, DI->second, MI, MBB))
1096        return false;
1097      Uses.insert(MOReg);
1098      if (MO.isKill() && MOReg != Reg)
1099        Kills.insert(MOReg);
1100    } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1101      Defs.insert(MOReg);
1102      if (!MO.isDead())
1103        LiveDefs.insert(MOReg);
1104    }
1105  }
1106
1107  // Check if the reschedule will not break depedencies.
1108  unsigned NumVisited = 0;
1109  MachineBasicBlock::iterator KillPos = KillMI;
1110  for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1111    MachineInstr *OtherMI = I;
1112    // DBG_VALUE cannot be counted against the limit.
1113    if (OtherMI->isDebugValue())
1114      continue;
1115    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1116      return false;
1117    ++NumVisited;
1118    const MCInstrDesc &MCID = OtherMI->getDesc();
1119    if (MCID.hasUnmodeledSideEffects() || MCID.isCall() || MCID.isBranch() ||
1120        MCID.isTerminator())
1121      // Don't move pass calls, etc.
1122      return false;
1123    SmallVector<unsigned, 2> OtherDefs;
1124    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1125      const MachineOperand &MO = OtherMI->getOperand(i);
1126      if (!MO.isReg())
1127        continue;
1128      unsigned MOReg = MO.getReg();
1129      if (!MOReg)
1130        continue;
1131      if (MO.isUse()) {
1132        if (Defs.count(MOReg))
1133          // Moving KillMI can clobber the physical register if the def has
1134          // not been seen.
1135          return false;
1136        if (Kills.count(MOReg))
1137          // Don't want to extend other live ranges and update kills.
1138          return false;
1139      } else {
1140        OtherDefs.push_back(MOReg);
1141      }
1142    }
1143
1144    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1145      unsigned MOReg = OtherDefs[i];
1146      if (Uses.count(MOReg))
1147        return false;
1148      if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1149          LiveDefs.count(MOReg))
1150        return false;
1151      // Physical register def is seen.
1152      Defs.erase(MOReg);
1153    }
1154  }
1155
1156  // Move the old kill above MI, don't forget to move debug info as well.
1157  MachineBasicBlock::iterator InsertPos = mi;
1158  while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
1159    --InsertPos;
1160  MachineBasicBlock::iterator From = KillMI;
1161  MachineBasicBlock::iterator To = llvm::next(From);
1162  while (llvm::prior(From)->isDebugValue())
1163    --From;
1164  MBB->splice(InsertPos, MBB, From, To);
1165
1166  nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
1167  DistanceMap.erase(DI);
1168
1169  if (LV) {
1170    // Update live variables
1171    LV->removeVirtualRegisterKilled(Reg, KillMI);
1172    LV->addVirtualRegisterKilled(Reg, MI);
1173  } else {
1174    for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1175      MachineOperand &MO = KillMI->getOperand(i);
1176      if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1177        continue;
1178      MO.setIsKill(false);
1179    }
1180    MI->addRegisterKilled(Reg, 0);
1181  }
1182  return true;
1183}
1184
1185/// TryInstructionTransform - For the case where an instruction has a single
1186/// pair of tied register operands, attempt some transformations that may
1187/// either eliminate the tied operands or improve the opportunities for
1188/// coalescing away the register copy.  Returns true if the tied operands
1189/// are eliminated altogether.
1190bool TwoAddressInstructionPass::
1191TryInstructionTransform(MachineBasicBlock::iterator &mi,
1192                        MachineBasicBlock::iterator &nmi,
1193                        MachineFunction::iterator &mbbi,
1194                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
1195                        SmallPtrSet<MachineInstr*, 8> &Processed) {
1196  MachineInstr &MI = *mi;
1197  const MCInstrDesc &MCID = MI.getDesc();
1198  unsigned regA = MI.getOperand(DstIdx).getReg();
1199  unsigned regB = MI.getOperand(SrcIdx).getReg();
1200
1201  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1202         "cannot make instruction into two-address form");
1203
1204  // If regA is dead and the instruction can be deleted, just delete
1205  // it so it doesn't clobber regB.
1206  bool regBKilled = isKilled(MI, regB, MRI, TII);
1207  if (!regBKilled && MI.getOperand(DstIdx).isDead() &&
1208      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
1209    ++NumDeletes;
1210    return true; // Done with this instruction.
1211  }
1212
1213  // Check if it is profitable to commute the operands.
1214  unsigned SrcOp1, SrcOp2;
1215  unsigned regC = 0;
1216  unsigned regCIdx = ~0U;
1217  bool TryCommute = false;
1218  bool AggressiveCommute = false;
1219  if (MCID.isCommutable() && MI.getNumOperands() >= 3 &&
1220      TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1221    if (SrcIdx == SrcOp1)
1222      regCIdx = SrcOp2;
1223    else if (SrcIdx == SrcOp2)
1224      regCIdx = SrcOp1;
1225
1226    if (regCIdx != ~0U) {
1227      regC = MI.getOperand(regCIdx).getReg();
1228      if (!regBKilled && isKilled(MI, regC, MRI, TII))
1229        // If C dies but B does not, swap the B and C operands.
1230        // This makes the live ranges of A and C joinable.
1231        TryCommute = true;
1232      else if (isProfitableToCommute(regB, regC, &MI, mbbi, Dist)) {
1233        TryCommute = true;
1234        AggressiveCommute = true;
1235      }
1236    }
1237  }
1238
1239  // If it's profitable to commute, try to do so.
1240  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
1241    ++NumCommuted;
1242    if (AggressiveCommute)
1243      ++NumAggrCommuted;
1244    return false;
1245  }
1246
1247  // If there is one more use of regB later in the same MBB, consider
1248  // re-schedule this MI below it.
1249  if (RescheduleMIBelowKill(mbbi, mi, nmi, regB)) {
1250    ++NumReSchedDowns;
1251    return true;
1252  }
1253
1254  if (TargetRegisterInfo::isVirtualRegister(regA))
1255    ScanUses(regA, &*mbbi, Processed);
1256
1257  if (MCID.isConvertibleTo3Addr()) {
1258    // This instruction is potentially convertible to a true
1259    // three-address instruction.  Check if it is profitable.
1260    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1261      // Try to convert it.
1262      if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
1263        ++NumConvertedTo3Addr;
1264        return true; // Done with this instruction.
1265      }
1266    }
1267  }
1268
1269  // If there is one more use of regB later in the same MBB, consider
1270  // re-schedule it before this MI if it's legal.
1271  if (RescheduleKillAboveMI(mbbi, mi, nmi, regB)) {
1272    ++NumReSchedUps;
1273    return true;
1274  }
1275
1276  // If this is an instruction with a load folded into it, try unfolding
1277  // the load, e.g. avoid this:
1278  //   movq %rdx, %rcx
1279  //   addq (%rax), %rcx
1280  // in favor of this:
1281  //   movq (%rax), %rcx
1282  //   addq %rdx, %rcx
1283  // because it's preferable to schedule a load than a register copy.
1284  if (MCID.mayLoad() && !regBKilled) {
1285    // Determine if a load can be unfolded.
1286    unsigned LoadRegIndex;
1287    unsigned NewOpc =
1288      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1289                                      /*UnfoldLoad=*/true,
1290                                      /*UnfoldStore=*/false,
1291                                      &LoadRegIndex);
1292    if (NewOpc != 0) {
1293      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1294      if (UnfoldMCID.getNumDefs() == 1) {
1295        MachineFunction &MF = *mbbi->getParent();
1296
1297        // Unfold the load.
1298        DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1299        const TargetRegisterClass *RC =
1300          TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
1301        unsigned Reg = MRI->createVirtualRegister(RC);
1302        SmallVector<MachineInstr *, 2> NewMIs;
1303        if (!TII->unfoldMemoryOperand(MF, &MI, Reg,
1304                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1305                                      NewMIs)) {
1306          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1307          return false;
1308        }
1309        assert(NewMIs.size() == 2 &&
1310               "Unfolded a load into multiple instructions!");
1311        // The load was previously folded, so this is the only use.
1312        NewMIs[1]->addRegisterKilled(Reg, TRI);
1313
1314        // Tentatively insert the instructions into the block so that they
1315        // look "normal" to the transformation logic.
1316        mbbi->insert(mi, NewMIs[0]);
1317        mbbi->insert(mi, NewMIs[1]);
1318
1319        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1320                     << "2addr:    NEW INST: " << *NewMIs[1]);
1321
1322        // Transform the instruction, now that it no longer has a load.
1323        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1324        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1325        MachineBasicBlock::iterator NewMI = NewMIs[1];
1326        bool TransformSuccess =
1327          TryInstructionTransform(NewMI, mi, mbbi,
1328                                  NewSrcIdx, NewDstIdx, Dist, Processed);
1329        if (TransformSuccess ||
1330            NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1331          // Success, or at least we made an improvement. Keep the unfolded
1332          // instructions and discard the original.
1333          if (LV) {
1334            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1335              MachineOperand &MO = MI.getOperand(i);
1336              if (MO.isReg() &&
1337                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1338                if (MO.isUse()) {
1339                  if (MO.isKill()) {
1340                    if (NewMIs[0]->killsRegister(MO.getReg()))
1341                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1342                    else {
1343                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1344                             "Kill missing after load unfold!");
1345                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1346                    }
1347                  }
1348                } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1349                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1350                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1351                  else {
1352                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1353                           "Dead flag missing after load unfold!");
1354                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1355                  }
1356                }
1357              }
1358            }
1359            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1360          }
1361          MI.eraseFromParent();
1362          mi = NewMIs[1];
1363          if (TransformSuccess)
1364            return true;
1365        } else {
1366          // Transforming didn't eliminate the tie and didn't lead to an
1367          // improvement. Clean up the unfolded instructions and keep the
1368          // original.
1369          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1370          NewMIs[0]->eraseFromParent();
1371          NewMIs[1]->eraseFromParent();
1372        }
1373      }
1374    }
1375  }
1376
1377  return false;
1378}
1379
1380/// runOnMachineFunction - Reduce two-address instructions to two operands.
1381///
1382bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1383  DEBUG(dbgs() << "Machine Function\n");
1384  const TargetMachine &TM = MF.getTarget();
1385  MRI = &MF.getRegInfo();
1386  TII = TM.getInstrInfo();
1387  TRI = TM.getRegisterInfo();
1388  InstrItins = TM.getInstrItineraryData();
1389  LV = getAnalysisIfAvailable<LiveVariables>();
1390  AA = &getAnalysis<AliasAnalysis>();
1391
1392  bool MadeChange = false;
1393
1394  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1395  DEBUG(dbgs() << "********** Function: "
1396        << MF.getFunction()->getName() << '\n');
1397
1398  // This pass takes the function out of SSA form.
1399  MRI->leaveSSA();
1400
1401  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1402  BitVector ReMatRegs(MRI->getNumVirtRegs());
1403
1404  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1405    TiedOperandMap;
1406  TiedOperandMap TiedOperands(4);
1407
1408  SmallPtrSet<MachineInstr*, 8> Processed;
1409  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1410       mbbi != mbbe; ++mbbi) {
1411    unsigned Dist = 0;
1412    DistanceMap.clear();
1413    SrcRegMap.clear();
1414    DstRegMap.clear();
1415    Processed.clear();
1416    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1417         mi != me; ) {
1418      MachineBasicBlock::iterator nmi = llvm::next(mi);
1419      if (mi->isDebugValue()) {
1420        mi = nmi;
1421        continue;
1422      }
1423
1424      // Remember REG_SEQUENCE instructions, we'll deal with them later.
1425      if (mi->isRegSequence())
1426        RegSequences.push_back(&*mi);
1427
1428      const MCInstrDesc &MCID = mi->getDesc();
1429      bool FirstTied = true;
1430
1431      DistanceMap.insert(std::make_pair(mi, ++Dist));
1432
1433      ProcessCopy(&*mi, &*mbbi, Processed);
1434
1435      // First scan through all the tied register uses in this instruction
1436      // and record a list of pairs of tied operands for each register.
1437      unsigned NumOps = mi->isInlineAsm()
1438        ? mi->getNumOperands() : MCID.getNumOperands();
1439      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1440        unsigned DstIdx = 0;
1441        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1442          continue;
1443
1444        if (FirstTied) {
1445          FirstTied = false;
1446          ++NumTwoAddressInstrs;
1447          DEBUG(dbgs() << '\t' << *mi);
1448        }
1449
1450        assert(mi->getOperand(SrcIdx).isReg() &&
1451               mi->getOperand(SrcIdx).getReg() &&
1452               mi->getOperand(SrcIdx).isUse() &&
1453               "two address instruction invalid");
1454
1455        unsigned regB = mi->getOperand(SrcIdx).getReg();
1456        TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1457      }
1458
1459      // Now iterate over the information collected above.
1460      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1461             OE = TiedOperands.end(); OI != OE; ++OI) {
1462        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1463
1464        // If the instruction has a single pair of tied operands, try some
1465        // transformations that may either eliminate the tied operands or
1466        // improve the opportunities for coalescing away the register copy.
1467        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1468          unsigned SrcIdx = TiedPairs[0].first;
1469          unsigned DstIdx = TiedPairs[0].second;
1470
1471          // If the registers are already equal, nothing needs to be done.
1472          if (mi->getOperand(SrcIdx).getReg() ==
1473              mi->getOperand(DstIdx).getReg())
1474            break; // Done with this instruction.
1475
1476          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1477                                      Processed))
1478            break; // The tied operands have been eliminated.
1479        }
1480
1481        bool IsEarlyClobber = false;
1482        bool RemovedKillFlag = false;
1483        bool AllUsesCopied = true;
1484        unsigned LastCopiedReg = 0;
1485        unsigned regB = OI->first;
1486        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1487          unsigned SrcIdx = TiedPairs[tpi].first;
1488          unsigned DstIdx = TiedPairs[tpi].second;
1489
1490          const MachineOperand &DstMO = mi->getOperand(DstIdx);
1491          unsigned regA = DstMO.getReg();
1492          IsEarlyClobber |= DstMO.isEarlyClobber();
1493
1494          // Grab regB from the instruction because it may have changed if the
1495          // instruction was commuted.
1496          regB = mi->getOperand(SrcIdx).getReg();
1497
1498          if (regA == regB) {
1499            // The register is tied to multiple destinations (or else we would
1500            // not have continued this far), but this use of the register
1501            // already matches the tied destination.  Leave it.
1502            AllUsesCopied = false;
1503            continue;
1504          }
1505          LastCopiedReg = regA;
1506
1507          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1508                 "cannot make instruction into two-address form");
1509
1510#ifndef NDEBUG
1511          // First, verify that we don't have a use of "a" in the instruction
1512          // (a = b + a for example) because our transformation will not
1513          // work. This should never occur because we are in SSA form.
1514          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1515            assert(i == DstIdx ||
1516                   !mi->getOperand(i).isReg() ||
1517                   mi->getOperand(i).getReg() != regA);
1518#endif
1519
1520          // Emit a copy or rematerialize the definition.
1521          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1522          MachineInstr *DefMI = MRI->getVRegDef(regB);
1523          // If it's safe and profitable, remat the definition instead of
1524          // copying it.
1525          if (DefMI &&
1526              DefMI->getDesc().isAsCheapAsAMove() &&
1527              DefMI->isSafeToReMat(TII, AA, regB) &&
1528              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1529            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1530            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1531            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1532            ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1533            ++NumReMats;
1534          } else {
1535            BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1536                    regA).addReg(regB);
1537          }
1538
1539          MachineBasicBlock::iterator prevMI = prior(mi);
1540          // Update DistanceMap.
1541          DistanceMap.insert(std::make_pair(prevMI, Dist));
1542          DistanceMap[mi] = ++Dist;
1543
1544          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1545
1546          MachineOperand &MO = mi->getOperand(SrcIdx);
1547          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1548                 "inconsistent operand info for 2-reg pass");
1549          if (MO.isKill()) {
1550            MO.setIsKill(false);
1551            RemovedKillFlag = true;
1552          }
1553          MO.setReg(regA);
1554        }
1555
1556        if (AllUsesCopied) {
1557          if (!IsEarlyClobber) {
1558            // Replace other (un-tied) uses of regB with LastCopiedReg.
1559            for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1560              MachineOperand &MO = mi->getOperand(i);
1561              if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1562                if (MO.isKill()) {
1563                  MO.setIsKill(false);
1564                  RemovedKillFlag = true;
1565                }
1566                MO.setReg(LastCopiedReg);
1567              }
1568            }
1569          }
1570
1571          // Update live variables for regB.
1572          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1573            LV->addVirtualRegisterKilled(regB, prior(mi));
1574
1575        } else if (RemovedKillFlag) {
1576          // Some tied uses of regB matched their destination registers, so
1577          // regB is still used in this instruction, but a kill flag was
1578          // removed from a different tied use of regB, so now we need to add
1579          // a kill flag to one of the remaining uses of regB.
1580          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1581            MachineOperand &MO = mi->getOperand(i);
1582            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1583              MO.setIsKill(true);
1584              break;
1585            }
1586          }
1587        }
1588
1589        // Schedule the source copy / remat inserted to form two-address
1590        // instruction. FIXME: Does it matter the distance map may not be
1591        // accurate after it's scheduled?
1592        TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1593
1594        MadeChange = true;
1595
1596        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1597      }
1598
1599      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1600      if (mi->isInsertSubreg()) {
1601        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1602        // To   %reg:subidx = COPY %subreg
1603        unsigned SubIdx = mi->getOperand(3).getImm();
1604        mi->RemoveOperand(3);
1605        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1606        mi->getOperand(0).setSubReg(SubIdx);
1607        mi->RemoveOperand(1);
1608        mi->setDesc(TII->get(TargetOpcode::COPY));
1609        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1610      }
1611
1612      // Clear TiedOperands here instead of at the top of the loop
1613      // since most instructions do not have tied operands.
1614      TiedOperands.clear();
1615      mi = nmi;
1616    }
1617  }
1618
1619  // Some remat'ed instructions are dead.
1620  for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1621    unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1622    if (MRI->use_nodbg_empty(VReg)) {
1623      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1624      DefMI->eraseFromParent();
1625    }
1626  }
1627
1628  // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1629  // SSA form. It's now safe to de-SSA.
1630  MadeChange |= EliminateRegSequences();
1631
1632  return MadeChange;
1633}
1634
1635static void UpdateRegSequenceSrcs(unsigned SrcReg,
1636                                  unsigned DstReg, unsigned SubIdx,
1637                                  MachineRegisterInfo *MRI,
1638                                  const TargetRegisterInfo &TRI) {
1639  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1640         RE = MRI->reg_end(); RI != RE; ) {
1641    MachineOperand &MO = RI.getOperand();
1642    ++RI;
1643    MO.substVirtReg(DstReg, SubIdx, TRI);
1644  }
1645}
1646
1647/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1648/// EXTRACT_SUBREG from the same register and to the same virtual register
1649/// with different sub-register indices, attempt to combine the
1650/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1651/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1652/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1653/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1654/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1655/// reg1026 to reg1029.
1656void
1657TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1658                                              unsigned DstReg) {
1659  SmallSet<unsigned, 4> Seen;
1660  for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1661    unsigned SrcReg = Srcs[i];
1662    if (!Seen.insert(SrcReg))
1663      continue;
1664
1665    // Check that the instructions are all in the same basic block.
1666    MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1667    MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1668    if (SrcDefMI->getParent() != DstDefMI->getParent())
1669      continue;
1670
1671    // If there are no other uses than copies which feed into
1672    // the reg_sequence, then we might be able to coalesce them.
1673    bool CanCoalesce = true;
1674    SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1675    for (MachineRegisterInfo::use_nodbg_iterator
1676           UI = MRI->use_nodbg_begin(SrcReg),
1677           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1678      MachineInstr *UseMI = &*UI;
1679      if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1680        CanCoalesce = false;
1681        break;
1682      }
1683      SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1684      DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1685    }
1686
1687    if (!CanCoalesce || SrcSubIndices.size() < 2)
1688      continue;
1689
1690    // Check that the source subregisters can be combined.
1691    std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1692    unsigned NewSrcSubIdx = 0;
1693    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1694                                      NewSrcSubIdx))
1695      continue;
1696
1697    // Check that the destination subregisters can also be combined.
1698    std::sort(DstSubIndices.begin(), DstSubIndices.end());
1699    unsigned NewDstSubIdx = 0;
1700    if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1701                                      NewDstSubIdx))
1702      continue;
1703
1704    // If neither source nor destination can be combined to the full register,
1705    // just give up.  This could be improved if it ever matters.
1706    if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1707      continue;
1708
1709    // Now that we know that all the uses are extract_subregs and that those
1710    // subregs can somehow be combined, scan all the extract_subregs again to
1711    // make sure the subregs are in the right order and can be composed.
1712    MachineInstr *SomeMI = 0;
1713    CanCoalesce = true;
1714    for (MachineRegisterInfo::use_nodbg_iterator
1715           UI = MRI->use_nodbg_begin(SrcReg),
1716           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1717      MachineInstr *UseMI = &*UI;
1718      assert(UseMI->isCopy());
1719      unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1720      unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1721      assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1722      if ((NewDstSubIdx == 0 &&
1723           TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1724          (NewSrcSubIdx == 0 &&
1725           TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1726        CanCoalesce = false;
1727        break;
1728      }
1729      // Keep track of one of the uses.
1730      SomeMI = UseMI;
1731    }
1732    if (!CanCoalesce)
1733      continue;
1734
1735    // Insert a copy to replace the original.
1736    MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1737                                   SomeMI->getDebugLoc(),
1738                                   TII->get(TargetOpcode::COPY))
1739      .addReg(DstReg, RegState::Define, NewDstSubIdx)
1740      .addReg(SrcReg, 0, NewSrcSubIdx);
1741
1742    // Remove all the old extract instructions.
1743    for (MachineRegisterInfo::use_nodbg_iterator
1744           UI = MRI->use_nodbg_begin(SrcReg),
1745           UE = MRI->use_nodbg_end(); UI != UE; ) {
1746      MachineInstr *UseMI = &*UI;
1747      ++UI;
1748      if (UseMI == CopyMI)
1749        continue;
1750      assert(UseMI->isCopy());
1751      // Move any kills to the new copy or extract instruction.
1752      if (UseMI->getOperand(1).isKill()) {
1753        CopyMI->getOperand(1).setIsKill();
1754        if (LV)
1755          // Update live variables
1756          LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1757      }
1758      UseMI->eraseFromParent();
1759    }
1760  }
1761}
1762
1763static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1764                                    MachineRegisterInfo *MRI) {
1765  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1766         UE = MRI->use_end(); UI != UE; ++UI) {
1767    MachineInstr *UseMI = &*UI;
1768    if (UseMI != RegSeq && UseMI->isRegSequence())
1769      return true;
1770  }
1771  return false;
1772}
1773
1774/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1775/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1776/// sub-register references of the register defined by REG_SEQUENCE. e.g.
1777///
1778/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1779/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1780/// =>
1781/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1782bool TwoAddressInstructionPass::EliminateRegSequences() {
1783  if (RegSequences.empty())
1784    return false;
1785
1786  for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1787    MachineInstr *MI = RegSequences[i];
1788    unsigned DstReg = MI->getOperand(0).getReg();
1789    if (MI->getOperand(0).getSubReg() ||
1790        TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1791        !(MI->getNumOperands() & 1)) {
1792      DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1793      llvm_unreachable(0);
1794    }
1795
1796    bool IsImpDef = true;
1797    SmallVector<unsigned, 4> RealSrcs;
1798    SmallSet<unsigned, 4> Seen;
1799    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1800      unsigned SrcReg = MI->getOperand(i).getReg();
1801      unsigned SubIdx = MI->getOperand(i+1).getImm();
1802      if (MI->getOperand(i).getSubReg() ||
1803          TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1804        DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1805        llvm_unreachable(0);
1806      }
1807
1808      MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1809      if (DefMI->isImplicitDef()) {
1810        DefMI->eraseFromParent();
1811        continue;
1812      }
1813      IsImpDef = false;
1814
1815      // Remember COPY sources. These might be candidate for coalescing.
1816      if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1817        RealSrcs.push_back(DefMI->getOperand(1).getReg());
1818
1819      bool isKill = MI->getOperand(i).isKill();
1820      if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1821          !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1822          !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1823                                         MRI->getRegClass(SrcReg), SubIdx)) {
1824        // REG_SEQUENCE cannot have duplicated operands, add a copy.
1825        // Also add an copy if the source is live-in the block. We don't want
1826        // to end up with a partial-redef of a livein, e.g.
1827        // BB0:
1828        // reg1051:10<def> =
1829        // ...
1830        // BB1:
1831        // ... = reg1051:10
1832        // BB2:
1833        // reg1051:9<def> =
1834        // LiveIntervalAnalysis won't like it.
1835        //
1836        // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1837        // correctly up to date becomes very difficult. Insert a copy.
1838
1839        // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1840        // might insert a COPY that uses SrcReg after is was killed.
1841        if (isKill)
1842          for (unsigned j = i + 2; j < e; j += 2)
1843            if (MI->getOperand(j).getReg() == SrcReg) {
1844              MI->getOperand(j).setIsKill();
1845              isKill = false;
1846              break;
1847            }
1848
1849        MachineBasicBlock::iterator InsertLoc = MI;
1850        MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1851                                MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1852            .addReg(DstReg, RegState::Define, SubIdx)
1853            .addReg(SrcReg, getKillRegState(isKill));
1854        MI->getOperand(i).setReg(0);
1855        if (LV && isKill)
1856          LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1857        DEBUG(dbgs() << "Inserted: " << *CopyMI);
1858      }
1859    }
1860
1861    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1862      unsigned SrcReg = MI->getOperand(i).getReg();
1863      if (!SrcReg) continue;
1864      unsigned SubIdx = MI->getOperand(i+1).getImm();
1865      UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1866    }
1867
1868    if (IsImpDef) {
1869      DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1870      MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1871      for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1872        MI->RemoveOperand(j);
1873    } else {
1874      DEBUG(dbgs() << "Eliminated: " << *MI);
1875      MI->eraseFromParent();
1876    }
1877
1878    // Try coalescing some EXTRACT_SUBREG instructions. This can create
1879    // INSERT_SUBREG instructions that must have <undef> flags added by
1880    // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1881    if (LV)
1882      CoalesceExtSubRegs(RealSrcs, DstReg);
1883  }
1884
1885  RegSequences.clear();
1886  return true;
1887}
1888