TwoAddressInstructionPass.cpp revision df3b99381f1c211071cc1daf0cc297666877bbcb
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Compiler.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/DenseMap.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47using namespace llvm;
48
49STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
50STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
51STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
52STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
53STATISTIC(NumReMats,           "Number of instructions re-materialized");
54
55namespace {
56  class VISIBILITY_HIDDEN TwoAddressInstructionPass
57    : public MachineFunctionPass {
58    const TargetInstrInfo *TII;
59    const TargetRegisterInfo *TRI;
60    MachineRegisterInfo *MRI;
61    LiveVariables *LV;
62
63    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
64                              unsigned Reg,
65                              MachineBasicBlock::iterator OldPos);
66
67    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
68                             MachineInstr *MI, MachineInstr *DefMI,
69                             MachineBasicBlock *MBB, unsigned Loc,
70                             DenseMap<MachineInstr*, unsigned> &DistanceMap);
71  public:
72    static char ID; // Pass identification, replacement for typeid
73    TwoAddressInstructionPass() : MachineFunctionPass((intptr_t)&ID) {}
74
75    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76      AU.addPreserved<LiveVariables>();
77      AU.addPreservedID(MachineLoopInfoID);
78      AU.addPreservedID(MachineDominatorsID);
79      AU.addPreservedID(PHIEliminationID);
80      MachineFunctionPass::getAnalysisUsage(AU);
81    }
82
83    /// runOnMachineFunction - Pass entry point.
84    bool runOnMachineFunction(MachineFunction&);
85  };
86}
87
88char TwoAddressInstructionPass::ID = 0;
89static RegisterPass<TwoAddressInstructionPass>
90X("twoaddressinstruction", "Two-Address instruction pass");
91
92const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
93
94/// Sink3AddrInstruction - A two-address instruction has been converted to a
95/// three-address instruction to avoid clobbering a register. Try to sink it
96/// past the instruction that would kill the above mentioned register to reduce
97/// register pressure.
98bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
99                                           MachineInstr *MI, unsigned SavedReg,
100                                           MachineBasicBlock::iterator OldPos) {
101  // Check if it's safe to move this instruction.
102  bool SeenStore = true; // Be conservative.
103  if (!MI->isSafeToMove(TII, SeenStore))
104    return false;
105
106  unsigned DefReg = 0;
107  SmallSet<unsigned, 4> UseRegs;
108
109  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
110    const MachineOperand &MO = MI->getOperand(i);
111    if (!MO.isRegister())
112      continue;
113    unsigned MOReg = MO.getReg();
114    if (!MOReg)
115      continue;
116    if (MO.isUse() && MOReg != SavedReg)
117      UseRegs.insert(MO.getReg());
118    if (!MO.isDef())
119      continue;
120    if (MO.isImplicit())
121      // Don't try to move it if it implicitly defines a register.
122      return false;
123    if (DefReg)
124      // For now, don't move any instructions that define multiple registers.
125      return false;
126    DefReg = MO.getReg();
127  }
128
129  // Find the instruction that kills SavedReg.
130  MachineInstr *KillMI = NULL;
131  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
132         UE = MRI->use_end(); UI != UE; ++UI) {
133    MachineOperand &UseMO = UI.getOperand();
134    if (!UseMO.isKill())
135      continue;
136    KillMI = UseMO.getParent();
137    break;
138  }
139
140  if (!KillMI || KillMI->getParent() != MBB)
141    return false;
142
143  // If any of the definitions are used by another instruction between the
144  // position and the kill use, then it's not safe to sink it.
145  //
146  // FIXME: This can be sped up if there is an easy way to query whether an
147  // instruction is before or after another instruction. Then we can use
148  // MachineRegisterInfo def / use instead.
149  MachineOperand *KillMO = NULL;
150  MachineBasicBlock::iterator KillPos = KillMI;
151  ++KillPos;
152
153  unsigned NumVisited = 0;
154  for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
155    MachineInstr *OtherMI = I;
156    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
157      return false;
158    ++NumVisited;
159    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
160      MachineOperand &MO = OtherMI->getOperand(i);
161      if (!MO.isRegister())
162        continue;
163      unsigned MOReg = MO.getReg();
164      if (!MOReg)
165        continue;
166      if (DefReg == MOReg)
167        return false;
168
169      if (MO.isKill()) {
170        if (OtherMI == KillMI && MOReg == SavedReg)
171          // Save the operand that kills the register. We want to unset the kill
172          // marker if we can sink MI past it.
173          KillMO = &MO;
174        else if (UseRegs.count(MOReg))
175          // One of the uses is killed before the destination.
176          return false;
177      }
178    }
179  }
180
181  // Update kill and LV information.
182  KillMO->setIsKill(false);
183  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
184  KillMO->setIsKill(true);
185
186  if (LV)
187    LV->replaceKillInstruction(SavedReg, KillMI, MI);
188
189  // Move instruction to its destination.
190  MBB->remove(MI);
191  MBB->insert(KillPos, MI);
192
193  ++Num3AddrSunk;
194  return true;
195}
196
197/// isTwoAddrUse - Return true if the specified MI is using the specified
198/// register as a two-address operand.
199static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
200  const TargetInstrDesc &TID = UseMI->getDesc();
201  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
202    MachineOperand &MO = UseMI->getOperand(i);
203    if (MO.isRegister() && MO.getReg() == Reg &&
204        (MO.isDef() || TID.getOperandConstraint(i, TOI::TIED_TO) != -1))
205      // Earlier use is a two-address one.
206      return true;
207  }
208  return false;
209}
210
211/// isProfitableToReMat - Return true if the heuristics determines it is likely
212/// to be profitable to re-materialize the definition of Reg rather than copy
213/// the register.
214bool
215TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
216                                const TargetRegisterClass *RC,
217                                MachineInstr *MI, MachineInstr *DefMI,
218                                MachineBasicBlock *MBB, unsigned Loc,
219                                DenseMap<MachineInstr*, unsigned> &DistanceMap){
220  bool OtherUse = false;
221  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
222         UE = MRI->use_end(); UI != UE; ++UI) {
223    MachineOperand &UseMO = UI.getOperand();
224    if (!UseMO.isUse())
225      continue;
226    MachineInstr *UseMI = UseMO.getParent();
227    MachineBasicBlock *UseMBB = UseMI->getParent();
228    if (UseMBB == MBB) {
229      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
230      if (DI != DistanceMap.end() && DI->second == Loc)
231        continue;  // Current use.
232      OtherUse = true;
233      // There is at least one other use in the MBB that will clobber the
234      // register.
235      if (isTwoAddrUse(UseMI, Reg))
236        return true;
237    }
238  }
239
240  // If other uses in MBB are not two-address uses, then don't remat.
241  if (OtherUse)
242    return false;
243
244  // No other uses in the same block, remat if it's defined in the same
245  // block so it does not unnecessarily extend the live range.
246  return MBB == DefMI->getParent();
247}
248
249/// runOnMachineFunction - Reduce two-address instructions to two operands.
250///
251bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
252  DOUT << "Machine Function\n";
253  const TargetMachine &TM = MF.getTarget();
254  MRI = &MF.getRegInfo();
255  TII = TM.getInstrInfo();
256  TRI = TM.getRegisterInfo();
257  LV = getAnalysisToUpdate<LiveVariables>();
258
259  bool MadeChange = false;
260
261  DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
262  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
263
264  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
265  BitVector ReMatRegs;
266  ReMatRegs.resize(MRI->getLastVirtReg()+1);
267
268  // DistanceMap - Keep track the distance of a MI from the start of the
269  // current basic block.
270  DenseMap<MachineInstr*, unsigned> DistanceMap;
271
272  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
273       mbbi != mbbe; ++mbbi) {
274    unsigned Dist = 0;
275    DistanceMap.clear();
276    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
277         mi != me; ) {
278      MachineBasicBlock::iterator nmi = next(mi);
279      const TargetInstrDesc &TID = mi->getDesc();
280      bool FirstTied = true;
281
282      DistanceMap.insert(std::make_pair(mi, ++Dist));
283      for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) {
284        int ti = TID.getOperandConstraint(si, TOI::TIED_TO);
285        if (ti == -1)
286          continue;
287
288        if (FirstTied) {
289          ++NumTwoAddressInstrs;
290          DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
291        }
292
293        FirstTied = false;
294
295        assert(mi->getOperand(si).isRegister() && mi->getOperand(si).getReg() &&
296               mi->getOperand(si).isUse() && "two address instruction invalid");
297
298        // If the two operands are the same we just remove the use
299        // and mark the def as def&use, otherwise we have to insert a copy.
300        if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
301          // Rewrite:
302          //     a = b op c
303          // to:
304          //     a = b
305          //     a = a op c
306          unsigned regA = mi->getOperand(ti).getReg();
307          unsigned regB = mi->getOperand(si).getReg();
308
309          assert(TargetRegisterInfo::isVirtualRegister(regA) &&
310                 TargetRegisterInfo::isVirtualRegister(regB) &&
311                 "cannot update physical register live information");
312
313#ifndef NDEBUG
314          // First, verify that we don't have a use of a in the instruction (a =
315          // b + a for example) because our transformation will not work. This
316          // should never occur because we are in SSA form.
317          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
318            assert((int)i == ti ||
319                   !mi->getOperand(i).isRegister() ||
320                   mi->getOperand(i).getReg() != regA);
321#endif
322
323          // If this instruction is not the killing user of B, see if we can
324          // rearrange the code to make it so.  Making it the killing user will
325          // allow us to coalesce A and B together, eliminating the copy we are
326          // about to insert.
327          if (!mi->killsRegister(regB)) {
328            // If this instruction is commutative, check to see if C dies.  If
329            // so, swap the B and C operands.  This makes the live ranges of A
330            // and C joinable.
331            // FIXME: This code also works for A := B op C instructions.
332            if (TID.isCommutable() && mi->getNumOperands() >= 3) {
333              assert(mi->getOperand(3-si).isRegister() &&
334                     "Not a proper commutative instruction!");
335              unsigned regC = mi->getOperand(3-si).getReg();
336
337              if (mi->killsRegister(regC)) {
338                DOUT << "2addr: COMMUTING  : " << *mi;
339                MachineInstr *NewMI = TII->commuteInstruction(mi);
340
341                if (NewMI == 0) {
342                  DOUT << "2addr: COMMUTING FAILED!\n";
343                } else {
344                  DOUT << "2addr: COMMUTED TO: " << *NewMI;
345                  // If the instruction changed to commute it, update livevar.
346                  if (NewMI != mi) {
347                    if (LV)
348                      // Update live variables
349                      LV->replaceKillInstruction(regC, mi, NewMI);
350
351                    mbbi->insert(mi, NewMI);           // Insert the new inst
352                    mbbi->erase(mi);                   // Nuke the old inst.
353                    mi = NewMI;
354                    DistanceMap.insert(std::make_pair(NewMI, Dist));
355                  }
356
357                  ++NumCommuted;
358                  regB = regC;
359                  goto InstructionRearranged;
360                }
361              }
362            }
363
364            // If this instruction is potentially convertible to a true
365            // three-address instruction,
366            if (TID.isConvertibleTo3Addr()) {
367              // FIXME: This assumes there are no more operands which are tied
368              // to another register.
369#ifndef NDEBUG
370              for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
371                assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
372#endif
373
374              MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
375              if (NewMI) {
376                DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
377                DOUT << "2addr:         TO 3-ADDR: " << *NewMI;
378                bool Sunk = false;
379
380                if (NewMI->findRegisterUseOperand(regB, false, TRI))
381                  // FIXME: Temporary workaround. If the new instruction doesn't
382                  // uses regB, convertToThreeAddress must have created more
383                  // then one instruction.
384                  Sunk = Sink3AddrInstruction(mbbi, NewMI, regB, mi);
385
386                mbbi->erase(mi); // Nuke the old inst.
387
388                if (!Sunk) {
389                  DistanceMap.insert(std::make_pair(NewMI, Dist));
390                  mi = NewMI;
391                  nmi = next(mi);
392                }
393
394                ++NumConvertedTo3Addr;
395                break; // Done with this instruction.
396              }
397            }
398          }
399
400        InstructionRearranged:
401          const TargetRegisterClass* rc = MRI->getRegClass(regA);
402          MachineInstr *DefMI = MRI->getVRegDef(regB);
403          // If it's safe and profitable, remat the definition instead of
404          // copying it.
405          if (DefMI &&
406              DefMI->isSafeToReMat(TII, regB) &&
407              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist,DistanceMap)){
408            DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
409            TII->reMaterialize(*mbbi, mi, regA, DefMI);
410            ReMatRegs.set(regB);
411            ++NumReMats;
412          } else {
413            TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
414          }
415
416          MachineBasicBlock::iterator prevMi = prior(mi);
417          DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM));
418
419          // Update live variables for regB.
420          if (LV) {
421            LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);
422
423            // regB is used in this BB.
424            varInfoB.UsedBlocks[mbbi->getNumber()] = true;
425
426            if (LV->removeVirtualRegisterKilled(regB,  mi))
427              LV->addVirtualRegisterKilled(regB, prevMi);
428
429            if (LV->removeVirtualRegisterDead(regB, mi))
430              LV->addVirtualRegisterDead(regB, prevMi);
431          }
432
433          // Replace all occurences of regB with regA.
434          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
435            if (mi->getOperand(i).isRegister() &&
436                mi->getOperand(i).getReg() == regB)
437              mi->getOperand(i).setReg(regA);
438          }
439        }
440
441        assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
442        mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
443        MadeChange = true;
444
445        DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
446      }
447
448      mi = nmi;
449    }
450  }
451
452  // Some remat'ed instructions are dead.
453  int VReg = ReMatRegs.find_first();
454  while (VReg != -1) {
455    if (MRI->use_empty(VReg)) {
456      MachineInstr *DefMI = MRI->getVRegDef(VReg);
457      DefMI->eraseFromParent();
458    }
459    VReg = ReMatRegs.find_next(VReg);
460  }
461
462  return MadeChange;
463}
464