TwoAddressInstructionPass.cpp revision e2326ad2c00fe3e8e21dbf312f1987ba92308733
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/SmallSet.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/Analysis/AliasAnalysis.h"
38#include "llvm/CodeGen/LiveIntervalAnalysis.h"
39#include "llvm/CodeGen/LiveVariables.h"
40#include "llvm/CodeGen/MachineFunctionPass.h"
41#include "llvm/CodeGen/MachineInstr.h"
42#include "llvm/CodeGen/MachineInstrBuilder.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/IR/Function.h"
45#include "llvm/MC/MCInstrItineraries.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetMachine.h"
51#include "llvm/Target/TargetRegisterInfo.h"
52using namespace llvm;
53
54STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
55STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
56STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
57STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
58STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
59STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
60STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
61
62// Temporary flag to disable rescheduling.
63static cl::opt<bool>
64EnableRescheduling("twoaddr-reschedule",
65                   cl::desc("Coalesce copies by rescheduling (default=true)"), cl::init(true), cl::Hidden);
66
67namespace {
68class TwoAddressInstructionPass : public MachineFunctionPass {
69  MachineFunction *MF;
70  const TargetInstrInfo *TII;
71  const TargetRegisterInfo *TRI;
72  const InstrItineraryData *InstrItins;
73  MachineRegisterInfo *MRI;
74  LiveVariables *LV;
75  LiveIntervals *LIS;
76  AliasAnalysis *AA;
77  CodeGenOpt::Level OptLevel;
78
79  // The current basic block being processed.
80  MachineBasicBlock *MBB;
81
82  // DistanceMap - Keep track the distance of a MI from the start of the
83  // current basic block.
84  DenseMap<MachineInstr*, unsigned> DistanceMap;
85
86  // Set of already processed instructions in the current block.
87  SmallPtrSet<MachineInstr*, 8> Processed;
88
89  // SrcRegMap - A map from virtual registers to physical registers which are
90  // likely targets to be coalesced to due to copies from physical registers to
91  // virtual registers. e.g. v1024 = move r0.
92  DenseMap<unsigned, unsigned> SrcRegMap;
93
94  // DstRegMap - A map from virtual registers to physical registers which are
95  // likely targets to be coalesced to due to copies to physical registers from
96  // virtual registers. e.g. r1 = move v1024.
97  DenseMap<unsigned, unsigned> DstRegMap;
98
99  bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
100                            MachineBasicBlock::iterator OldPos);
101
102  bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
103
104  bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
105                             MachineInstr *MI, unsigned Dist);
106
107  bool commuteInstruction(MachineBasicBlock::iterator &mi,
108                          unsigned RegB, unsigned RegC, unsigned Dist);
109
110  bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
111
112  bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
113                          MachineBasicBlock::iterator &nmi,
114                          unsigned RegA, unsigned RegB, unsigned Dist);
115
116  bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
117
118  bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
119                             MachineBasicBlock::iterator &nmi,
120                             unsigned Reg);
121  bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
122                             MachineBasicBlock::iterator &nmi,
123                             unsigned Reg);
124
125  bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
126                               MachineBasicBlock::iterator &nmi,
127                               unsigned SrcIdx, unsigned DstIdx,
128                               unsigned Dist, bool shouldOnlyCommute);
129
130  void scanUses(unsigned DstReg);
131
132  void processCopy(MachineInstr *MI);
133
134  typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
135  typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
136  bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
137  void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
138  void eliminateRegSequence(MachineBasicBlock::iterator&);
139
140public:
141  static char ID; // Pass identification, replacement for typeid
142  TwoAddressInstructionPass() : MachineFunctionPass(ID) {
143    initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
144  }
145
146  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
147    AU.setPreservesCFG();
148    AU.addRequired<AliasAnalysis>();
149    AU.addPreserved<LiveVariables>();
150    AU.addPreserved<SlotIndexes>();
151    AU.addPreserved<LiveIntervals>();
152    AU.addPreservedID(MachineLoopInfoID);
153    AU.addPreservedID(MachineDominatorsID);
154    MachineFunctionPass::getAnalysisUsage(AU);
155  }
156
157  /// runOnMachineFunction - Pass entry point.
158  bool runOnMachineFunction(MachineFunction&);
159};
160} // end anonymous namespace
161
162char TwoAddressInstructionPass::ID = 0;
163INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
164                "Two-Address instruction pass", false, false)
165INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
166INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
167                "Two-Address instruction pass", false, false)
168
169char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
170
171static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
172
173/// sink3AddrInstruction - A two-address instruction has been converted to a
174/// three-address instruction to avoid clobbering a register. Try to sink it
175/// past the instruction that would kill the above mentioned register to reduce
176/// register pressure.
177bool TwoAddressInstructionPass::
178sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
179                     MachineBasicBlock::iterator OldPos) {
180  // FIXME: Shouldn't we be trying to do this before we three-addressify the
181  // instruction?  After this transformation is done, we no longer need
182  // the instruction to be in three-address form.
183
184  // Check if it's safe to move this instruction.
185  bool SeenStore = true; // Be conservative.
186  if (!MI->isSafeToMove(TII, AA, SeenStore))
187    return false;
188
189  unsigned DefReg = 0;
190  SmallSet<unsigned, 4> UseRegs;
191
192  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
193    const MachineOperand &MO = MI->getOperand(i);
194    if (!MO.isReg())
195      continue;
196    unsigned MOReg = MO.getReg();
197    if (!MOReg)
198      continue;
199    if (MO.isUse() && MOReg != SavedReg)
200      UseRegs.insert(MO.getReg());
201    if (!MO.isDef())
202      continue;
203    if (MO.isImplicit())
204      // Don't try to move it if it implicitly defines a register.
205      return false;
206    if (DefReg)
207      // For now, don't move any instructions that define multiple registers.
208      return false;
209    DefReg = MO.getReg();
210  }
211
212  // Find the instruction that kills SavedReg.
213  MachineInstr *KillMI = NULL;
214  if (LIS) {
215    LiveInterval &LI = LIS->getInterval(SavedReg);
216    assert(LI.end() != LI.begin() &&
217           "Reg should not have empty live interval.");
218
219    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
220    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
221    if (I != LI.end() && I->start < MBBEndIdx)
222      return false;
223
224    --I;
225    KillMI = LIS->getInstructionFromIndex(I->end);
226  }
227  if (!KillMI) {
228    for (MachineRegisterInfo::use_nodbg_iterator
229           UI = MRI->use_nodbg_begin(SavedReg),
230           UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
231      MachineOperand &UseMO = UI.getOperand();
232      if (!UseMO.isKill())
233        continue;
234      KillMI = UseMO.getParent();
235      break;
236    }
237  }
238
239  // If we find the instruction that kills SavedReg, and it is in an
240  // appropriate location, we can try to sink the current instruction
241  // past it.
242  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
243      KillMI == OldPos || KillMI->isTerminator())
244    return false;
245
246  // If any of the definitions are used by another instruction between the
247  // position and the kill use, then it's not safe to sink it.
248  //
249  // FIXME: This can be sped up if there is an easy way to query whether an
250  // instruction is before or after another instruction. Then we can use
251  // MachineRegisterInfo def / use instead.
252  MachineOperand *KillMO = NULL;
253  MachineBasicBlock::iterator KillPos = KillMI;
254  ++KillPos;
255
256  unsigned NumVisited = 0;
257  for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
258    MachineInstr *OtherMI = I;
259    // DBG_VALUE cannot be counted against the limit.
260    if (OtherMI->isDebugValue())
261      continue;
262    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
263      return false;
264    ++NumVisited;
265    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
266      MachineOperand &MO = OtherMI->getOperand(i);
267      if (!MO.isReg())
268        continue;
269      unsigned MOReg = MO.getReg();
270      if (!MOReg)
271        continue;
272      if (DefReg == MOReg)
273        return false;
274
275      if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) {
276        if (OtherMI == KillMI && MOReg == SavedReg)
277          // Save the operand that kills the register. We want to unset the kill
278          // marker if we can sink MI past it.
279          KillMO = &MO;
280        else if (UseRegs.count(MOReg))
281          // One of the uses is killed before the destination.
282          return false;
283      }
284    }
285  }
286  assert(KillMO && "Didn't find kill");
287
288  if (!LIS) {
289    // Update kill and LV information.
290    KillMO->setIsKill(false);
291    KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
292    KillMO->setIsKill(true);
293
294    if (LV)
295      LV->replaceKillInstruction(SavedReg, KillMI, MI);
296  }
297
298  // Move instruction to its destination.
299  MBB->remove(MI);
300  MBB->insert(KillPos, MI);
301
302  if (LIS)
303    LIS->handleMove(MI);
304
305  ++Num3AddrSunk;
306  return true;
307}
308
309/// noUseAfterLastDef - Return true if there are no intervening uses between the
310/// last instruction in the MBB that defines the specified register and the
311/// two-address instruction which is being processed. It also returns the last
312/// def location by reference
313bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
314                                                  unsigned &LastDef) {
315  LastDef = 0;
316  unsigned LastUse = Dist;
317  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
318         E = MRI->reg_end(); I != E; ++I) {
319    MachineOperand &MO = I.getOperand();
320    MachineInstr *MI = MO.getParent();
321    if (MI->getParent() != MBB || MI->isDebugValue())
322      continue;
323    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
324    if (DI == DistanceMap.end())
325      continue;
326    if (MO.isUse() && DI->second < LastUse)
327      LastUse = DI->second;
328    if (MO.isDef() && DI->second > LastDef)
329      LastDef = DI->second;
330  }
331
332  return !(LastUse > LastDef && LastUse < Dist);
333}
334
335/// isCopyToReg - Return true if the specified MI is a copy instruction or
336/// a extract_subreg instruction. It also returns the source and destination
337/// registers and whether they are physical registers by reference.
338static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
339                        unsigned &SrcReg, unsigned &DstReg,
340                        bool &IsSrcPhys, bool &IsDstPhys) {
341  SrcReg = 0;
342  DstReg = 0;
343  if (MI.isCopy()) {
344    DstReg = MI.getOperand(0).getReg();
345    SrcReg = MI.getOperand(1).getReg();
346  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
347    DstReg = MI.getOperand(0).getReg();
348    SrcReg = MI.getOperand(2).getReg();
349  } else
350    return false;
351
352  IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
353  IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
354  return true;
355}
356
357/// isPLainlyKilled - Test if the given register value, which is used by the
358// given instruction, is killed by the given instruction.
359static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
360                            LiveIntervals *LIS) {
361  if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
362      !LIS->isNotInMIMap(MI)) {
363    // FIXME: Sometimes tryInstructionTransform() will add instructions and
364    // test whether they can be folded before keeping them. In this case it
365    // sets a kill before recursively calling tryInstructionTransform() again.
366    // If there is no interval available, we assume that this instruction is
367    // one of those. A kill flag is manually inserted on the operand so the
368    // check below will handle it.
369    LiveInterval &LI = LIS->getInterval(Reg);
370    // This is to match the kill flag version where undefs don't have kill
371    // flags.
372    if (!LI.hasAtLeastOneValue())
373      return false;
374
375    SlotIndex useIdx = LIS->getInstructionIndex(MI);
376    LiveInterval::const_iterator I = LI.find(useIdx);
377    assert(I != LI.end() && "Reg must be live-in to use.");
378    return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
379  }
380
381  return MI->killsRegister(Reg);
382}
383
384/// isKilled - Test if the given register value, which is used by the given
385/// instruction, is killed by the given instruction. This looks through
386/// coalescable copies to see if the original value is potentially not killed.
387///
388/// For example, in this code:
389///
390///   %reg1034 = copy %reg1024
391///   %reg1035 = copy %reg1025<kill>
392///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
393///
394/// %reg1034 is not considered to be killed, since it is copied from a
395/// register which is not killed. Treating it as not killed lets the
396/// normal heuristics commute the (two-address) add, which lets
397/// coalescing eliminate the extra copy.
398///
399/// If allowFalsePositives is true then likely kills are treated as kills even
400/// if it can't be proven that they are kills.
401static bool isKilled(MachineInstr &MI, unsigned Reg,
402                     const MachineRegisterInfo *MRI,
403                     const TargetInstrInfo *TII,
404                     LiveIntervals *LIS,
405                     bool allowFalsePositives) {
406  MachineInstr *DefMI = &MI;
407  for (;;) {
408    // All uses of physical registers are likely to be kills.
409    if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
410        (allowFalsePositives || MRI->hasOneUse(Reg)))
411      return true;
412    if (!isPlainlyKilled(DefMI, Reg, LIS))
413      return false;
414    if (TargetRegisterInfo::isPhysicalRegister(Reg))
415      return true;
416    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
417    // If there are multiple defs, we can't do a simple analysis, so just
418    // go with what the kill flag says.
419    if (llvm::next(Begin) != MRI->def_end())
420      return true;
421    DefMI = &*Begin;
422    bool IsSrcPhys, IsDstPhys;
423    unsigned SrcReg,  DstReg;
424    // If the def is something other than a copy, then it isn't going to
425    // be coalesced, so follow the kill flag.
426    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
427      return true;
428    Reg = SrcReg;
429  }
430}
431
432/// isTwoAddrUse - Return true if the specified MI uses the specified register
433/// as a two-address use. If so, return the destination register by reference.
434static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
435  const MCInstrDesc &MCID = MI.getDesc();
436  unsigned NumOps = MI.isInlineAsm()
437    ? MI.getNumOperands() : MCID.getNumOperands();
438  for (unsigned i = 0; i != NumOps; ++i) {
439    const MachineOperand &MO = MI.getOperand(i);
440    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
441      continue;
442    unsigned ti;
443    if (MI.isRegTiedToDefOperand(i, &ti)) {
444      DstReg = MI.getOperand(ti).getReg();
445      return true;
446    }
447  }
448  return false;
449}
450
451/// findOnlyInterestingUse - Given a register, if has a single in-basic block
452/// use, return the use instruction if it's a copy or a two-address use.
453static
454MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
455                                     MachineRegisterInfo *MRI,
456                                     const TargetInstrInfo *TII,
457                                     bool &IsCopy,
458                                     unsigned &DstReg, bool &IsDstPhys) {
459  if (!MRI->hasOneNonDBGUse(Reg))
460    // None or more than one use.
461    return 0;
462  MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
463  if (UseMI.getParent() != MBB)
464    return 0;
465  unsigned SrcReg;
466  bool IsSrcPhys;
467  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
468    IsCopy = true;
469    return &UseMI;
470  }
471  IsDstPhys = false;
472  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
473    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
474    return &UseMI;
475  }
476  return 0;
477}
478
479/// getMappedReg - Return the physical register the specified virtual register
480/// might be mapped to.
481static unsigned
482getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
483  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
484    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
485    if (SI == RegMap.end())
486      return 0;
487    Reg = SI->second;
488  }
489  if (TargetRegisterInfo::isPhysicalRegister(Reg))
490    return Reg;
491  return 0;
492}
493
494/// regsAreCompatible - Return true if the two registers are equal or aliased.
495///
496static bool
497regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
498  if (RegA == RegB)
499    return true;
500  if (!RegA || !RegB)
501    return false;
502  return TRI->regsOverlap(RegA, RegB);
503}
504
505
506/// isProfitableToCommute - Return true if it's potentially profitable to commute
507/// the two-address instruction that's being processed.
508bool
509TwoAddressInstructionPass::
510isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
511                      MachineInstr *MI, unsigned Dist) {
512  if (OptLevel == CodeGenOpt::None)
513    return false;
514
515  // Determine if it's profitable to commute this two address instruction. In
516  // general, we want no uses between this instruction and the definition of
517  // the two-address register.
518  // e.g.
519  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
520  // %reg1029<def> = MOV8rr %reg1028
521  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
522  // insert => %reg1030<def> = MOV8rr %reg1028
523  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
524  // In this case, it might not be possible to coalesce the second MOV8rr
525  // instruction if the first one is coalesced. So it would be profitable to
526  // commute it:
527  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
528  // %reg1029<def> = MOV8rr %reg1028
529  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
530  // insert => %reg1030<def> = MOV8rr %reg1029
531  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
532
533  if (!isPlainlyKilled(MI, regC, LIS))
534    return false;
535
536  // Ok, we have something like:
537  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
538  // let's see if it's worth commuting it.
539
540  // Look for situations like this:
541  // %reg1024<def> = MOV r1
542  // %reg1025<def> = MOV r0
543  // %reg1026<def> = ADD %reg1024, %reg1025
544  // r0            = MOV %reg1026
545  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
546  unsigned ToRegA = getMappedReg(regA, DstRegMap);
547  if (ToRegA) {
548    unsigned FromRegB = getMappedReg(regB, SrcRegMap);
549    unsigned FromRegC = getMappedReg(regC, SrcRegMap);
550    bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI);
551    bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI);
552    if (BComp != CComp)
553      return !BComp && CComp;
554  }
555
556  // If there is a use of regC between its last def (could be livein) and this
557  // instruction, then bail.
558  unsigned LastDefC = 0;
559  if (!noUseAfterLastDef(regC, Dist, LastDefC))
560    return false;
561
562  // If there is a use of regB between its last def (could be livein) and this
563  // instruction, then go ahead and make this transformation.
564  unsigned LastDefB = 0;
565  if (!noUseAfterLastDef(regB, Dist, LastDefB))
566    return true;
567
568  // Since there are no intervening uses for both registers, then commute
569  // if the def of regC is closer. Its live interval is shorter.
570  return LastDefB && LastDefC && LastDefC > LastDefB;
571}
572
573/// commuteInstruction - Commute a two-address instruction and update the basic
574/// block, distance map, and live variables if needed. Return true if it is
575/// successful.
576bool TwoAddressInstructionPass::
577commuteInstruction(MachineBasicBlock::iterator &mi,
578                   unsigned RegB, unsigned RegC, unsigned Dist) {
579  MachineInstr *MI = mi;
580  DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
581  MachineInstr *NewMI = TII->commuteInstruction(MI);
582
583  if (NewMI == 0) {
584    DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
585    return false;
586  }
587
588  DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
589  assert(NewMI == MI &&
590         "TargetInstrInfo::commuteInstruction() should not return a new "
591         "instruction unless it was requested.");
592
593  // Update source register map.
594  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
595  if (FromRegC) {
596    unsigned RegA = MI->getOperand(0).getReg();
597    SrcRegMap[RegA] = FromRegC;
598  }
599
600  return true;
601}
602
603/// isProfitableToConv3Addr - Return true if it is profitable to convert the
604/// given 2-address instruction to a 3-address one.
605bool
606TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
607  // Look for situations like this:
608  // %reg1024<def> = MOV r1
609  // %reg1025<def> = MOV r0
610  // %reg1026<def> = ADD %reg1024, %reg1025
611  // r2            = MOV %reg1026
612  // Turn ADD into a 3-address instruction to avoid a copy.
613  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
614  if (!FromRegB)
615    return false;
616  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
617  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
618}
619
620/// convertInstTo3Addr - Convert the specified two-address instruction into a
621/// three address one. Return true if this transformation was successful.
622bool
623TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
624                                              MachineBasicBlock::iterator &nmi,
625                                              unsigned RegA, unsigned RegB,
626                                              unsigned Dist) {
627  // FIXME: Why does convertToThreeAddress() need an iterator reference?
628  MachineFunction::iterator MFI = MBB;
629  MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV);
630  assert(MBB == MFI && "convertToThreeAddress changed iterator reference");
631  if (!NewMI)
632    return false;
633
634  DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
635  DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
636  bool Sunk = false;
637
638  if (LIS)
639    LIS->ReplaceMachineInstrInMaps(mi, NewMI);
640
641  if (NewMI->findRegisterUseOperand(RegB, false, TRI))
642    // FIXME: Temporary workaround. If the new instruction doesn't
643    // uses RegB, convertToThreeAddress must have created more
644    // then one instruction.
645    Sunk = sink3AddrInstruction(NewMI, RegB, mi);
646
647  MBB->erase(mi); // Nuke the old inst.
648
649  if (!Sunk) {
650    DistanceMap.insert(std::make_pair(NewMI, Dist));
651    mi = NewMI;
652    nmi = llvm::next(mi);
653  }
654
655  // Update source and destination register maps.
656  SrcRegMap.erase(RegA);
657  DstRegMap.erase(RegB);
658  return true;
659}
660
661/// scanUses - Scan forward recursively for only uses, update maps if the use
662/// is a copy or a two-address instruction.
663void
664TwoAddressInstructionPass::scanUses(unsigned DstReg) {
665  SmallVector<unsigned, 4> VirtRegPairs;
666  bool IsDstPhys;
667  bool IsCopy = false;
668  unsigned NewReg = 0;
669  unsigned Reg = DstReg;
670  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
671                                                      NewReg, IsDstPhys)) {
672    if (IsCopy && !Processed.insert(UseMI))
673      break;
674
675    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
676    if (DI != DistanceMap.end())
677      // Earlier in the same MBB.Reached via a back edge.
678      break;
679
680    if (IsDstPhys) {
681      VirtRegPairs.push_back(NewReg);
682      break;
683    }
684    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
685    if (!isNew)
686      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
687    VirtRegPairs.push_back(NewReg);
688    Reg = NewReg;
689  }
690
691  if (!VirtRegPairs.empty()) {
692    unsigned ToReg = VirtRegPairs.back();
693    VirtRegPairs.pop_back();
694    while (!VirtRegPairs.empty()) {
695      unsigned FromReg = VirtRegPairs.back();
696      VirtRegPairs.pop_back();
697      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
698      if (!isNew)
699        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
700      ToReg = FromReg;
701    }
702    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
703    if (!isNew)
704      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
705  }
706}
707
708/// processCopy - If the specified instruction is not yet processed, process it
709/// if it's a copy. For a copy instruction, we find the physical registers the
710/// source and destination registers might be mapped to. These are kept in
711/// point-to maps used to determine future optimizations. e.g.
712/// v1024 = mov r0
713/// v1025 = mov r1
714/// v1026 = add v1024, v1025
715/// r1    = mov r1026
716/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
717/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
718/// potentially joined with r1 on the output side. It's worthwhile to commute
719/// 'add' to eliminate a copy.
720void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
721  if (Processed.count(MI))
722    return;
723
724  bool IsSrcPhys, IsDstPhys;
725  unsigned SrcReg, DstReg;
726  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
727    return;
728
729  if (IsDstPhys && !IsSrcPhys)
730    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
731  else if (!IsDstPhys && IsSrcPhys) {
732    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
733    if (!isNew)
734      assert(SrcRegMap[DstReg] == SrcReg &&
735             "Can't map to two src physical registers!");
736
737    scanUses(DstReg);
738  }
739
740  Processed.insert(MI);
741  return;
742}
743
744/// rescheduleMIBelowKill - If there is one more local instruction that reads
745/// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
746/// instruction in order to eliminate the need for the copy.
747bool TwoAddressInstructionPass::
748rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
749                      MachineBasicBlock::iterator &nmi,
750                      unsigned Reg) {
751  // Bail immediately if we don't have LV or LIS available. We use them to find
752  // kills efficiently.
753  if (!LV && !LIS)
754    return false;
755
756  MachineInstr *MI = &*mi;
757  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
758  if (DI == DistanceMap.end())
759    // Must be created from unfolded load. Don't waste time trying this.
760    return false;
761
762  MachineInstr *KillMI = 0;
763  if (LIS) {
764    LiveInterval &LI = LIS->getInterval(Reg);
765    assert(LI.end() != LI.begin() &&
766           "Reg should not have empty live interval.");
767
768    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
769    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
770    if (I != LI.end() && I->start < MBBEndIdx)
771      return false;
772
773    --I;
774    KillMI = LIS->getInstructionFromIndex(I->end);
775  } else {
776    KillMI = LV->getVarInfo(Reg).findKill(MBB);
777  }
778  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
779    // Don't mess with copies, they may be coalesced later.
780    return false;
781
782  if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
783      KillMI->isBranch() || KillMI->isTerminator())
784    // Don't move pass calls, etc.
785    return false;
786
787  unsigned DstReg;
788  if (isTwoAddrUse(*KillMI, Reg, DstReg))
789    return false;
790
791  bool SeenStore = true;
792  if (!MI->isSafeToMove(TII, AA, SeenStore))
793    return false;
794
795  if (TII->getInstrLatency(InstrItins, MI) > 1)
796    // FIXME: Needs more sophisticated heuristics.
797    return false;
798
799  SmallSet<unsigned, 2> Uses;
800  SmallSet<unsigned, 2> Kills;
801  SmallSet<unsigned, 2> Defs;
802  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
803    const MachineOperand &MO = MI->getOperand(i);
804    if (!MO.isReg())
805      continue;
806    unsigned MOReg = MO.getReg();
807    if (!MOReg)
808      continue;
809    if (MO.isDef())
810      Defs.insert(MOReg);
811    else {
812      Uses.insert(MOReg);
813      if (MOReg != Reg && (MO.isKill() ||
814                           (LIS && isPlainlyKilled(MI, MOReg, LIS))))
815        Kills.insert(MOReg);
816    }
817  }
818
819  // Move the copies connected to MI down as well.
820  MachineBasicBlock::iterator Begin = MI;
821  MachineBasicBlock::iterator AfterMI = llvm::next(Begin);
822
823  MachineBasicBlock::iterator End = AfterMI;
824  while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
825    Defs.insert(End->getOperand(0).getReg());
826    ++End;
827  }
828
829  // Check if the reschedule will not break depedencies.
830  unsigned NumVisited = 0;
831  MachineBasicBlock::iterator KillPos = KillMI;
832  ++KillPos;
833  for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) {
834    MachineInstr *OtherMI = I;
835    // DBG_VALUE cannot be counted against the limit.
836    if (OtherMI->isDebugValue())
837      continue;
838    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
839      return false;
840    ++NumVisited;
841    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
842        OtherMI->isBranch() || OtherMI->isTerminator())
843      // Don't move pass calls, etc.
844      return false;
845    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
846      const MachineOperand &MO = OtherMI->getOperand(i);
847      if (!MO.isReg())
848        continue;
849      unsigned MOReg = MO.getReg();
850      if (!MOReg)
851        continue;
852      if (MO.isDef()) {
853        if (Uses.count(MOReg))
854          // Physical register use would be clobbered.
855          return false;
856        if (!MO.isDead() && Defs.count(MOReg))
857          // May clobber a physical register def.
858          // FIXME: This may be too conservative. It's ok if the instruction
859          // is sunken completely below the use.
860          return false;
861      } else {
862        if (Defs.count(MOReg))
863          return false;
864        bool isKill = MO.isKill() ||
865                      (LIS && isPlainlyKilled(OtherMI, MOReg, LIS));
866        if (MOReg != Reg &&
867            ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
868          // Don't want to extend other live ranges and update kills.
869          return false;
870        if (MOReg == Reg && !isKill)
871          // We can't schedule across a use of the register in question.
872          return false;
873        // Ensure that if this is register in question, its the kill we expect.
874        assert((MOReg != Reg || OtherMI == KillMI) &&
875               "Found multiple kills of a register in a basic block");
876      }
877    }
878  }
879
880  // Move debug info as well.
881  while (Begin != MBB->begin() && llvm::prior(Begin)->isDebugValue())
882    --Begin;
883
884  nmi = End;
885  MachineBasicBlock::iterator InsertPos = KillPos;
886  if (LIS) {
887    // We have to move the copies first so that the MBB is still well-formed
888    // when calling handleMove().
889    for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
890      MachineInstr *CopyMI = MBBI;
891      ++MBBI;
892      MBB->splice(InsertPos, MBB, CopyMI);
893      LIS->handleMove(CopyMI);
894      InsertPos = CopyMI;
895    }
896    End = llvm::next(MachineBasicBlock::iterator(MI));
897  }
898
899  // Copies following MI may have been moved as well.
900  MBB->splice(InsertPos, MBB, Begin, End);
901  DistanceMap.erase(DI);
902
903  // Update live variables
904  if (LIS) {
905    LIS->handleMove(MI);
906  } else {
907    LV->removeVirtualRegisterKilled(Reg, KillMI);
908    LV->addVirtualRegisterKilled(Reg, MI);
909  }
910
911  DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
912  return true;
913}
914
915/// isDefTooClose - Return true if the re-scheduling will put the given
916/// instruction too close to the defs of its register dependencies.
917bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
918                                              MachineInstr *MI) {
919  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
920         DE = MRI->def_end(); DI != DE; ++DI) {
921    MachineInstr *DefMI = &*DI;
922    if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
923      continue;
924    if (DefMI == MI)
925      return true; // MI is defining something KillMI uses
926    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
927    if (DDI == DistanceMap.end())
928      return true;  // Below MI
929    unsigned DefDist = DDI->second;
930    assert(Dist > DefDist && "Visited def already?");
931    if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
932      return true;
933  }
934  return false;
935}
936
937/// rescheduleKillAboveMI - If there is one more local instruction that reads
938/// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
939/// current two-address instruction in order to eliminate the need for the
940/// copy.
941bool TwoAddressInstructionPass::
942rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
943                      MachineBasicBlock::iterator &nmi,
944                      unsigned Reg) {
945  // Bail immediately if we don't have LV or LIS available. We use them to find
946  // kills efficiently.
947  if (!LV && !LIS)
948    return false;
949
950  MachineInstr *MI = &*mi;
951  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
952  if (DI == DistanceMap.end())
953    // Must be created from unfolded load. Don't waste time trying this.
954    return false;
955
956  MachineInstr *KillMI = 0;
957  if (LIS) {
958    LiveInterval &LI = LIS->getInterval(Reg);
959    assert(LI.end() != LI.begin() &&
960           "Reg should not have empty live interval.");
961
962    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
963    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
964    if (I != LI.end() && I->start < MBBEndIdx)
965      return false;
966
967    --I;
968    KillMI = LIS->getInstructionFromIndex(I->end);
969  } else {
970    KillMI = LV->getVarInfo(Reg).findKill(MBB);
971  }
972  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
973    // Don't mess with copies, they may be coalesced later.
974    return false;
975
976  unsigned DstReg;
977  if (isTwoAddrUse(*KillMI, Reg, DstReg))
978    return false;
979
980  bool SeenStore = true;
981  if (!KillMI->isSafeToMove(TII, AA, SeenStore))
982    return false;
983
984  SmallSet<unsigned, 2> Uses;
985  SmallSet<unsigned, 2> Kills;
986  SmallSet<unsigned, 2> Defs;
987  SmallSet<unsigned, 2> LiveDefs;
988  for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
989    const MachineOperand &MO = KillMI->getOperand(i);
990    if (!MO.isReg())
991      continue;
992    unsigned MOReg = MO.getReg();
993    if (MO.isUse()) {
994      if (!MOReg)
995        continue;
996      if (isDefTooClose(MOReg, DI->second, MI))
997        return false;
998      bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
999      if (MOReg == Reg && !isKill)
1000        return false;
1001      Uses.insert(MOReg);
1002      if (isKill && MOReg != Reg)
1003        Kills.insert(MOReg);
1004    } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1005      Defs.insert(MOReg);
1006      if (!MO.isDead())
1007        LiveDefs.insert(MOReg);
1008    }
1009  }
1010
1011  // Check if the reschedule will not break depedencies.
1012  unsigned NumVisited = 0;
1013  MachineBasicBlock::iterator KillPos = KillMI;
1014  for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1015    MachineInstr *OtherMI = I;
1016    // DBG_VALUE cannot be counted against the limit.
1017    if (OtherMI->isDebugValue())
1018      continue;
1019    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1020      return false;
1021    ++NumVisited;
1022    if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
1023        OtherMI->isBranch() || OtherMI->isTerminator())
1024      // Don't move pass calls, etc.
1025      return false;
1026    SmallVector<unsigned, 2> OtherDefs;
1027    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1028      const MachineOperand &MO = OtherMI->getOperand(i);
1029      if (!MO.isReg())
1030        continue;
1031      unsigned MOReg = MO.getReg();
1032      if (!MOReg)
1033        continue;
1034      if (MO.isUse()) {
1035        if (Defs.count(MOReg))
1036          // Moving KillMI can clobber the physical register if the def has
1037          // not been seen.
1038          return false;
1039        if (Kills.count(MOReg))
1040          // Don't want to extend other live ranges and update kills.
1041          return false;
1042        if (OtherMI != MI && MOReg == Reg &&
1043            !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))))
1044          // We can't schedule across a use of the register in question.
1045          return false;
1046      } else {
1047        OtherDefs.push_back(MOReg);
1048      }
1049    }
1050
1051    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1052      unsigned MOReg = OtherDefs[i];
1053      if (Uses.count(MOReg))
1054        return false;
1055      if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1056          LiveDefs.count(MOReg))
1057        return false;
1058      // Physical register def is seen.
1059      Defs.erase(MOReg);
1060    }
1061  }
1062
1063  // Move the old kill above MI, don't forget to move debug info as well.
1064  MachineBasicBlock::iterator InsertPos = mi;
1065  while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
1066    --InsertPos;
1067  MachineBasicBlock::iterator From = KillMI;
1068  MachineBasicBlock::iterator To = llvm::next(From);
1069  while (llvm::prior(From)->isDebugValue())
1070    --From;
1071  MBB->splice(InsertPos, MBB, From, To);
1072
1073  nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
1074  DistanceMap.erase(DI);
1075
1076  // Update live variables
1077  if (LIS) {
1078    LIS->handleMove(KillMI);
1079  } else {
1080    LV->removeVirtualRegisterKilled(Reg, KillMI);
1081    LV->addVirtualRegisterKilled(Reg, MI);
1082  }
1083
1084  DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1085  return true;
1086}
1087
1088/// tryInstructionTransform - For the case where an instruction has a single
1089/// pair of tied register operands, attempt some transformations that may
1090/// either eliminate the tied operands or improve the opportunities for
1091/// coalescing away the register copy.  Returns true if no copy needs to be
1092/// inserted to untie mi's operands (either because they were untied, or
1093/// because mi was rescheduled, and will be visited again later). If the
1094/// shouldOnlyCommute flag is true, only instruction commutation is attempted.
1095bool TwoAddressInstructionPass::
1096tryInstructionTransform(MachineBasicBlock::iterator &mi,
1097                        MachineBasicBlock::iterator &nmi,
1098                        unsigned SrcIdx, unsigned DstIdx,
1099                        unsigned Dist, bool shouldOnlyCommute) {
1100  if (OptLevel == CodeGenOpt::None)
1101    return false;
1102
1103  MachineInstr &MI = *mi;
1104  unsigned regA = MI.getOperand(DstIdx).getReg();
1105  unsigned regB = MI.getOperand(SrcIdx).getReg();
1106
1107  assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1108         "cannot make instruction into two-address form");
1109  bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1110
1111  if (TargetRegisterInfo::isVirtualRegister(regA))
1112    scanUses(regA);
1113
1114  // Check if it is profitable to commute the operands.
1115  unsigned SrcOp1, SrcOp2;
1116  unsigned regC = 0;
1117  unsigned regCIdx = ~0U;
1118  bool TryCommute = false;
1119  bool AggressiveCommute = false;
1120  if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
1121      TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1122    if (SrcIdx == SrcOp1)
1123      regCIdx = SrcOp2;
1124    else if (SrcIdx == SrcOp2)
1125      regCIdx = SrcOp1;
1126
1127    if (regCIdx != ~0U) {
1128      regC = MI.getOperand(regCIdx).getReg();
1129      if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false))
1130        // If C dies but B does not, swap the B and C operands.
1131        // This makes the live ranges of A and C joinable.
1132        TryCommute = true;
1133      else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) {
1134        TryCommute = true;
1135        AggressiveCommute = true;
1136      }
1137    }
1138  }
1139
1140  // If it's profitable to commute, try to do so.
1141  if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) {
1142    ++NumCommuted;
1143    if (AggressiveCommute)
1144      ++NumAggrCommuted;
1145    return false;
1146  }
1147
1148  if (shouldOnlyCommute)
1149    return false;
1150
1151  // If there is one more use of regB later in the same MBB, consider
1152  // re-schedule this MI below it.
1153  if (EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1154    ++NumReSchedDowns;
1155    return true;
1156  }
1157
1158  if (MI.isConvertibleTo3Addr()) {
1159    // This instruction is potentially convertible to a true
1160    // three-address instruction.  Check if it is profitable.
1161    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1162      // Try to convert it.
1163      if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1164        ++NumConvertedTo3Addr;
1165        return true; // Done with this instruction.
1166      }
1167    }
1168  }
1169
1170  // If there is one more use of regB later in the same MBB, consider
1171  // re-schedule it before this MI if it's legal.
1172  if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1173    ++NumReSchedUps;
1174    return true;
1175  }
1176
1177  // If this is an instruction with a load folded into it, try unfolding
1178  // the load, e.g. avoid this:
1179  //   movq %rdx, %rcx
1180  //   addq (%rax), %rcx
1181  // in favor of this:
1182  //   movq (%rax), %rcx
1183  //   addq %rdx, %rcx
1184  // because it's preferable to schedule a load than a register copy.
1185  if (MI.mayLoad() && !regBKilled) {
1186    // Determine if a load can be unfolded.
1187    unsigned LoadRegIndex;
1188    unsigned NewOpc =
1189      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1190                                      /*UnfoldLoad=*/true,
1191                                      /*UnfoldStore=*/false,
1192                                      &LoadRegIndex);
1193    if (NewOpc != 0) {
1194      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1195      if (UnfoldMCID.getNumDefs() == 1) {
1196        // Unfold the load.
1197        DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1198        const TargetRegisterClass *RC =
1199          TRI->getAllocatableClass(
1200            TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1201        unsigned Reg = MRI->createVirtualRegister(RC);
1202        SmallVector<MachineInstr *, 2> NewMIs;
1203        if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
1204                                      /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1205                                      NewMIs)) {
1206          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1207          return false;
1208        }
1209        assert(NewMIs.size() == 2 &&
1210               "Unfolded a load into multiple instructions!");
1211        // The load was previously folded, so this is the only use.
1212        NewMIs[1]->addRegisterKilled(Reg, TRI);
1213
1214        // Tentatively insert the instructions into the block so that they
1215        // look "normal" to the transformation logic.
1216        MBB->insert(mi, NewMIs[0]);
1217        MBB->insert(mi, NewMIs[1]);
1218
1219        DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1220                     << "2addr:    NEW INST: " << *NewMIs[1]);
1221
1222        // Transform the instruction, now that it no longer has a load.
1223        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1224        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1225        MachineBasicBlock::iterator NewMI = NewMIs[1];
1226        bool TransformResult =
1227          tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1228        (void)TransformResult;
1229        assert(!TransformResult &&
1230               "tryInstructionTransform() should return false.");
1231        if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1232          // Success, or at least we made an improvement. Keep the unfolded
1233          // instructions and discard the original.
1234          if (LV) {
1235            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1236              MachineOperand &MO = MI.getOperand(i);
1237              if (MO.isReg() &&
1238                  TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1239                if (MO.isUse()) {
1240                  if (MO.isKill()) {
1241                    if (NewMIs[0]->killsRegister(MO.getReg()))
1242                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1243                    else {
1244                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1245                             "Kill missing after load unfold!");
1246                      LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1247                    }
1248                  }
1249                } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1250                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1251                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1252                  else {
1253                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1254                           "Dead flag missing after load unfold!");
1255                    LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1256                  }
1257                }
1258              }
1259            }
1260            LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1261          }
1262
1263          SmallVector<unsigned, 4> OrigRegs;
1264          if (LIS) {
1265            for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1266                 MOE = MI.operands_end(); MOI != MOE; ++MOI) {
1267              if (MOI->isReg())
1268                OrigRegs.push_back(MOI->getReg());
1269            }
1270          }
1271
1272          MI.eraseFromParent();
1273
1274          // Update LiveIntervals.
1275          if (LIS) {
1276            MachineBasicBlock::iterator Begin(NewMIs[0]);
1277            MachineBasicBlock::iterator End(NewMIs[1]);
1278            LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1279          }
1280
1281          mi = NewMIs[1];
1282        } else {
1283          // Transforming didn't eliminate the tie and didn't lead to an
1284          // improvement. Clean up the unfolded instructions and keep the
1285          // original.
1286          DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1287          NewMIs[0]->eraseFromParent();
1288          NewMIs[1]->eraseFromParent();
1289        }
1290      }
1291    }
1292  }
1293
1294  return false;
1295}
1296
1297// Collect tied operands of MI that need to be handled.
1298// Rewrite trivial cases immediately.
1299// Return true if any tied operands where found, including the trivial ones.
1300bool TwoAddressInstructionPass::
1301collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1302  const MCInstrDesc &MCID = MI->getDesc();
1303  bool AnyOps = false;
1304  unsigned NumOps = MI->getNumOperands();
1305
1306  for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1307    unsigned DstIdx = 0;
1308    if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1309      continue;
1310    AnyOps = true;
1311    MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1312    MachineOperand &DstMO = MI->getOperand(DstIdx);
1313    unsigned SrcReg = SrcMO.getReg();
1314    unsigned DstReg = DstMO.getReg();
1315    // Tied constraint already satisfied?
1316    if (SrcReg == DstReg)
1317      continue;
1318
1319    assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1320
1321    // Deal with <undef> uses immediately - simply rewrite the src operand.
1322    if (SrcMO.isUndef()) {
1323      // Constrain the DstReg register class if required.
1324      if (TargetRegisterInfo::isVirtualRegister(DstReg))
1325        if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1326                                                             TRI, *MF))
1327          MRI->constrainRegClass(DstReg, RC);
1328      SrcMO.setReg(DstReg);
1329      DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1330      continue;
1331    }
1332    TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1333  }
1334  return AnyOps;
1335}
1336
1337// Process a list of tied MI operands that all use the same source register.
1338// The tied pairs are of the form (SrcIdx, DstIdx).
1339void
1340TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1341                                            TiedPairList &TiedPairs,
1342                                            unsigned &Dist) {
1343  bool IsEarlyClobber = false;
1344  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1345    const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1346    IsEarlyClobber |= DstMO.isEarlyClobber();
1347  }
1348
1349  bool RemovedKillFlag = false;
1350  bool AllUsesCopied = true;
1351  unsigned LastCopiedReg = 0;
1352  SlotIndex LastCopyIdx;
1353  unsigned RegB = 0;
1354  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1355    unsigned SrcIdx = TiedPairs[tpi].first;
1356    unsigned DstIdx = TiedPairs[tpi].second;
1357
1358    const MachineOperand &DstMO = MI->getOperand(DstIdx);
1359    unsigned RegA = DstMO.getReg();
1360
1361    // Grab RegB from the instruction because it may have changed if the
1362    // instruction was commuted.
1363    RegB = MI->getOperand(SrcIdx).getReg();
1364
1365    if (RegA == RegB) {
1366      // The register is tied to multiple destinations (or else we would
1367      // not have continued this far), but this use of the register
1368      // already matches the tied destination.  Leave it.
1369      AllUsesCopied = false;
1370      continue;
1371    }
1372    LastCopiedReg = RegA;
1373
1374    assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
1375           "cannot make instruction into two-address form");
1376
1377#ifndef NDEBUG
1378    // First, verify that we don't have a use of "a" in the instruction
1379    // (a = b + a for example) because our transformation will not
1380    // work. This should never occur because we are in SSA form.
1381    for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1382      assert(i == DstIdx ||
1383             !MI->getOperand(i).isReg() ||
1384             MI->getOperand(i).getReg() != RegA);
1385#endif
1386
1387    // Emit a copy.
1388    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1389            TII->get(TargetOpcode::COPY), RegA).addReg(RegB);
1390
1391    // Update DistanceMap.
1392    MachineBasicBlock::iterator PrevMI = MI;
1393    --PrevMI;
1394    DistanceMap.insert(std::make_pair(PrevMI, Dist));
1395    DistanceMap[MI] = ++Dist;
1396
1397    if (LIS) {
1398      LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot();
1399
1400      if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1401        LiveInterval &LI = LIS->getInterval(RegA);
1402        VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1403        SlotIndex endIdx =
1404          LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
1405        LI.addRange(LiveRange(LastCopyIdx, endIdx, VNI));
1406      }
1407    }
1408
1409    DEBUG(dbgs() << "\t\tprepend:\t" << *PrevMI);
1410
1411    MachineOperand &MO = MI->getOperand(SrcIdx);
1412    assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1413           "inconsistent operand info for 2-reg pass");
1414    if (MO.isKill()) {
1415      MO.setIsKill(false);
1416      RemovedKillFlag = true;
1417    }
1418
1419    // Make sure regA is a legal regclass for the SrcIdx operand.
1420    if (TargetRegisterInfo::isVirtualRegister(RegA) &&
1421        TargetRegisterInfo::isVirtualRegister(RegB))
1422      MRI->constrainRegClass(RegA, MRI->getRegClass(RegB));
1423
1424    MO.setReg(RegA);
1425
1426    // Propagate SrcRegMap.
1427    SrcRegMap[RegA] = RegB;
1428  }
1429
1430
1431  if (AllUsesCopied) {
1432    if (!IsEarlyClobber) {
1433      // Replace other (un-tied) uses of regB with LastCopiedReg.
1434      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1435        MachineOperand &MO = MI->getOperand(i);
1436        if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1437          if (MO.isKill()) {
1438            MO.setIsKill(false);
1439            RemovedKillFlag = true;
1440          }
1441          MO.setReg(LastCopiedReg);
1442        }
1443      }
1444    }
1445
1446    // Update live variables for regB.
1447    if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
1448      MachineBasicBlock::iterator PrevMI = MI;
1449      --PrevMI;
1450      LV->addVirtualRegisterKilled(RegB, PrevMI);
1451    }
1452
1453    // Update LiveIntervals.
1454    if (LIS) {
1455      LiveInterval &LI = LIS->getInterval(RegB);
1456      SlotIndex MIIdx = LIS->getInstructionIndex(MI);
1457      LiveInterval::const_iterator I = LI.find(MIIdx);
1458      assert(I != LI.end() && "RegB must be live-in to use.");
1459
1460      SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1461      if (I->end == UseIdx)
1462        LI.removeRange(LastCopyIdx, UseIdx);
1463    }
1464
1465  } else if (RemovedKillFlag) {
1466    // Some tied uses of regB matched their destination registers, so
1467    // regB is still used in this instruction, but a kill flag was
1468    // removed from a different tied use of regB, so now we need to add
1469    // a kill flag to one of the remaining uses of regB.
1470    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1471      MachineOperand &MO = MI->getOperand(i);
1472      if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1473        MO.setIsKill(true);
1474        break;
1475      }
1476    }
1477  }
1478}
1479
1480/// runOnMachineFunction - Reduce two-address instructions to two operands.
1481///
1482bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1483  MF = &Func;
1484  const TargetMachine &TM = MF->getTarget();
1485  MRI = &MF->getRegInfo();
1486  TII = TM.getInstrInfo();
1487  TRI = TM.getRegisterInfo();
1488  InstrItins = TM.getInstrItineraryData();
1489  LV = getAnalysisIfAvailable<LiveVariables>();
1490  LIS = getAnalysisIfAvailable<LiveIntervals>();
1491  AA = &getAnalysis<AliasAnalysis>();
1492  OptLevel = TM.getOptLevel();
1493
1494  bool MadeChange = false;
1495
1496  DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1497  DEBUG(dbgs() << "********** Function: "
1498        << MF->getName() << '\n');
1499
1500  // This pass takes the function out of SSA form.
1501  MRI->leaveSSA();
1502
1503  TiedOperandMap TiedOperands;
1504  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1505       MBBI != MBBE; ++MBBI) {
1506    MBB = MBBI;
1507    unsigned Dist = 0;
1508    DistanceMap.clear();
1509    SrcRegMap.clear();
1510    DstRegMap.clear();
1511    Processed.clear();
1512    for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1513         mi != me; ) {
1514      MachineBasicBlock::iterator nmi = llvm::next(mi);
1515      if (mi->isDebugValue()) {
1516        mi = nmi;
1517        continue;
1518      }
1519
1520      // Expand REG_SEQUENCE instructions. This will position mi at the first
1521      // expanded instruction.
1522      if (mi->isRegSequence())
1523        eliminateRegSequence(mi);
1524
1525      DistanceMap.insert(std::make_pair(mi, ++Dist));
1526
1527      processCopy(&*mi);
1528
1529      // First scan through all the tied register uses in this instruction
1530      // and record a list of pairs of tied operands for each register.
1531      if (!collectTiedOperands(mi, TiedOperands)) {
1532        mi = nmi;
1533        continue;
1534      }
1535
1536      ++NumTwoAddressInstrs;
1537      MadeChange = true;
1538      DEBUG(dbgs() << '\t' << *mi);
1539
1540      // If the instruction has a single pair of tied operands, try some
1541      // transformations that may either eliminate the tied operands or
1542      // improve the opportunities for coalescing away the register copy.
1543      if (TiedOperands.size() == 1) {
1544        SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs
1545          = TiedOperands.begin()->second;
1546        if (TiedPairs.size() == 1) {
1547          unsigned SrcIdx = TiedPairs[0].first;
1548          unsigned DstIdx = TiedPairs[0].second;
1549          unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
1550          unsigned DstReg = mi->getOperand(DstIdx).getReg();
1551          if (SrcReg != DstReg &&
1552              tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1553            // The tied operands have been eliminated or shifted further down the
1554            // block to ease elimination. Continue processing with 'nmi'.
1555            TiedOperands.clear();
1556            mi = nmi;
1557            continue;
1558          }
1559        }
1560      }
1561
1562      // Now iterate over the information collected above.
1563      for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1564             OE = TiedOperands.end(); OI != OE; ++OI) {
1565        processTiedPairs(mi, OI->second, Dist);
1566        DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1567      }
1568
1569      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1570      if (mi->isInsertSubreg()) {
1571        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1572        // To   %reg:subidx = COPY %subreg
1573        unsigned SubIdx = mi->getOperand(3).getImm();
1574        mi->RemoveOperand(3);
1575        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1576        mi->getOperand(0).setSubReg(SubIdx);
1577        mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1578        mi->RemoveOperand(1);
1579        mi->setDesc(TII->get(TargetOpcode::COPY));
1580        DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1581      }
1582
1583      // Clear TiedOperands here instead of at the top of the loop
1584      // since most instructions do not have tied operands.
1585      TiedOperands.clear();
1586      mi = nmi;
1587    }
1588  }
1589
1590  if (LIS)
1591    MF->verify(this, "After two-address instruction pass");
1592
1593  return MadeChange;
1594}
1595
1596/// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1597///
1598/// The instruction is turned into a sequence of sub-register copies:
1599///
1600///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1601///
1602/// Becomes:
1603///
1604///   %dst:ssub0<def,undef> = COPY %v1
1605///   %dst:ssub1<def> = COPY %v2
1606///
1607void TwoAddressInstructionPass::
1608eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1609  MachineInstr *MI = MBBI;
1610  unsigned DstReg = MI->getOperand(0).getReg();
1611  if (MI->getOperand(0).getSubReg() ||
1612      TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1613      !(MI->getNumOperands() & 1)) {
1614    DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1615    llvm_unreachable(0);
1616  }
1617
1618  SmallVector<unsigned, 4> OrigRegs;
1619  if (LIS) {
1620    OrigRegs.push_back(MI->getOperand(0).getReg());
1621    for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2)
1622      OrigRegs.push_back(MI->getOperand(i).getReg());
1623  }
1624
1625  bool DefEmitted = false;
1626  for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1627    MachineOperand &UseMO = MI->getOperand(i);
1628    unsigned SrcReg = UseMO.getReg();
1629    unsigned SubIdx = MI->getOperand(i+1).getImm();
1630    // Nothing needs to be inserted for <undef> operands.
1631    if (UseMO.isUndef())
1632      continue;
1633
1634    // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1635    // might insert a COPY that uses SrcReg after is was killed.
1636    bool isKill = UseMO.isKill();
1637    if (isKill)
1638      for (unsigned j = i + 2; j < e; j += 2)
1639        if (MI->getOperand(j).getReg() == SrcReg) {
1640          MI->getOperand(j).setIsKill();
1641          UseMO.setIsKill(false);
1642          isKill = false;
1643          break;
1644        }
1645
1646    // Insert the sub-register copy.
1647    MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1648                                   TII->get(TargetOpcode::COPY))
1649      .addReg(DstReg, RegState::Define, SubIdx)
1650      .addOperand(UseMO);
1651
1652    // The first def needs an <undef> flag because there is no live register
1653    // before it.
1654    if (!DefEmitted) {
1655      CopyMI->getOperand(0).setIsUndef(true);
1656      // Return an iterator pointing to the first inserted instr.
1657      MBBI = CopyMI;
1658    }
1659    DefEmitted = true;
1660
1661    // Update LiveVariables' kill info.
1662    if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1663      LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1664
1665    DEBUG(dbgs() << "Inserted: " << *CopyMI);
1666  }
1667
1668  MachineBasicBlock::iterator EndMBBI =
1669      llvm::next(MachineBasicBlock::iterator(MI));
1670
1671  if (!DefEmitted) {
1672    DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1673    MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1674    for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1675      MI->RemoveOperand(j);
1676  } else {
1677    DEBUG(dbgs() << "Eliminated: " << *MI);
1678    MI->eraseFromParent();
1679  }
1680
1681  // Udpate LiveIntervals.
1682  if (LIS)
1683    LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1684}
1685