TwoAddressInstructionPass.cpp revision c60e6020c0dd1260b0d60835e2ab823f97a4b810
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/STLExtras.h"
43using namespace llvm;
44
45namespace {
46  Statistic<> NumTwoAddressInstrs("twoaddressinstruction",
47                                  "Number of two-address instructions");
48  Statistic<> NumCommuted("twoaddressinstruction",
49                          "Number of instructions commuted to coalesce");
50  Statistic<> NumConvertedTo3Addr("twoaddressinstruction",
51                                "Number of instructions promoted to 3-address");
52
53  struct TwoAddressInstructionPass : public MachineFunctionPass {
54    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
55
56    /// runOnMachineFunction - pass entry point
57    bool runOnMachineFunction(MachineFunction&);
58  };
59
60  RegisterPass<TwoAddressInstructionPass>
61  X("twoaddressinstruction", "Two-Address instruction pass");
62};
63
64const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo();
65
66void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const {
67  AU.addRequired<LiveVariables>();
68  AU.addPreserved<LiveVariables>();
69  AU.addPreservedID(PHIEliminationID);
70  MachineFunctionPass::getAnalysisUsage(AU);
71}
72
73/// runOnMachineFunction - Reduce two-address instructions to two
74/// operands.
75///
76bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
77  DEBUG(std::cerr << "Machine Function\n");
78  const TargetMachine &TM = MF.getTarget();
79  const MRegisterInfo &MRI = *TM.getRegisterInfo();
80  const TargetInstrInfo &TII = *TM.getInstrInfo();
81  LiveVariables &LV = getAnalysis<LiveVariables>();
82
83  bool MadeChange = false;
84
85  DEBUG(std::cerr << "********** REWRITING TWO-ADDR INSTRS **********\n");
86  DEBUG(std::cerr << "********** Function: "
87                  << MF.getFunction()->getName() << '\n');
88
89  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
90       mbbi != mbbe; ++mbbi) {
91    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
92         mi != me; ++mi) {
93      unsigned opcode = mi->getOpcode();
94
95      // ignore if it is not a two-address instruction
96      if (!TII.isTwoAddrInstr(opcode))
97        continue;
98
99      ++NumTwoAddressInstrs;
100      DEBUG(std::cerr << '\t'; mi->print(std::cerr, &TM));
101      assert(mi->getOperand(1).isRegister() && mi->getOperand(1).getReg() &&
102             mi->getOperand(1).isUse() && "two address instruction invalid");
103
104      // if the two operands are the same we just remove the use
105      // and mark the def as def&use, otherwise we have to insert a copy.
106      if (mi->getOperand(0).getReg() != mi->getOperand(1).getReg()) {
107        // rewrite:
108        //     a = b op c
109        // to:
110        //     a = b
111        //     a = a op c
112        unsigned regA = mi->getOperand(0).getReg();
113        unsigned regB = mi->getOperand(1).getReg();
114
115        assert(MRegisterInfo::isVirtualRegister(regA) &&
116               MRegisterInfo::isVirtualRegister(regB) &&
117               "cannot update physical register live information");
118
119#ifndef NDEBUG
120        // First, verify that we do not have a use of a in the instruction (a =
121        // b + a for example) because our transformation will not work. This
122        // should never occur because we are in SSA form.
123        for (unsigned i = 1; i != mi->getNumOperands(); ++i)
124          assert(!mi->getOperand(i).isRegister() ||
125                 mi->getOperand(i).getReg() != regA);
126#endif
127
128        // If this instruction is not the killing user of B, see if we can
129        // rearrange the code to make it so.  Making it the killing user will
130        // allow us to coalesce A and B together, eliminating the copy we are
131        // about to insert.
132        if (!LV.KillsRegister(mi, regB)) {
133          const TargetInstrDescriptor &TID = TII.get(opcode);
134
135          // If this instruction is commutative, check to see if C dies.  If so,
136          // swap the B and C operands.  This makes the live ranges of A and C
137          // joinable.
138          if (TID.Flags & M_COMMUTABLE) {
139            assert(mi->getOperand(2).isRegister() &&
140                   "Not a proper commutative instruction!");
141            unsigned regC = mi->getOperand(2).getReg();
142            if (LV.KillsRegister(mi, regC)) {
143              DEBUG(std::cerr << "2addr: COMMUTING  : " << *mi);
144              MachineInstr *NewMI = TII.commuteInstruction(mi);
145              if (NewMI == 0) {
146                DEBUG(std::cerr << "2addr: COMMUTING FAILED!\n");
147              } else {
148                DEBUG(std::cerr << "2addr: COMMUTED TO: " << *NewMI);
149                // If the instruction changed to commute it, update livevar.
150                if (NewMI != mi) {
151                  LV.instructionChanged(mi, NewMI);  // Update live variables
152                  mbbi->insert(mi, NewMI);           // Insert the new inst
153                  mbbi->erase(mi);                   // Nuke the old inst.
154                  mi = NewMI;
155                }
156
157                ++NumCommuted;
158                regB = regC;
159                goto InstructionRearranged;
160              }
161            }
162          }
163          // If this instruction is potentially convertible to a true
164          // three-address instruction,
165          if (TID.Flags & M_CONVERTIBLE_TO_3_ADDR)
166            if (MachineInstr *New = TII.convertToThreeAddress(mi)) {
167              DEBUG(std::cerr << "2addr: CONVERTING 2-ADDR: " << *mi);
168              DEBUG(std::cerr << "2addr:         TO 3-ADDR: " << *New);
169              LV.instructionChanged(mi, New);  // Update live variables
170              mbbi->insert(mi, New);           // Insert the new inst
171              mbbi->erase(mi);                 // Nuke the old inst.
172              mi = New;
173              ++NumConvertedTo3Addr;
174              assert(!TII.isTwoAddrInstr(New->getOpcode()) &&
175                     "convertToThreeAddress returned a 2-addr instruction??");
176              // Done with this instruction.
177              continue;
178            }
179        }
180      InstructionRearranged:
181        const TargetRegisterClass* rc = MF.getSSARegMap()->getRegClass(regA);
182        MRI.copyRegToReg(*mbbi, mi, regA, regB, rc);
183
184        MachineBasicBlock::iterator prevMi = prior(mi);
185        DEBUG(std::cerr << "\t\tprepend:\t"; prevMi->print(std::cerr, &TM));
186
187        // Update live variables for regA
188        LiveVariables::VarInfo& varInfo = LV.getVarInfo(regA);
189        varInfo.DefInst = prevMi;
190
191        // update live variables for regB
192        if (LV.removeVirtualRegisterKilled(regB, mbbi, mi))
193          LV.addVirtualRegisterKilled(regB, prevMi);
194
195        if (LV.removeVirtualRegisterDead(regB, mbbi, mi))
196          LV.addVirtualRegisterDead(regB, prevMi);
197
198        // replace all occurences of regB with regA
199        for (unsigned i = 1, e = mi->getNumOperands(); i != e; ++i) {
200          if (mi->getOperand(i).isRegister() &&
201              mi->getOperand(i).getReg() == regB)
202            mi->SetMachineOperandReg(i, regA);
203        }
204      }
205
206      assert(mi->getOperand(0).isDef());
207      mi->getOperand(0).setUse();
208      mi->RemoveOperand(1);
209      MadeChange = true;
210
211      DEBUG(std::cerr << "\t\trewrite to:\t"; mi->print(std::cerr, &TM));
212    }
213  }
214
215  return MadeChange;
216}
217