TwoAddressInstructionPass.cpp revision ac1abde05b7e6956c01deb6557539bee8fea30f4
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/Analysis/AliasAnalysis.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/DenseMap.h"
45#include "llvm/ADT/SmallSet.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/STLExtras.h"
48using namespace llvm;
49
50STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
51STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
52STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
53STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
54STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
55STATISTIC(NumReMats,           "Number of instructions re-materialized");
56STATISTIC(NumDeletes,          "Number of dead instructions deleted");
57
58namespace {
59  class TwoAddressInstructionPass : public MachineFunctionPass {
60    const TargetInstrInfo *TII;
61    const TargetRegisterInfo *TRI;
62    MachineRegisterInfo *MRI;
63    LiveVariables *LV;
64    AliasAnalysis *AA;
65
66    // DistanceMap - Keep track the distance of a MI from the start of the
67    // current basic block.
68    DenseMap<MachineInstr*, unsigned> DistanceMap;
69
70    // SrcRegMap - A map from virtual registers to physical registers which
71    // are likely targets to be coalesced to due to copies from physical
72    // registers to virtual registers. e.g. v1024 = move r0.
73    DenseMap<unsigned, unsigned> SrcRegMap;
74
75    // DstRegMap - A map from virtual registers to physical registers which
76    // are likely targets to be coalesced to due to copies to physical
77    // registers from virtual registers. e.g. r1 = move v1024.
78    DenseMap<unsigned, unsigned> DstRegMap;
79
80    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
81                              unsigned Reg,
82                              MachineBasicBlock::iterator OldPos);
83
84    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
85                             MachineInstr *MI, MachineInstr *DefMI,
86                             MachineBasicBlock *MBB, unsigned Loc);
87
88    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
89                           unsigned &LastDef);
90
91    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
92                                   unsigned Dist);
93
94    bool isProfitableToCommute(unsigned regB, unsigned regC,
95                               MachineInstr *MI, MachineBasicBlock *MBB,
96                               unsigned Dist);
97
98    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
99                            MachineFunction::iterator &mbbi,
100                            unsigned RegB, unsigned RegC, unsigned Dist);
101
102    bool isProfitableToConv3Addr(unsigned RegA);
103
104    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
105                            MachineBasicBlock::iterator &nmi,
106                            MachineFunction::iterator &mbbi,
107                            unsigned RegB, unsigned Dist);
108
109    typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
110    bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
111                               SmallVector<NewKill, 4> &NewKills,
112                               MachineBasicBlock *MBB, unsigned Dist);
113    bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
114                           MachineBasicBlock::iterator &nmi,
115                           MachineFunction::iterator &mbbi, unsigned Dist);
116
117    bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
118                                 MachineBasicBlock::iterator &nmi,
119                                 MachineFunction::iterator &mbbi,
120                                 unsigned SrcIdx, unsigned DstIdx,
121                                 unsigned Dist);
122
123    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
124                     SmallPtrSet<MachineInstr*, 8> &Processed);
125
126  public:
127    static char ID; // Pass identification, replacement for typeid
128    TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
129
130    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
131      AU.setPreservesCFG();
132      AU.addRequired<AliasAnalysis>();
133      AU.addPreserved<LiveVariables>();
134      AU.addPreservedID(MachineLoopInfoID);
135      AU.addPreservedID(MachineDominatorsID);
136      if (StrongPHIElim)
137        AU.addPreservedID(StrongPHIEliminationID);
138      else
139        AU.addPreservedID(PHIEliminationID);
140      MachineFunctionPass::getAnalysisUsage(AU);
141    }
142
143    /// runOnMachineFunction - Pass entry point.
144    bool runOnMachineFunction(MachineFunction&);
145  };
146}
147
148char TwoAddressInstructionPass::ID = 0;
149static RegisterPass<TwoAddressInstructionPass>
150X("twoaddressinstruction", "Two-Address instruction pass");
151
152const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
153
154/// Sink3AddrInstruction - A two-address instruction has been converted to a
155/// three-address instruction to avoid clobbering a register. Try to sink it
156/// past the instruction that would kill the above mentioned register to reduce
157/// register pressure.
158bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
159                                           MachineInstr *MI, unsigned SavedReg,
160                                           MachineBasicBlock::iterator OldPos) {
161  // Check if it's safe to move this instruction.
162  bool SeenStore = true; // Be conservative.
163  if (!MI->isSafeToMove(TII, AA, SeenStore))
164    return false;
165
166  unsigned DefReg = 0;
167  SmallSet<unsigned, 4> UseRegs;
168
169  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
170    const MachineOperand &MO = MI->getOperand(i);
171    if (!MO.isReg())
172      continue;
173    unsigned MOReg = MO.getReg();
174    if (!MOReg)
175      continue;
176    if (MO.isUse() && MOReg != SavedReg)
177      UseRegs.insert(MO.getReg());
178    if (!MO.isDef())
179      continue;
180    if (MO.isImplicit())
181      // Don't try to move it if it implicitly defines a register.
182      return false;
183    if (DefReg)
184      // For now, don't move any instructions that define multiple registers.
185      return false;
186    DefReg = MO.getReg();
187  }
188
189  // Find the instruction that kills SavedReg.
190  MachineInstr *KillMI = NULL;
191  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
192         UE = MRI->use_end(); UI != UE; ++UI) {
193    MachineOperand &UseMO = UI.getOperand();
194    if (!UseMO.isKill())
195      continue;
196    KillMI = UseMO.getParent();
197    break;
198  }
199
200  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
201    return false;
202
203  // If any of the definitions are used by another instruction between the
204  // position and the kill use, then it's not safe to sink it.
205  //
206  // FIXME: This can be sped up if there is an easy way to query whether an
207  // instruction is before or after another instruction. Then we can use
208  // MachineRegisterInfo def / use instead.
209  MachineOperand *KillMO = NULL;
210  MachineBasicBlock::iterator KillPos = KillMI;
211  ++KillPos;
212
213  unsigned NumVisited = 0;
214  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
215    MachineInstr *OtherMI = I;
216    // DBG_VALUE cannot be counted against the limit.
217    if (OtherMI->isDebugValue())
218      continue;
219    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
220      return false;
221    ++NumVisited;
222    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
223      MachineOperand &MO = OtherMI->getOperand(i);
224      if (!MO.isReg())
225        continue;
226      unsigned MOReg = MO.getReg();
227      if (!MOReg)
228        continue;
229      if (DefReg == MOReg)
230        return false;
231
232      if (MO.isKill()) {
233        if (OtherMI == KillMI && MOReg == SavedReg)
234          // Save the operand that kills the register. We want to unset the kill
235          // marker if we can sink MI past it.
236          KillMO = &MO;
237        else if (UseRegs.count(MOReg))
238          // One of the uses is killed before the destination.
239          return false;
240      }
241    }
242  }
243
244  // Update kill and LV information.
245  KillMO->setIsKill(false);
246  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
247  KillMO->setIsKill(true);
248
249  if (LV)
250    LV->replaceKillInstruction(SavedReg, KillMI, MI);
251
252  // Move instruction to its destination.
253  MBB->remove(MI);
254  MBB->insert(KillPos, MI);
255
256  ++Num3AddrSunk;
257  return true;
258}
259
260/// isTwoAddrUse - Return true if the specified MI is using the specified
261/// register as a two-address operand.
262static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
263  const TargetInstrDesc &TID = UseMI->getDesc();
264  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
265    MachineOperand &MO = UseMI->getOperand(i);
266    if (MO.isReg() && MO.getReg() == Reg &&
267        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
268      // Earlier use is a two-address one.
269      return true;
270  }
271  return false;
272}
273
274/// isProfitableToReMat - Return true if the heuristics determines it is likely
275/// to be profitable to re-materialize the definition of Reg rather than copy
276/// the register.
277bool
278TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
279                                         const TargetRegisterClass *RC,
280                                         MachineInstr *MI, MachineInstr *DefMI,
281                                         MachineBasicBlock *MBB, unsigned Loc) {
282  bool OtherUse = false;
283  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
284         UE = MRI->use_end(); UI != UE; ++UI) {
285    MachineOperand &UseMO = UI.getOperand();
286    MachineInstr *UseMI = UseMO.getParent();
287    MachineBasicBlock *UseMBB = UseMI->getParent();
288    if (UseMBB == MBB) {
289      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
290      if (DI != DistanceMap.end() && DI->second == Loc)
291        continue;  // Current use.
292      OtherUse = true;
293      // There is at least one other use in the MBB that will clobber the
294      // register.
295      if (isTwoAddrUse(UseMI, Reg))
296        return true;
297    }
298  }
299
300  // If other uses in MBB are not two-address uses, then don't remat.
301  if (OtherUse)
302    return false;
303
304  // No other uses in the same block, remat if it's defined in the same
305  // block so it does not unnecessarily extend the live range.
306  return MBB == DefMI->getParent();
307}
308
309/// NoUseAfterLastDef - Return true if there are no intervening uses between the
310/// last instruction in the MBB that defines the specified register and the
311/// two-address instruction which is being processed. It also returns the last
312/// def location by reference
313bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
314                                           MachineBasicBlock *MBB, unsigned Dist,
315                                           unsigned &LastDef) {
316  LastDef = 0;
317  unsigned LastUse = Dist;
318  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
319         E = MRI->reg_end(); I != E; ++I) {
320    MachineOperand &MO = I.getOperand();
321    MachineInstr *MI = MO.getParent();
322    if (MI->getParent() != MBB || MI->isDebugValue())
323      continue;
324    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
325    if (DI == DistanceMap.end())
326      continue;
327    if (MO.isUse() && DI->second < LastUse)
328      LastUse = DI->second;
329    if (MO.isDef() && DI->second > LastDef)
330      LastDef = DI->second;
331  }
332
333  return !(LastUse > LastDef && LastUse < Dist);
334}
335
336MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
337                                                         MachineBasicBlock *MBB,
338                                                         unsigned Dist) {
339  unsigned LastUseDist = 0;
340  MachineInstr *LastUse = 0;
341  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
342         E = MRI->reg_end(); I != E; ++I) {
343    MachineOperand &MO = I.getOperand();
344    MachineInstr *MI = MO.getParent();
345    if (MI->getParent() != MBB || MI->isDebugValue())
346      continue;
347    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
348    if (DI == DistanceMap.end())
349      continue;
350    if (DI->second >= Dist)
351      continue;
352
353    if (MO.isUse() && DI->second > LastUseDist) {
354      LastUse = DI->first;
355      LastUseDist = DI->second;
356    }
357  }
358  return LastUse;
359}
360
361/// isCopyToReg - Return true if the specified MI is a copy instruction or
362/// a extract_subreg instruction. It also returns the source and destination
363/// registers and whether they are physical registers by reference.
364static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
365                        unsigned &SrcReg, unsigned &DstReg,
366                        bool &IsSrcPhys, bool &IsDstPhys) {
367  SrcReg = 0;
368  DstReg = 0;
369  unsigned SrcSubIdx, DstSubIdx;
370  if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
371    if (MI.isExtractSubreg()) {
372      DstReg = MI.getOperand(0).getReg();
373      SrcReg = MI.getOperand(1).getReg();
374    } else if (MI.isInsertSubreg()) {
375      DstReg = MI.getOperand(0).getReg();
376      SrcReg = MI.getOperand(2).getReg();
377    } else if (MI.isSubregToReg()) {
378      DstReg = MI.getOperand(0).getReg();
379      SrcReg = MI.getOperand(2).getReg();
380    }
381  }
382
383  if (DstReg) {
384    IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
385    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
386    return true;
387  }
388  return false;
389}
390
391/// isKilled - Test if the given register value, which is used by the given
392/// instruction, is killed by the given instruction. This looks through
393/// coalescable copies to see if the original value is potentially not killed.
394///
395/// For example, in this code:
396///
397///   %reg1034 = copy %reg1024
398///   %reg1035 = copy %reg1025<kill>
399///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
400///
401/// %reg1034 is not considered to be killed, since it is copied from a
402/// register which is not killed. Treating it as not killed lets the
403/// normal heuristics commute the (two-address) add, which lets
404/// coalescing eliminate the extra copy.
405///
406static bool isKilled(MachineInstr &MI, unsigned Reg,
407                     const MachineRegisterInfo *MRI,
408                     const TargetInstrInfo *TII) {
409  MachineInstr *DefMI = &MI;
410  for (;;) {
411    if (!DefMI->killsRegister(Reg))
412      return false;
413    if (TargetRegisterInfo::isPhysicalRegister(Reg))
414      return true;
415    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
416    // If there are multiple defs, we can't do a simple analysis, so just
417    // go with what the kill flag says.
418    if (llvm::next(Begin) != MRI->def_end())
419      return true;
420    DefMI = &*Begin;
421    bool IsSrcPhys, IsDstPhys;
422    unsigned SrcReg,  DstReg;
423    // If the def is something other than a copy, then it isn't going to
424    // be coalesced, so follow the kill flag.
425    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
426      return true;
427    Reg = SrcReg;
428  }
429}
430
431/// isTwoAddrUse - Return true if the specified MI uses the specified register
432/// as a two-address use. If so, return the destination register by reference.
433static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
434  const TargetInstrDesc &TID = MI.getDesc();
435  unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
436  for (unsigned i = 0; i != NumOps; ++i) {
437    const MachineOperand &MO = MI.getOperand(i);
438    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
439      continue;
440    unsigned ti;
441    if (MI.isRegTiedToDefOperand(i, &ti)) {
442      DstReg = MI.getOperand(ti).getReg();
443      return true;
444    }
445  }
446  return false;
447}
448
449/// findOnlyInterestingUse - Given a register, if has a single in-basic block
450/// use, return the use instruction if it's a copy or a two-address use.
451static
452MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
453                                     MachineRegisterInfo *MRI,
454                                     const TargetInstrInfo *TII,
455                                     bool &IsCopy,
456                                     unsigned &DstReg, bool &IsDstPhys) {
457  MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg);
458  if (UI == MRI->use_nodbg_end())
459    return 0;
460  MachineInstr &UseMI = *UI;
461  if (++UI != MRI->use_nodbg_end())
462    // More than one use.
463    return 0;
464  if (UseMI.getParent() != MBB)
465    return 0;
466  unsigned SrcReg;
467  bool IsSrcPhys;
468  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
469    IsCopy = true;
470    return &UseMI;
471  }
472  IsDstPhys = false;
473  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
474    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
475    return &UseMI;
476  }
477  return 0;
478}
479
480/// getMappedReg - Return the physical register the specified virtual register
481/// might be mapped to.
482static unsigned
483getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
484  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
485    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
486    if (SI == RegMap.end())
487      return 0;
488    Reg = SI->second;
489  }
490  if (TargetRegisterInfo::isPhysicalRegister(Reg))
491    return Reg;
492  return 0;
493}
494
495/// regsAreCompatible - Return true if the two registers are equal or aliased.
496///
497static bool
498regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
499  if (RegA == RegB)
500    return true;
501  if (!RegA || !RegB)
502    return false;
503  return TRI->regsOverlap(RegA, RegB);
504}
505
506
507/// isProfitableToReMat - Return true if it's potentially profitable to commute
508/// the two-address instruction that's being processed.
509bool
510TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
511                                       MachineInstr *MI, MachineBasicBlock *MBB,
512                                       unsigned Dist) {
513  // Determine if it's profitable to commute this two address instruction. In
514  // general, we want no uses between this instruction and the definition of
515  // the two-address register.
516  // e.g.
517  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
518  // %reg1029<def> = MOV8rr %reg1028
519  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
520  // insert => %reg1030<def> = MOV8rr %reg1028
521  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
522  // In this case, it might not be possible to coalesce the second MOV8rr
523  // instruction if the first one is coalesced. So it would be profitable to
524  // commute it:
525  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
526  // %reg1029<def> = MOV8rr %reg1028
527  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
528  // insert => %reg1030<def> = MOV8rr %reg1029
529  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
530
531  if (!MI->killsRegister(regC))
532    return false;
533
534  // Ok, we have something like:
535  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
536  // let's see if it's worth commuting it.
537
538  // Look for situations like this:
539  // %reg1024<def> = MOV r1
540  // %reg1025<def> = MOV r0
541  // %reg1026<def> = ADD %reg1024, %reg1025
542  // r0            = MOV %reg1026
543  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
544  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
545  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
546  unsigned ToRegB = getMappedReg(regB, DstRegMap);
547  unsigned ToRegC = getMappedReg(regC, DstRegMap);
548  if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
549      (regsAreCompatible(FromRegB, ToRegC, TRI) ||
550       regsAreCompatible(FromRegC, ToRegB, TRI)))
551    return true;
552
553  // If there is a use of regC between its last def (could be livein) and this
554  // instruction, then bail.
555  unsigned LastDefC = 0;
556  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
557    return false;
558
559  // If there is a use of regB between its last def (could be livein) and this
560  // instruction, then go ahead and make this transformation.
561  unsigned LastDefB = 0;
562  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
563    return true;
564
565  // Since there are no intervening uses for both registers, then commute
566  // if the def of regC is closer. Its live interval is shorter.
567  return LastDefB && LastDefC && LastDefC > LastDefB;
568}
569
570/// CommuteInstruction - Commute a two-address instruction and update the basic
571/// block, distance map, and live variables if needed. Return true if it is
572/// successful.
573bool
574TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
575                               MachineFunction::iterator &mbbi,
576                               unsigned RegB, unsigned RegC, unsigned Dist) {
577  MachineInstr *MI = mi;
578  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
579  MachineInstr *NewMI = TII->commuteInstruction(MI);
580
581  if (NewMI == 0) {
582    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
583    return false;
584  }
585
586  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
587  // If the instruction changed to commute it, update livevar.
588  if (NewMI != MI) {
589    if (LV)
590      // Update live variables
591      LV->replaceKillInstruction(RegC, MI, NewMI);
592
593    mbbi->insert(mi, NewMI);           // Insert the new inst
594    mbbi->erase(mi);                   // Nuke the old inst.
595    mi = NewMI;
596    DistanceMap.insert(std::make_pair(NewMI, Dist));
597  }
598
599  // Update source register map.
600  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
601  if (FromRegC) {
602    unsigned RegA = MI->getOperand(0).getReg();
603    SrcRegMap[RegA] = FromRegC;
604  }
605
606  return true;
607}
608
609/// isProfitableToConv3Addr - Return true if it is profitable to convert the
610/// given 2-address instruction to a 3-address one.
611bool
612TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
613  // Look for situations like this:
614  // %reg1024<def> = MOV r1
615  // %reg1025<def> = MOV r0
616  // %reg1026<def> = ADD %reg1024, %reg1025
617  // r2            = MOV %reg1026
618  // Turn ADD into a 3-address instruction to avoid a copy.
619  unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
620  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
621  return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
622}
623
624/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
625/// three address one. Return true if this transformation was successful.
626bool
627TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
628                                              MachineBasicBlock::iterator &nmi,
629                                              MachineFunction::iterator &mbbi,
630                                              unsigned RegB, unsigned Dist) {
631  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
632  if (NewMI) {
633    DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
634    DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
635    bool Sunk = false;
636
637    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
638      // FIXME: Temporary workaround. If the new instruction doesn't
639      // uses RegB, convertToThreeAddress must have created more
640      // then one instruction.
641      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
642
643    mbbi->erase(mi); // Nuke the old inst.
644
645    if (!Sunk) {
646      DistanceMap.insert(std::make_pair(NewMI, Dist));
647      mi = NewMI;
648      nmi = llvm::next(mi);
649    }
650    return true;
651  }
652
653  return false;
654}
655
656/// ProcessCopy - If the specified instruction is not yet processed, process it
657/// if it's a copy. For a copy instruction, we find the physical registers the
658/// source and destination registers might be mapped to. These are kept in
659/// point-to maps used to determine future optimizations. e.g.
660/// v1024 = mov r0
661/// v1025 = mov r1
662/// v1026 = add v1024, v1025
663/// r1    = mov r1026
664/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
665/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
666/// potentially joined with r1 on the output side. It's worthwhile to commute
667/// 'add' to eliminate a copy.
668void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
669                                     MachineBasicBlock *MBB,
670                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
671  if (Processed.count(MI))
672    return;
673
674  bool IsSrcPhys, IsDstPhys;
675  unsigned SrcReg, DstReg;
676  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
677    return;
678
679  if (IsDstPhys && !IsSrcPhys)
680    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
681  else if (!IsDstPhys && IsSrcPhys) {
682    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
683    if (!isNew)
684      assert(SrcRegMap[DstReg] == SrcReg &&
685             "Can't map to two src physical registers!");
686
687    SmallVector<unsigned, 4> VirtRegPairs;
688    bool IsCopy = false;
689    unsigned NewReg = 0;
690    while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
691                                                   IsCopy, NewReg, IsDstPhys)) {
692      if (IsCopy) {
693        if (!Processed.insert(UseMI))
694          break;
695      }
696
697      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
698      if (DI != DistanceMap.end())
699        // Earlier in the same MBB.Reached via a back edge.
700        break;
701
702      if (IsDstPhys) {
703        VirtRegPairs.push_back(NewReg);
704        break;
705      }
706      bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
707      if (!isNew)
708        assert(SrcRegMap[NewReg] == DstReg &&
709               "Can't map to two src physical registers!");
710      VirtRegPairs.push_back(NewReg);
711      DstReg = NewReg;
712    }
713
714    if (!VirtRegPairs.empty()) {
715      unsigned ToReg = VirtRegPairs.back();
716      VirtRegPairs.pop_back();
717      while (!VirtRegPairs.empty()) {
718        unsigned FromReg = VirtRegPairs.back();
719        VirtRegPairs.pop_back();
720        bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
721        if (!isNew)
722          assert(DstRegMap[FromReg] == ToReg &&
723                 "Can't map to two dst physical registers!");
724        ToReg = FromReg;
725      }
726    }
727  }
728
729  Processed.insert(MI);
730}
731
732/// isSafeToDelete - If the specified instruction does not produce any side
733/// effects and all of its defs are dead, then it's safe to delete.
734static bool isSafeToDelete(MachineInstr *MI,
735                           const TargetInstrInfo *TII,
736                           SmallVector<unsigned, 4> &Kills) {
737  const TargetInstrDesc &TID = MI->getDesc();
738  if (TID.mayStore() || TID.isCall())
739    return false;
740  if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
741    return false;
742
743  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
744    MachineOperand &MO = MI->getOperand(i);
745    if (!MO.isReg())
746      continue;
747    if (MO.isDef() && !MO.isDead())
748      return false;
749    if (MO.isUse() && MO.isKill())
750      Kills.push_back(MO.getReg());
751  }
752  return true;
753}
754
755/// canUpdateDeletedKills - Check if all the registers listed in Kills are
756/// killed by instructions in MBB preceding the current instruction at
757/// position Dist.  If so, return true and record information about the
758/// preceding kills in NewKills.
759bool TwoAddressInstructionPass::
760canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
761                      SmallVector<NewKill, 4> &NewKills,
762                      MachineBasicBlock *MBB, unsigned Dist) {
763  while (!Kills.empty()) {
764    unsigned Kill = Kills.back();
765    Kills.pop_back();
766    if (TargetRegisterInfo::isPhysicalRegister(Kill))
767      return false;
768
769    MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
770    if (!LastKill)
771      return false;
772
773    bool isModRef = LastKill->modifiesRegister(Kill);
774    NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
775                                      LastKill));
776  }
777  return true;
778}
779
780/// DeleteUnusedInstr - If an instruction with a tied register operand can
781/// be safely deleted, just delete it.
782bool
783TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
784                                             MachineBasicBlock::iterator &nmi,
785                                             MachineFunction::iterator &mbbi,
786                                             unsigned Dist) {
787  // Check if the instruction has no side effects and if all its defs are dead.
788  SmallVector<unsigned, 4> Kills;
789  if (!isSafeToDelete(mi, TII, Kills))
790    return false;
791
792  // If this instruction kills some virtual registers, we need to
793  // update the kill information. If it's not possible to do so,
794  // then bail out.
795  SmallVector<NewKill, 4> NewKills;
796  if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
797    return false;
798
799  if (LV) {
800    while (!NewKills.empty()) {
801      MachineInstr *NewKill = NewKills.back().second;
802      unsigned Kill = NewKills.back().first.first;
803      bool isDead = NewKills.back().first.second;
804      NewKills.pop_back();
805      if (LV->removeVirtualRegisterKilled(Kill, mi)) {
806        if (isDead)
807          LV->addVirtualRegisterDead(Kill, NewKill);
808        else
809          LV->addVirtualRegisterKilled(Kill, NewKill);
810      }
811    }
812  }
813
814  mbbi->erase(mi); // Nuke the old inst.
815  mi = nmi;
816  return true;
817}
818
819/// TryInstructionTransform - For the case where an instruction has a single
820/// pair of tied register operands, attempt some transformations that may
821/// either eliminate the tied operands or improve the opportunities for
822/// coalescing away the register copy.  Returns true if the tied operands
823/// are eliminated altogether.
824bool TwoAddressInstructionPass::
825TryInstructionTransform(MachineBasicBlock::iterator &mi,
826                        MachineBasicBlock::iterator &nmi,
827                        MachineFunction::iterator &mbbi,
828                        unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
829  const TargetInstrDesc &TID = mi->getDesc();
830  unsigned regA = mi->getOperand(DstIdx).getReg();
831  unsigned regB = mi->getOperand(SrcIdx).getReg();
832
833  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
834         "cannot make instruction into two-address form");
835
836  // If regA is dead and the instruction can be deleted, just delete
837  // it so it doesn't clobber regB.
838  bool regBKilled = isKilled(*mi, regB, MRI, TII);
839  if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
840      DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
841    ++NumDeletes;
842    return true; // Done with this instruction.
843  }
844
845  // Check if it is profitable to commute the operands.
846  unsigned SrcOp1, SrcOp2;
847  unsigned regC = 0;
848  unsigned regCIdx = ~0U;
849  bool TryCommute = false;
850  bool AggressiveCommute = false;
851  if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
852      TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
853    if (SrcIdx == SrcOp1)
854      regCIdx = SrcOp2;
855    else if (SrcIdx == SrcOp2)
856      regCIdx = SrcOp1;
857
858    if (regCIdx != ~0U) {
859      regC = mi->getOperand(regCIdx).getReg();
860      if (!regBKilled && isKilled(*mi, regC, MRI, TII))
861        // If C dies but B does not, swap the B and C operands.
862        // This makes the live ranges of A and C joinable.
863        TryCommute = true;
864      else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
865        TryCommute = true;
866        AggressiveCommute = true;
867      }
868    }
869  }
870
871  // If it's profitable to commute, try to do so.
872  if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
873    ++NumCommuted;
874    if (AggressiveCommute)
875      ++NumAggrCommuted;
876    return false;
877  }
878
879  if (TID.isConvertibleTo3Addr()) {
880    // This instruction is potentially convertible to a true
881    // three-address instruction.  Check if it is profitable.
882    if (!regBKilled || isProfitableToConv3Addr(regA)) {
883      // Try to convert it.
884      if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
885        ++NumConvertedTo3Addr;
886        return true; // Done with this instruction.
887      }
888    }
889  }
890  return false;
891}
892
893/// runOnMachineFunction - Reduce two-address instructions to two operands.
894///
895bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
896  DEBUG(dbgs() << "Machine Function\n");
897  const TargetMachine &TM = MF.getTarget();
898  MRI = &MF.getRegInfo();
899  TII = TM.getInstrInfo();
900  TRI = TM.getRegisterInfo();
901  LV = getAnalysisIfAvailable<LiveVariables>();
902  AA = &getAnalysis<AliasAnalysis>();
903
904  bool MadeChange = false;
905
906  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
907  DEBUG(dbgs() << "********** Function: "
908        << MF.getFunction()->getName() << '\n');
909
910  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
911  BitVector ReMatRegs;
912  ReMatRegs.resize(MRI->getLastVirtReg()+1);
913
914  typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
915    TiedOperandMap;
916  TiedOperandMap TiedOperands(4);
917
918  SmallPtrSet<MachineInstr*, 8> Processed;
919  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
920       mbbi != mbbe; ++mbbi) {
921    unsigned Dist = 0;
922    DistanceMap.clear();
923    SrcRegMap.clear();
924    DstRegMap.clear();
925    Processed.clear();
926    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
927         mi != me; ) {
928      MachineBasicBlock::iterator nmi = llvm::next(mi);
929      if (mi->isDebugValue()) {
930        mi = nmi;
931        continue;
932      }
933      const TargetInstrDesc &TID = mi->getDesc();
934      bool FirstTied = true;
935
936      DistanceMap.insert(std::make_pair(mi, ++Dist));
937
938      ProcessCopy(&*mi, &*mbbi, Processed);
939
940      // First scan through all the tied register uses in this instruction
941      // and record a list of pairs of tied operands for each register.
942      unsigned NumOps = mi->isInlineAsm()
943        ? mi->getNumOperands() : TID.getNumOperands();
944      for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
945        unsigned DstIdx = 0;
946        if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
947          continue;
948
949        if (FirstTied) {
950          FirstTied = false;
951          ++NumTwoAddressInstrs;
952          DEBUG(dbgs() << '\t' << *mi);
953        }
954
955        assert(mi->getOperand(SrcIdx).isReg() &&
956               mi->getOperand(SrcIdx).getReg() &&
957               mi->getOperand(SrcIdx).isUse() &&
958               "two address instruction invalid");
959
960        unsigned regB = mi->getOperand(SrcIdx).getReg();
961        TiedOperandMap::iterator OI = TiedOperands.find(regB);
962        if (OI == TiedOperands.end()) {
963          SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
964          OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
965        }
966        OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
967      }
968
969      // Now iterate over the information collected above.
970      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
971             OE = TiedOperands.end(); OI != OE; ++OI) {
972        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
973
974        // If the instruction has a single pair of tied operands, try some
975        // transformations that may either eliminate the tied operands or
976        // improve the opportunities for coalescing away the register copy.
977        if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
978          unsigned SrcIdx = TiedPairs[0].first;
979          unsigned DstIdx = TiedPairs[0].second;
980
981          // If the registers are already equal, nothing needs to be done.
982          if (mi->getOperand(SrcIdx).getReg() ==
983              mi->getOperand(DstIdx).getReg())
984            break; // Done with this instruction.
985
986          if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
987            break; // The tied operands have been eliminated.
988        }
989
990        bool RemovedKillFlag = false;
991        bool AllUsesCopied = true;
992        unsigned LastCopiedReg = 0;
993        unsigned regB = OI->first;
994        for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
995          unsigned SrcIdx = TiedPairs[tpi].first;
996          unsigned DstIdx = TiedPairs[tpi].second;
997          unsigned regA = mi->getOperand(DstIdx).getReg();
998          // Grab regB from the instruction because it may have changed if the
999          // instruction was commuted.
1000          regB = mi->getOperand(SrcIdx).getReg();
1001
1002          if (regA == regB) {
1003            // The register is tied to multiple destinations (or else we would
1004            // not have continued this far), but this use of the register
1005            // already matches the tied destination.  Leave it.
1006            AllUsesCopied = false;
1007            continue;
1008          }
1009          LastCopiedReg = regA;
1010
1011          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1012                 "cannot make instruction into two-address form");
1013
1014#ifndef NDEBUG
1015          // First, verify that we don't have a use of "a" in the instruction
1016          // (a = b + a for example) because our transformation will not
1017          // work. This should never occur because we are in SSA form.
1018          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1019            assert(i == DstIdx ||
1020                   !mi->getOperand(i).isReg() ||
1021                   mi->getOperand(i).getReg() != regA);
1022#endif
1023
1024          // Emit a copy or rematerialize the definition.
1025          const TargetRegisterClass *rc = MRI->getRegClass(regB);
1026          MachineInstr *DefMI = MRI->getVRegDef(regB);
1027          // If it's safe and profitable, remat the definition instead of
1028          // copying it.
1029          if (DefMI &&
1030              DefMI->getDesc().isAsCheapAsAMove() &&
1031              DefMI->isSafeToReMat(TII, AA, regB) &&
1032              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1033            DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1034            unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1035            TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, TRI);
1036            ReMatRegs.set(regB);
1037            ++NumReMats;
1038          } else {
1039            bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
1040            (void)Emitted;
1041            assert(Emitted && "Unable to issue a copy instruction!\n");
1042          }
1043
1044          MachineBasicBlock::iterator prevMI = prior(mi);
1045          // Update DistanceMap.
1046          DistanceMap.insert(std::make_pair(prevMI, Dist));
1047          DistanceMap[mi] = ++Dist;
1048
1049          DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1050
1051          MachineOperand &MO = mi->getOperand(SrcIdx);
1052          assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1053                 "inconsistent operand info for 2-reg pass");
1054          if (MO.isKill()) {
1055            MO.setIsKill(false);
1056            RemovedKillFlag = true;
1057          }
1058          MO.setReg(regA);
1059        }
1060
1061        if (AllUsesCopied) {
1062          // Replace other (un-tied) uses of regB with LastCopiedReg.
1063          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1064            MachineOperand &MO = mi->getOperand(i);
1065            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1066              if (MO.isKill()) {
1067                MO.setIsKill(false);
1068                RemovedKillFlag = true;
1069              }
1070              MO.setReg(LastCopiedReg);
1071            }
1072          }
1073
1074          // Update live variables for regB.
1075          if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1076            LV->addVirtualRegisterKilled(regB, prior(mi));
1077
1078        } else if (RemovedKillFlag) {
1079          // Some tied uses of regB matched their destination registers, so
1080          // regB is still used in this instruction, but a kill flag was
1081          // removed from a different tied use of regB, so now we need to add
1082          // a kill flag to one of the remaining uses of regB.
1083          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1084            MachineOperand &MO = mi->getOperand(i);
1085            if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1086              MO.setIsKill(true);
1087              break;
1088            }
1089          }
1090        }
1091
1092        MadeChange = true;
1093
1094        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1095      }
1096
1097      // Clear TiedOperands here instead of at the top of the loop
1098      // since most instructions do not have tied operands.
1099      TiedOperands.clear();
1100      mi = nmi;
1101    }
1102  }
1103
1104  // Some remat'ed instructions are dead.
1105  int VReg = ReMatRegs.find_first();
1106  while (VReg != -1) {
1107    if (MRI->use_empty(VReg)) {
1108      MachineInstr *DefMI = MRI->getVRegDef(VReg);
1109      DefMI->eraseFromParent();
1110    }
1111    VReg = ReMatRegs.find_next(VReg);
1112  }
1113
1114  return MadeChange;
1115}
1116