VirtRegMap.cpp revision 19fb06e74b84acd238aec9e48c6c9a8f476d1ee8
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/DepthFirstIterator.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/ADT/SmallSet.h"
37#include <algorithm>
38using namespace llvm;
39
40STATISTIC(NumSpills  , "Number of register spills");
41STATISTIC(NumPSpills , "Number of physical register spills");
42STATISTIC(NumReMats  , "Number of re-materialization");
43STATISTIC(NumDRM     , "Number of re-materializable defs elided");
44STATISTIC(NumStores  , "Number of stores added");
45STATISTIC(NumLoads   , "Number of loads added");
46STATISTIC(NumReused  , "Number of values reused");
47STATISTIC(NumDSE     , "Number of dead stores elided");
48STATISTIC(NumDCE     , "Number of copies elided");
49STATISTIC(NumDSS     , "Number of dead spill slots removed");
50STATISTIC(NumCommutes, "Number of instructions commuted");
51STATISTIC(NumOmitted , "Number of reloads omited");
52STATISTIC(NumCopified, "Number of available reloads turned into copies");
53
54namespace {
55  enum SpillerName { simple, local };
56}
57
58static cl::opt<SpillerName>
59SpillerOpt("spiller",
60           cl::desc("Spiller to use: (default: local)"),
61           cl::Prefix,
62           cl::values(clEnumVal(simple, "simple spiller"),
63                      clEnumVal(local,  "local spiller"),
64                      clEnumValEnd),
65           cl::init(local));
66
67//===----------------------------------------------------------------------===//
68//  VirtRegMap implementation
69//===----------------------------------------------------------------------===//
70
71VirtRegMap::VirtRegMap(MachineFunction &mf)
72  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
73    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
74    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
75    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1),
76    LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) {
77  SpillSlotToUsesMap.resize(8);
78  ImplicitDefed.resize(MF.getRegInfo().getLastVirtReg()+1-
79                       TargetRegisterInfo::FirstVirtualRegister);
80  grow();
81}
82
83void VirtRegMap::grow() {
84  unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
85  Virt2PhysMap.grow(LastVirtReg);
86  Virt2StackSlotMap.grow(LastVirtReg);
87  Virt2ReMatIdMap.grow(LastVirtReg);
88  Virt2SplitMap.grow(LastVirtReg);
89  Virt2SplitKillMap.grow(LastVirtReg);
90  ReMatMap.grow(LastVirtReg);
91  ImplicitDefed.resize(LastVirtReg-TargetRegisterInfo::FirstVirtualRegister+1);
92}
93
94int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
95  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
96  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
97         "attempt to assign stack slot to already spilled register");
98  const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
99  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
100                                                RC->getAlignment());
101  if (LowSpillSlot == NO_STACK_SLOT)
102    LowSpillSlot = SS;
103  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
104    HighSpillSlot = SS;
105  unsigned Idx = SS-LowSpillSlot;
106  while (Idx >= SpillSlotToUsesMap.size())
107    SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2);
108  Virt2StackSlotMap[virtReg] = SS;
109  ++NumSpills;
110  return SS;
111}
112
113void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
114  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
115  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
116         "attempt to assign stack slot to already spilled register");
117  assert((SS >= 0 ||
118          (SS >= MF.getFrameInfo()->getObjectIndexBegin())) &&
119         "illegal fixed frame index");
120  Virt2StackSlotMap[virtReg] = SS;
121}
122
123int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
124  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
125  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
126         "attempt to assign re-mat id to already spilled register");
127  Virt2ReMatIdMap[virtReg] = ReMatId;
128  return ReMatId++;
129}
130
131void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
132  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
133  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
134         "attempt to assign re-mat id to already spilled register");
135  Virt2ReMatIdMap[virtReg] = id;
136}
137
138int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
139  std::map<const TargetRegisterClass*, int>::iterator I =
140    EmergencySpillSlots.find(RC);
141  if (I != EmergencySpillSlots.end())
142    return I->second;
143  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
144                                                RC->getAlignment());
145  if (LowSpillSlot == NO_STACK_SLOT)
146    LowSpillSlot = SS;
147  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
148    HighSpillSlot = SS;
149  EmergencySpillSlots[RC] = SS;
150  return SS;
151}
152
153void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
154  if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) {
155    // If FI < LowSpillSlot, this stack reference was produced by
156    // instruction selection and is not a spill
157    if (FI >= LowSpillSlot) {
158      assert(FI >= 0 && "Spill slot index should not be negative!");
159      assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
160             && "Invalid spill slot");
161      SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI);
162    }
163  }
164}
165
166void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
167                            MachineInstr *NewMI, ModRef MRInfo) {
168  // Move previous memory references folded to new instruction.
169  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
170  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
171         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
172    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
173    MI2VirtMap.erase(I++);
174  }
175
176  // add new memory reference
177  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
178}
179
180void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
181  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
182  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
183}
184
185void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
186  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
187    MachineOperand &MO = MI->getOperand(i);
188    if (!MO.isFI())
189      continue;
190    int FI = MO.getIndex();
191    if (MF.getFrameInfo()->isFixedObjectIndex(FI))
192      continue;
193    // This stack reference was produced by instruction selection and
194    // is not a spill
195    if (FI < LowSpillSlot)
196      continue;
197    assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
198           && "Invalid spill slot");
199    SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
200  }
201  MI2VirtMap.erase(MI);
202  SpillPt2VirtMap.erase(MI);
203  RestorePt2VirtMap.erase(MI);
204  EmergencySpillMap.erase(MI);
205}
206
207void VirtRegMap::print(std::ostream &OS) const {
208  const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
209
210  OS << "********** REGISTER MAP **********\n";
211  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
212         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
213    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
214      OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i])
215         << "]\n";
216  }
217
218  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
219         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
220    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
221      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
222  OS << '\n';
223}
224
225void VirtRegMap::dump() const {
226  print(cerr);
227}
228
229
230//===----------------------------------------------------------------------===//
231// Simple Spiller Implementation
232//===----------------------------------------------------------------------===//
233
234Spiller::~Spiller() {}
235
236namespace {
237  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
238    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
239  };
240}
241
242bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
243  DOUT << "********** REWRITE MACHINE CODE **********\n";
244  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
245  const TargetMachine &TM = MF.getTarget();
246  const TargetInstrInfo &TII = *TM.getInstrInfo();
247  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
248
249
250  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
251  // each vreg once (in the case where a spilled vreg is used by multiple
252  // operands).  This is always smaller than the number of operands to the
253  // current machine instr, so it should be small.
254  std::vector<unsigned> LoadedRegs;
255
256  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
257       MBBI != E; ++MBBI) {
258    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
259    MachineBasicBlock &MBB = *MBBI;
260    for (MachineBasicBlock::iterator MII = MBB.begin(),
261           E = MBB.end(); MII != E; ++MII) {
262      MachineInstr &MI = *MII;
263      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
264        MachineOperand &MO = MI.getOperand(i);
265        if (MO.isReg() && MO.getReg()) {
266          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
267            unsigned VirtReg = MO.getReg();
268            unsigned SubIdx = MO.getSubReg();
269            unsigned PhysReg = VRM.getPhys(VirtReg);
270            unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
271            if (!VRM.isAssignedReg(VirtReg)) {
272              int StackSlot = VRM.getStackSlot(VirtReg);
273              const TargetRegisterClass* RC =
274                MF.getRegInfo().getRegClass(VirtReg);
275
276              if (MO.isUse() &&
277                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
278                  == LoadedRegs.end()) {
279                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
280                MachineInstr *LoadMI = prior(MII);
281                VRM.addSpillSlotUse(StackSlot, LoadMI);
282                LoadedRegs.push_back(VirtReg);
283                ++NumLoads;
284                DOUT << '\t' << *LoadMI;
285              }
286
287              if (MO.isDef()) {
288                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
289                                        StackSlot, RC);
290                MachineInstr *StoreMI = next(MII);
291                VRM.addSpillSlotUse(StackSlot, StoreMI);
292                ++NumStores;
293              }
294            }
295            MF.getRegInfo().setPhysRegUsed(RReg);
296            MI.getOperand(i).setReg(RReg);
297          } else {
298            MF.getRegInfo().setPhysRegUsed(MO.getReg());
299          }
300        }
301      }
302
303      DOUT << '\t' << MI;
304      LoadedRegs.clear();
305    }
306  }
307  return true;
308}
309
310//===----------------------------------------------------------------------===//
311//  Local Spiller Implementation
312//===----------------------------------------------------------------------===//
313
314/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
315/// top down, keep track of which spills slots or remat are available in each
316/// register.
317///
318/// Note that not all physregs are created equal here.  In particular, some
319/// physregs are reloads that we are allowed to clobber or ignore at any time.
320/// Other physregs are values that the register allocated program is using that
321/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
322/// per-stack-slot / remat id basis as the low bit in the value of the
323/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
324/// this bit and addAvailable sets it if.
325namespace {
326class VISIBILITY_HIDDEN AvailableSpills {
327  const TargetRegisterInfo *TRI;
328  const TargetInstrInfo *TII;
329
330  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
331  // or remat'ed virtual register values that are still available, due to being
332  // loaded or stored to, but not invalidated yet.
333  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
334
335  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
336  // indicating which stack slot values are currently held by a physreg.  This
337  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
338  // physreg is modified.
339  std::multimap<unsigned, int> PhysRegsAvailable;
340
341  void disallowClobberPhysRegOnly(unsigned PhysReg);
342
343  void ClobberPhysRegOnly(unsigned PhysReg);
344public:
345  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
346    : TRI(tri), TII(tii) {
347  }
348
349  /// clear - Reset the state.
350  void clear() {
351    SpillSlotsOrReMatsAvailable.clear();
352    PhysRegsAvailable.clear();
353  }
354
355  const TargetRegisterInfo *getRegInfo() const { return TRI; }
356
357  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
358  /// available in a  physical register, return that PhysReg, otherwise
359  /// return 0.
360  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
361    std::map<int, unsigned>::const_iterator I =
362      SpillSlotsOrReMatsAvailable.find(Slot);
363    if (I != SpillSlotsOrReMatsAvailable.end()) {
364      return I->second >> 1;  // Remove the CanClobber bit.
365    }
366    return 0;
367  }
368
369  /// addAvailable - Mark that the specified stack slot / remat is available in
370  /// the specified physreg.  If CanClobber is true, the physreg can be modified
371  /// at any time without changing the semantics of the program.
372  void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
373    // If this stack slot is thought to be available in some other physreg,
374    // remove its record.
375    ModifyStackSlotOrReMat(SlotOrReMat);
376
377    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
378    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
379
380    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
381      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
382    else
383      DOUT << "Remembering SS#" << SlotOrReMat;
384    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
385  }
386
387  /// canClobberPhysReg - Return true if the spiller is allowed to change the
388  /// value of the specified stackslot register if it desires.  The specified
389  /// stack slot must be available in a physreg for this query to make sense.
390  bool canClobberPhysReg(int SlotOrReMat) const {
391    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
392           "Value not available!");
393    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
394  }
395
396  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
397  /// stackslot register. The register is still available but is no longer
398  /// allowed to be modifed.
399  void disallowClobberPhysReg(unsigned PhysReg);
400
401  /// ClobberPhysReg - This is called when the specified physreg changes
402  /// value.  We use this to invalidate any info about stuff that lives in
403  /// it and any of its aliases.
404  void ClobberPhysReg(unsigned PhysReg);
405
406  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
407  /// slot changes.  This removes information about which register the previous
408  /// value for this slot lives in (as the previous value is dead now).
409  void ModifyStackSlotOrReMat(int SlotOrReMat);
410
411  void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB);
412};
413}
414
415/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
416/// stackslot register. The register is still available but is no longer
417/// allowed to be modifed.
418void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
419  std::multimap<unsigned, int>::iterator I =
420    PhysRegsAvailable.lower_bound(PhysReg);
421  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
422    int SlotOrReMat = I->second;
423    I++;
424    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
425           "Bidirectional map mismatch!");
426    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
427    DOUT << "PhysReg " << TRI->getName(PhysReg)
428         << " copied, it is available for use but can no longer be modified\n";
429  }
430}
431
432/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
433/// stackslot register and its aliases. The register and its aliases may
434/// still available but is no longer allowed to be modifed.
435void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
436  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
437    disallowClobberPhysRegOnly(*AS);
438  disallowClobberPhysRegOnly(PhysReg);
439}
440
441/// ClobberPhysRegOnly - This is called when the specified physreg changes
442/// value.  We use this to invalidate any info about stuff we thing lives in it.
443void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
444  std::multimap<unsigned, int>::iterator I =
445    PhysRegsAvailable.lower_bound(PhysReg);
446  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
447    int SlotOrReMat = I->second;
448    PhysRegsAvailable.erase(I++);
449    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
450           "Bidirectional map mismatch!");
451    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
452    DOUT << "PhysReg " << TRI->getName(PhysReg)
453         << " clobbered, invalidating ";
454    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
455      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
456    else
457      DOUT << "SS#" << SlotOrReMat << "\n";
458  }
459}
460
461/// ClobberPhysReg - This is called when the specified physreg changes
462/// value.  We use this to invalidate any info about stuff we thing lives in
463/// it and any of its aliases.
464void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
465  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
466    ClobberPhysRegOnly(*AS);
467  ClobberPhysRegOnly(PhysReg);
468}
469
470/// ModifyStackSlotOrReMat - This method is called when the value in a stack
471/// slot changes.  This removes information about which register the previous
472/// value for this slot lives in (as the previous value is dead now).
473void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
474  std::map<int, unsigned>::iterator It =
475    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
476  if (It == SpillSlotsOrReMatsAvailable.end()) return;
477  unsigned Reg = It->second >> 1;
478  SpillSlotsOrReMatsAvailable.erase(It);
479
480  // This register may hold the value of multiple stack slots, only remove this
481  // stack slot from the set of values the register contains.
482  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
483  for (; ; ++I) {
484    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
485           "Map inverse broken!");
486    if (I->second == SlotOrReMat) break;
487  }
488  PhysRegsAvailable.erase(I);
489}
490
491/// AddAvailableRegsToLiveIn - Availability information is being kept coming
492/// into the specified MBB. Add available physical registers as live-in's
493/// so register scavenger and post-allocation scheduler are happy.
494void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB) {
495  for (std::multimap<unsigned, int>::iterator
496         I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
497       I != E; ++I) {
498    unsigned Reg = (*I).first;
499    const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
500    // FIXME: A temporary workaround. We can't reuse available value if it's
501    // not safe to move the def of the virtual register's class. e.g.
502    // X86::RFP* register classes. Do not add it as a live-in.
503    if (!TII->isSafeToMoveRegClassDefs(RC))
504      continue;
505    if (!MBB.isLiveIn(Reg))
506      MBB.addLiveIn(Reg);
507  }
508}
509
510/// findSinglePredSuccessor - Return via reference a vector of machine basic
511/// blocks each of which is a successor of the specified BB and has no other
512/// predecessor.
513static void findSinglePredSuccessor(MachineBasicBlock *MBB,
514                                   SmallVectorImpl<MachineBasicBlock *> &Succs) {
515  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
516         SE = MBB->succ_end(); SI != SE; ++SI) {
517    MachineBasicBlock *SuccMBB = *SI;
518    if (SuccMBB->pred_size() == 1)
519      Succs.push_back(SuccMBB);
520  }
521}
522
523namespace {
524  /// LocalSpiller - This spiller does a simple pass over the machine basic
525  /// block to attempt to keep spills in registers as much as possible for
526  /// blocks that have low register pressure (the vreg may be spilled due to
527  /// register pressure in other blocks).
528  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
529    MachineRegisterInfo *RegInfo;
530    const TargetRegisterInfo *TRI;
531    const TargetInstrInfo *TII;
532    DenseMap<MachineInstr*, unsigned> DistanceMap;
533  public:
534    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
535      RegInfo = &MF.getRegInfo();
536      TRI = MF.getTarget().getRegisterInfo();
537      TII = MF.getTarget().getInstrInfo();
538      DOUT << "\n**** Local spiller rewriting function '"
539           << MF.getFunction()->getName() << "':\n";
540      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
541              " ****\n";
542      DEBUG(MF.dump());
543
544      // Spills - Keep track of which spilled values are available in physregs
545      // so that we can choose to reuse the physregs instead of emitting
546      // reloads. This is usually refreshed per basic block.
547      AvailableSpills Spills(TRI, TII);
548
549      // SingleEntrySuccs - Successor blocks which have a single predecessor.
550      SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
551      SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
552
553      // Traverse the basic blocks depth first.
554      MachineBasicBlock *Entry = MF.begin();
555      SmallPtrSet<MachineBasicBlock*,16> Visited;
556      for (df_ext_iterator<MachineBasicBlock*,
557             SmallPtrSet<MachineBasicBlock*,16> >
558             DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
559           DFI != E; ++DFI) {
560        MachineBasicBlock *MBB = *DFI;
561        if (!EarlyVisited.count(MBB))
562          RewriteMBB(*MBB, VRM, Spills);
563
564        // If this MBB is the only predecessor of a successor. Keep the
565        // availability information and visit it next.
566        do {
567          // Keep visiting single predecessor successor as long as possible.
568          SinglePredSuccs.clear();
569          findSinglePredSuccessor(MBB, SinglePredSuccs);
570          if (SinglePredSuccs.empty())
571            MBB = 0;
572          else {
573            // FIXME: More than one successors, each of which has MBB has
574            // the only predecessor.
575            MBB = SinglePredSuccs[0];
576            if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
577              Spills.AddAvailableRegsToLiveIn(*MBB);
578              RewriteMBB(*MBB, VRM, Spills);
579            }
580          }
581        } while (MBB);
582
583        // Clear the availability info.
584        Spills.clear();
585      }
586
587      DOUT << "**** Post Machine Instrs ****\n";
588      DEBUG(MF.dump());
589
590      // Mark unused spill slots.
591      MachineFrameInfo *MFI = MF.getFrameInfo();
592      int SS = VRM.getLowSpillSlot();
593      if (SS != VirtRegMap::NO_STACK_SLOT)
594        for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
595          if (!VRM.isSpillSlotUsed(SS)) {
596            MFI->RemoveStackObject(SS);
597            ++NumDSS;
598          }
599
600      return true;
601    }
602  private:
603    void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
604                          unsigned Reg, BitVector &RegKills,
605                          std::vector<MachineOperand*> &KillOps);
606    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
607                           MachineBasicBlock::iterator &MII,
608                           std::vector<MachineInstr*> &MaybeDeadStores,
609                           AvailableSpills &Spills, BitVector &RegKills,
610                           std::vector<MachineOperand*> &KillOps,
611                           VirtRegMap &VRM);
612    bool CommuteToFoldReload(MachineBasicBlock &MBB,
613                             MachineBasicBlock::iterator &MII,
614                             unsigned VirtReg, unsigned SrcReg, int SS,
615                             BitVector &RegKills,
616                             std::vector<MachineOperand*> &KillOps,
617                             const TargetRegisterInfo *TRI,
618                             VirtRegMap &VRM);
619    void SpillRegToStackSlot(MachineBasicBlock &MBB,
620                             MachineBasicBlock::iterator &MII,
621                             int Idx, unsigned PhysReg, int StackSlot,
622                             const TargetRegisterClass *RC,
623                             bool isAvailable, MachineInstr *&LastStore,
624                             AvailableSpills &Spills,
625                             SmallSet<MachineInstr*, 4> &ReMatDefs,
626                             BitVector &RegKills,
627                             std::vector<MachineOperand*> &KillOps,
628                             VirtRegMap &VRM);
629    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
630                    AvailableSpills &Spills);
631  };
632}
633
634/// InvalidateKills - MI is going to be deleted. If any of its operands are
635/// marked kill, then invalidate the information.
636static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
637                            std::vector<MachineOperand*> &KillOps,
638                            SmallVector<unsigned, 2> *KillRegs = NULL) {
639  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
640    MachineOperand &MO = MI.getOperand(i);
641    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
642      continue;
643    unsigned Reg = MO.getReg();
644    if (TargetRegisterInfo::isVirtualRegister(Reg))
645      continue;
646    if (KillRegs)
647      KillRegs->push_back(Reg);
648    assert(Reg < KillOps.size());
649    if (KillOps[Reg] == &MO) {
650      RegKills.reset(Reg);
651      KillOps[Reg] = NULL;
652    }
653  }
654}
655
656/// InvalidateKill - A MI that defines the specified register is being deleted,
657/// invalidate the register kill information.
658static void InvalidateKill(unsigned Reg, BitVector &RegKills,
659                           std::vector<MachineOperand*> &KillOps) {
660  if (RegKills[Reg]) {
661    KillOps[Reg]->setIsKill(false);
662    KillOps[Reg] = NULL;
663    RegKills.reset(Reg);
664  }
665}
666
667/// InvalidateRegDef - If the def operand of the specified def MI is now dead
668/// (since it's spill instruction is removed), mark it isDead. Also checks if
669/// the def MI has other definition operands that are not dead. Returns it by
670/// reference.
671static bool InvalidateRegDef(MachineBasicBlock::iterator I,
672                             MachineInstr &NewDef, unsigned Reg,
673                             bool &HasLiveDef) {
674  // Due to remat, it's possible this reg isn't being reused. That is,
675  // the def of this reg (by prev MI) is now dead.
676  MachineInstr *DefMI = I;
677  MachineOperand *DefOp = NULL;
678  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
679    MachineOperand &MO = DefMI->getOperand(i);
680    if (MO.isReg() && MO.isDef()) {
681      if (MO.getReg() == Reg)
682        DefOp = &MO;
683      else if (!MO.isDead())
684        HasLiveDef = true;
685    }
686  }
687  if (!DefOp)
688    return false;
689
690  bool FoundUse = false, Done = false;
691  MachineBasicBlock::iterator E = &NewDef;
692  ++I; ++E;
693  for (; !Done && I != E; ++I) {
694    MachineInstr *NMI = I;
695    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
696      MachineOperand &MO = NMI->getOperand(j);
697      if (!MO.isReg() || MO.getReg() != Reg)
698        continue;
699      if (MO.isUse())
700        FoundUse = true;
701      Done = true; // Stop after scanning all the operands of this MI.
702    }
703  }
704  if (!FoundUse) {
705    // Def is dead!
706    DefOp->setIsDead();
707    return true;
708  }
709  return false;
710}
711
712/// UpdateKills - Track and update kill info. If a MI reads a register that is
713/// marked kill, then it must be due to register reuse. Transfer the kill info
714/// over.
715static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
716                        std::vector<MachineOperand*> &KillOps,
717                        const TargetRegisterInfo* TRI) {
718  const TargetInstrDesc &TID = MI.getDesc();
719  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
720    MachineOperand &MO = MI.getOperand(i);
721    if (!MO.isReg() || !MO.isUse())
722      continue;
723    unsigned Reg = MO.getReg();
724    if (Reg == 0)
725      continue;
726
727    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
728      // That can't be right. Register is killed but not re-defined and it's
729      // being reused. Let's fix that.
730      KillOps[Reg]->setIsKill(false);
731      KillOps[Reg] = NULL;
732      RegKills.reset(Reg);
733      if (i < TID.getNumOperands() &&
734          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
735        // Unless it's a two-address operand, this is the new kill.
736        MO.setIsKill();
737    }
738    if (MO.isKill()) {
739      RegKills.set(Reg);
740      KillOps[Reg] = &MO;
741    }
742  }
743
744  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
745    const MachineOperand &MO = MI.getOperand(i);
746    if (!MO.isReg() || !MO.isDef())
747      continue;
748    unsigned Reg = MO.getReg();
749    RegKills.reset(Reg);
750    KillOps[Reg] = NULL;
751    // It also defines (or partially define) aliases.
752    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
753      RegKills.reset(*AS);
754      KillOps[*AS] = NULL;
755    }
756  }
757}
758
759/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
760///
761static void ReMaterialize(MachineBasicBlock &MBB,
762                          MachineBasicBlock::iterator &MII,
763                          unsigned DestReg, unsigned Reg,
764                          const TargetInstrInfo *TII,
765                          const TargetRegisterInfo *TRI,
766                          VirtRegMap &VRM) {
767  TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
768  MachineInstr *NewMI = prior(MII);
769  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
770    MachineOperand &MO = NewMI->getOperand(i);
771    if (!MO.isReg() || MO.getReg() == 0)
772      continue;
773    unsigned VirtReg = MO.getReg();
774    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
775      continue;
776    assert(MO.isUse());
777    unsigned SubIdx = MO.getSubReg();
778    unsigned Phys = VRM.getPhys(VirtReg);
779    assert(Phys);
780    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
781    MO.setReg(RReg);
782  }
783  ++NumReMats;
784}
785
786
787// ReusedOp - For each reused operand, we keep track of a bit of information, in
788// case we need to rollback upon processing a new operand.  See comments below.
789namespace {
790  struct ReusedOp {
791    // The MachineInstr operand that reused an available value.
792    unsigned Operand;
793
794    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
795    unsigned StackSlotOrReMat;
796
797    // PhysRegReused - The physical register the value was available in.
798    unsigned PhysRegReused;
799
800    // AssignedPhysReg - The physreg that was assigned for use by the reload.
801    unsigned AssignedPhysReg;
802
803    // VirtReg - The virtual register itself.
804    unsigned VirtReg;
805
806    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
807             unsigned vreg)
808      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
809        AssignedPhysReg(apr), VirtReg(vreg) {}
810  };
811
812  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
813  /// is reused instead of reloaded.
814  class VISIBILITY_HIDDEN ReuseInfo {
815    MachineInstr &MI;
816    std::vector<ReusedOp> Reuses;
817    BitVector PhysRegsClobbered;
818  public:
819    ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
820      PhysRegsClobbered.resize(tri->getNumRegs());
821    }
822
823    bool hasReuses() const {
824      return !Reuses.empty();
825    }
826
827    /// addReuse - If we choose to reuse a virtual register that is already
828    /// available instead of reloading it, remember that we did so.
829    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
830                  unsigned PhysRegReused, unsigned AssignedPhysReg,
831                  unsigned VirtReg) {
832      // If the reload is to the assigned register anyway, no undo will be
833      // required.
834      if (PhysRegReused == AssignedPhysReg) return;
835
836      // Otherwise, remember this.
837      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
838                                AssignedPhysReg, VirtReg));
839    }
840
841    void markClobbered(unsigned PhysReg) {
842      PhysRegsClobbered.set(PhysReg);
843    }
844
845    bool isClobbered(unsigned PhysReg) const {
846      return PhysRegsClobbered.test(PhysReg);
847    }
848
849    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
850    /// is some other operand that is using the specified register, either pick
851    /// a new register to use, or evict the previous reload and use this reg.
852    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
853                             AvailableSpills &Spills,
854                             std::vector<MachineInstr*> &MaybeDeadStores,
855                             SmallSet<unsigned, 8> &Rejected,
856                             BitVector &RegKills,
857                             std::vector<MachineOperand*> &KillOps,
858                             VirtRegMap &VRM) {
859      const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
860                                   .getInstrInfo();
861
862      if (Reuses.empty()) return PhysReg;  // This is most often empty.
863
864      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
865        ReusedOp &Op = Reuses[ro];
866        // If we find some other reuse that was supposed to use this register
867        // exactly for its reload, we can change this reload to use ITS reload
868        // register. That is, unless its reload register has already been
869        // considered and subsequently rejected because it has also been reused
870        // by another operand.
871        if (Op.PhysRegReused == PhysReg &&
872            Rejected.count(Op.AssignedPhysReg) == 0) {
873          // Yup, use the reload register that we didn't use before.
874          unsigned NewReg = Op.AssignedPhysReg;
875          Rejected.insert(PhysReg);
876          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
877                                 RegKills, KillOps, VRM);
878        } else {
879          // Otherwise, we might also have a problem if a previously reused
880          // value aliases the new register.  If so, codegen the previous reload
881          // and use this one.
882          unsigned PRRU = Op.PhysRegReused;
883          const TargetRegisterInfo *TRI = Spills.getRegInfo();
884          if (TRI->areAliases(PRRU, PhysReg)) {
885            // Okay, we found out that an alias of a reused register
886            // was used.  This isn't good because it means we have
887            // to undo a previous reuse.
888            MachineBasicBlock *MBB = MI->getParent();
889            const TargetRegisterClass *AliasRC =
890              MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
891
892            // Copy Op out of the vector and remove it, we're going to insert an
893            // explicit load for it.
894            ReusedOp NewOp = Op;
895            Reuses.erase(Reuses.begin()+ro);
896
897            // Ok, we're going to try to reload the assigned physreg into the
898            // slot that we were supposed to in the first place.  However, that
899            // register could hold a reuse.  Check to see if it conflicts or
900            // would prefer us to use a different register.
901            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
902                                                  MI, Spills, MaybeDeadStores,
903                                              Rejected, RegKills, KillOps, VRM);
904
905            MachineBasicBlock::iterator MII = MI;
906            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
907              ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
908            } else {
909              TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
910                                        NewOp.StackSlotOrReMat, AliasRC);
911              MachineInstr *LoadMI = prior(MII);
912              VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
913              // Any stores to this stack slot are not dead anymore.
914              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
915              ++NumLoads;
916            }
917            Spills.ClobberPhysReg(NewPhysReg);
918            Spills.ClobberPhysReg(NewOp.PhysRegReused);
919
920            unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
921            unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
922            MI->getOperand(NewOp.Operand).setReg(RReg);
923
924            Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
925            --MII;
926            UpdateKills(*MII, RegKills, KillOps, TRI);
927            DOUT << '\t' << *MII;
928
929            DOUT << "Reuse undone!\n";
930            --NumReused;
931
932            // Finally, PhysReg is now available, go ahead and use it.
933            return PhysReg;
934          }
935        }
936      }
937      return PhysReg;
938    }
939
940    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
941    /// 'Rejected' set to remember which registers have been considered and
942    /// rejected for the reload. This avoids infinite looping in case like
943    /// this:
944    /// t1 := op t2, t3
945    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
946    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
947    /// t1 <- desires r1
948    ///       sees r1 is taken by t2, tries t2's reload register r0
949    ///       sees r0 is taken by t3, tries t3's reload register r1
950    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
951    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
952                             AvailableSpills &Spills,
953                             std::vector<MachineInstr*> &MaybeDeadStores,
954                             BitVector &RegKills,
955                             std::vector<MachineOperand*> &KillOps,
956                             VirtRegMap &VRM) {
957      SmallSet<unsigned, 8> Rejected;
958      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
959                             RegKills, KillOps, VRM);
960    }
961  };
962}
963
964/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
965/// instruction. e.g.
966///     xorl  %edi, %eax
967///     movl  %eax, -32(%ebp)
968///     movl  -36(%ebp), %eax
969///     orl   %eax, -32(%ebp)
970/// ==>
971///     xorl  %edi, %eax
972///     orl   -36(%ebp), %eax
973///     mov   %eax, -32(%ebp)
974/// This enables unfolding optimization for a subsequent instruction which will
975/// also eliminate the newly introduced store instruction.
976bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
977                                    MachineBasicBlock::iterator &MII,
978                                    std::vector<MachineInstr*> &MaybeDeadStores,
979                                    AvailableSpills &Spills,
980                                    BitVector &RegKills,
981                                    std::vector<MachineOperand*> &KillOps,
982                                    VirtRegMap &VRM) {
983  MachineFunction &MF = *MBB.getParent();
984  MachineInstr &MI = *MII;
985  unsigned UnfoldedOpc = 0;
986  unsigned UnfoldPR = 0;
987  unsigned UnfoldVR = 0;
988  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
989  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
990  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
991    // Only transform a MI that folds a single register.
992    if (UnfoldedOpc)
993      return false;
994    UnfoldVR = I->second.first;
995    VirtRegMap::ModRef MR = I->second.second;
996    // MI2VirtMap be can updated which invalidate the iterator.
997    // Increment the iterator first.
998    ++I;
999    if (VRM.isAssignedReg(UnfoldVR))
1000      continue;
1001    // If this reference is not a use, any previous store is now dead.
1002    // Otherwise, the store to this stack slot is not dead anymore.
1003    FoldedSS = VRM.getStackSlot(UnfoldVR);
1004    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1005    if (DeadStore && (MR & VirtRegMap::isModRef)) {
1006      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1007      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1008        continue;
1009      UnfoldPR = PhysReg;
1010      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1011                                                    false, true);
1012    }
1013  }
1014
1015  if (!UnfoldedOpc)
1016    return false;
1017
1018  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1019    MachineOperand &MO = MI.getOperand(i);
1020    if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1021      continue;
1022    unsigned VirtReg = MO.getReg();
1023    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1024      continue;
1025    if (VRM.isAssignedReg(VirtReg)) {
1026      unsigned PhysReg = VRM.getPhys(VirtReg);
1027      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1028        return false;
1029    } else if (VRM.isReMaterialized(VirtReg))
1030      continue;
1031    int SS = VRM.getStackSlot(VirtReg);
1032    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1033    if (PhysReg) {
1034      if (TRI->regsOverlap(PhysReg, UnfoldPR))
1035        return false;
1036      continue;
1037    }
1038    if (VRM.hasPhys(VirtReg)) {
1039      PhysReg = VRM.getPhys(VirtReg);
1040      if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1041        continue;
1042    }
1043
1044    // Ok, we'll need to reload the value into a register which makes
1045    // it impossible to perform the store unfolding optimization later.
1046    // Let's see if it is possible to fold the load if the store is
1047    // unfolded. This allows us to perform the store unfolding
1048    // optimization.
1049    SmallVector<MachineInstr*, 4> NewMIs;
1050    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1051      assert(NewMIs.size() == 1);
1052      MachineInstr *NewMI = NewMIs.back();
1053      NewMIs.clear();
1054      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1055      assert(Idx != -1);
1056      SmallVector<unsigned, 1> Ops;
1057      Ops.push_back(Idx);
1058      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1059      if (FoldedMI) {
1060        VRM.addSpillSlotUse(SS, FoldedMI);
1061        if (!VRM.hasPhys(UnfoldVR))
1062          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1063        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1064        MII = MBB.insert(MII, FoldedMI);
1065        InvalidateKills(MI, RegKills, KillOps);
1066        VRM.RemoveMachineInstrFromMaps(&MI);
1067        MBB.erase(&MI);
1068        MF.DeleteMachineInstr(NewMI);
1069        return true;
1070      }
1071      MF.DeleteMachineInstr(NewMI);
1072    }
1073  }
1074  return false;
1075}
1076
1077/// CommuteToFoldReload -
1078/// Look for
1079/// r1 = load fi#1
1080/// r1 = op r1, r2<kill>
1081/// store r1, fi#1
1082///
1083/// If op is commutable and r2 is killed, then we can xform these to
1084/// r2 = op r2, fi#1
1085/// store r2, fi#1
1086bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
1087                                    MachineBasicBlock::iterator &MII,
1088                                    unsigned VirtReg, unsigned SrcReg, int SS,
1089                                    BitVector &RegKills,
1090                                    std::vector<MachineOperand*> &KillOps,
1091                                    const TargetRegisterInfo *TRI,
1092                                    VirtRegMap &VRM) {
1093  if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1094    return false;
1095
1096  MachineFunction &MF = *MBB.getParent();
1097  MachineInstr &MI = *MII;
1098  MachineBasicBlock::iterator DefMII = prior(MII);
1099  MachineInstr *DefMI = DefMII;
1100  const TargetInstrDesc &TID = DefMI->getDesc();
1101  unsigned NewDstIdx;
1102  if (DefMII != MBB.begin() &&
1103      TID.isCommutable() &&
1104      TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
1105    MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1106    unsigned NewReg = NewDstMO.getReg();
1107    if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1108      return false;
1109    MachineInstr *ReloadMI = prior(DefMII);
1110    int FrameIdx;
1111    unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1112    if (DestReg != SrcReg || FrameIdx != SS)
1113      return false;
1114    int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1115    if (UseIdx == -1)
1116      return false;
1117    int DefIdx = TID.getOperandConstraint(UseIdx, TOI::TIED_TO);
1118    if (DefIdx == -1)
1119      return false;
1120    assert(DefMI->getOperand(DefIdx).isReg() &&
1121           DefMI->getOperand(DefIdx).getReg() == SrcReg);
1122
1123    // Now commute def instruction.
1124    MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1125    if (!CommutedMI)
1126      return false;
1127    SmallVector<unsigned, 1> Ops;
1128    Ops.push_back(NewDstIdx);
1129    MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1130    // Not needed since foldMemoryOperand returns new MI.
1131    MF.DeleteMachineInstr(CommutedMI);
1132    if (!FoldedMI)
1133      return false;
1134
1135    VRM.addSpillSlotUse(SS, FoldedMI);
1136    VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1137    // Insert new def MI and spill MI.
1138    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
1139    TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1140    MII = prior(MII);
1141    MachineInstr *StoreMI = MII;
1142    VRM.addSpillSlotUse(SS, StoreMI);
1143    VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1144    MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.
1145
1146    // Delete all 3 old instructions.
1147    InvalidateKills(*ReloadMI, RegKills, KillOps);
1148    VRM.RemoveMachineInstrFromMaps(ReloadMI);
1149    MBB.erase(ReloadMI);
1150    InvalidateKills(*DefMI, RegKills, KillOps);
1151    VRM.RemoveMachineInstrFromMaps(DefMI);
1152    MBB.erase(DefMI);
1153    InvalidateKills(MI, RegKills, KillOps);
1154    VRM.RemoveMachineInstrFromMaps(&MI);
1155    MBB.erase(&MI);
1156
1157    ++NumCommutes;
1158    return true;
1159  }
1160
1161  return false;
1162}
1163
1164/// findSuperReg - Find the SubReg's super-register of given register class
1165/// where its SubIdx sub-register is SubReg.
1166static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
1167                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
1168  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1169       I != E; ++I) {
1170    unsigned Reg = *I;
1171    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
1172      return Reg;
1173  }
1174  return 0;
1175}
1176
1177/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1178/// the last store to the same slot is now dead. If so, remove the last store.
1179void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
1180                                  MachineBasicBlock::iterator &MII,
1181                                  int Idx, unsigned PhysReg, int StackSlot,
1182                                  const TargetRegisterClass *RC,
1183                                  bool isAvailable, MachineInstr *&LastStore,
1184                                  AvailableSpills &Spills,
1185                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
1186                                  BitVector &RegKills,
1187                                  std::vector<MachineOperand*> &KillOps,
1188                                  VirtRegMap &VRM) {
1189  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1190  MachineInstr *StoreMI = next(MII);
1191  VRM.addSpillSlotUse(StackSlot, StoreMI);
1192  DOUT << "Store:\t" << *StoreMI;
1193
1194  // If there is a dead store to this stack slot, nuke it now.
1195  if (LastStore) {
1196    DOUT << "Removed dead store:\t" << *LastStore;
1197    ++NumDSE;
1198    SmallVector<unsigned, 2> KillRegs;
1199    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
1200    MachineBasicBlock::iterator PrevMII = LastStore;
1201    bool CheckDef = PrevMII != MBB.begin();
1202    if (CheckDef)
1203      --PrevMII;
1204    VRM.RemoveMachineInstrFromMaps(LastStore);
1205    MBB.erase(LastStore);
1206    if (CheckDef) {
1207      // Look at defs of killed registers on the store. Mark the defs
1208      // as dead since the store has been deleted and they aren't
1209      // being reused.
1210      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1211        bool HasOtherDef = false;
1212        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1213          MachineInstr *DeadDef = PrevMII;
1214          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1215            // FIXME: This assumes a remat def does not have side
1216            // effects.
1217            VRM.RemoveMachineInstrFromMaps(DeadDef);
1218            MBB.erase(DeadDef);
1219            ++NumDRM;
1220          }
1221        }
1222      }
1223    }
1224  }
1225
1226  LastStore = next(MII);
1227
1228  // If the stack slot value was previously available in some other
1229  // register, change it now.  Otherwise, make the register available,
1230  // in PhysReg.
1231  Spills.ModifyStackSlotOrReMat(StackSlot);
1232  Spills.ClobberPhysReg(PhysReg);
1233  Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1234  ++NumStores;
1235}
1236
1237/// TransferDeadness - A identity copy definition is dead and it's being
1238/// removed. Find the last def or use and mark it as dead / kill.
1239void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1240                                    unsigned Reg, BitVector &RegKills,
1241                                    std::vector<MachineOperand*> &KillOps) {
1242  int LastUDDist = -1;
1243  MachineInstr *LastUDMI = NULL;
1244  for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1245         RE = RegInfo->reg_end(); RI != RE; ++RI) {
1246    MachineInstr *UDMI = &*RI;
1247    if (UDMI->getParent() != MBB)
1248      continue;
1249    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1250    if (DI == DistanceMap.end() || DI->second > CurDist)
1251      continue;
1252    if ((int)DI->second < LastUDDist)
1253      continue;
1254    LastUDDist = DI->second;
1255    LastUDMI = UDMI;
1256  }
1257
1258  if (LastUDMI) {
1259    const TargetInstrDesc &TID = LastUDMI->getDesc();
1260    MachineOperand *LastUD = NULL;
1261    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1262      MachineOperand &MO = LastUDMI->getOperand(i);
1263      if (!MO.isReg() || MO.getReg() != Reg)
1264        continue;
1265      if (!LastUD || (LastUD->isUse() && MO.isDef()))
1266        LastUD = &MO;
1267      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
1268        return;
1269    }
1270    if (LastUD->isDef())
1271      LastUD->setIsDead();
1272    else {
1273      LastUD->setIsKill();
1274      RegKills.set(Reg);
1275      KillOps[Reg] = LastUD;
1276    }
1277  }
1278}
1279
1280/// rewriteMBB - Keep track of which spills are available even after the
1281/// register allocator is done with them.  If possible, avid reloading vregs.
1282void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1283                              AvailableSpills &Spills) {
1284  DOUT << "\n**** Local spiller rewriting MBB '"
1285       << MBB.getBasicBlock()->getName() << ":\n";
1286
1287  MachineFunction &MF = *MBB.getParent();
1288
1289  // MaybeDeadStores - When we need to write a value back into a stack slot,
1290  // keep track of the inserted store.  If the stack slot value is never read
1291  // (because the value was used from some available register, for example), and
1292  // subsequently stored to, the original store is dead.  This map keeps track
1293  // of inserted stores that are not used.  If we see a subsequent store to the
1294  // same stack slot, the original store is deleted.
1295  std::vector<MachineInstr*> MaybeDeadStores;
1296  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1297
1298  // ReMatDefs - These are rematerializable def MIs which are not deleted.
1299  SmallSet<MachineInstr*, 4> ReMatDefs;
1300
1301  // Keep track of kill information.
1302  BitVector RegKills(TRI->getNumRegs());
1303  std::vector<MachineOperand*>  KillOps;
1304  KillOps.resize(TRI->getNumRegs(), NULL);
1305
1306  unsigned Dist = 0;
1307  DistanceMap.clear();
1308  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1309       MII != E; ) {
1310    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
1311
1312    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1313    bool Erased = false;
1314    bool BackTracked = false;
1315    if (PrepForUnfoldOpti(MBB, MII,
1316                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1317      NextMII = next(MII);
1318
1319    MachineInstr &MI = *MII;
1320    const TargetInstrDesc &TID = MI.getDesc();
1321
1322    if (VRM.hasEmergencySpills(&MI)) {
1323      // Spill physical register(s) in the rare case the allocator has run out
1324      // of registers to allocate.
1325      SmallSet<int, 4> UsedSS;
1326      std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1327      for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1328        unsigned PhysReg = EmSpills[i];
1329        const TargetRegisterClass *RC =
1330          TRI->getPhysicalRegisterRegClass(PhysReg);
1331        assert(RC && "Unable to determine register class!");
1332        int SS = VRM.getEmergencySpillSlot(RC);
1333        if (UsedSS.count(SS))
1334          assert(0 && "Need to spill more than one physical registers!");
1335        UsedSS.insert(SS);
1336        TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1337        MachineInstr *StoreMI = prior(MII);
1338        VRM.addSpillSlotUse(SS, StoreMI);
1339        TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1340        MachineInstr *LoadMI = next(MII);
1341        VRM.addSpillSlotUse(SS, LoadMI);
1342        ++NumPSpills;
1343      }
1344      NextMII = next(MII);
1345    }
1346
1347    // Insert restores here if asked to.
1348    if (VRM.isRestorePt(&MI)) {
1349      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1350      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1351        unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
1352        if (!VRM.getPreSplitReg(VirtReg))
1353          continue; // Split interval spilled again.
1354        unsigned Phys = VRM.getPhys(VirtReg);
1355        RegInfo->setPhysRegUsed(Phys);
1356
1357        // Check if the value being restored if available. If so, it must be
1358        // from a predecessor BB that fallthrough into this BB. We do not
1359        // expect:
1360        // BB1:
1361        // r1 = load fi#1
1362        // ...
1363        //    = r1<kill>
1364        // ... # r1 not clobbered
1365        // ...
1366        //    = load fi#1
1367        bool DoReMat = VRM.isReMaterialized(VirtReg);
1368        int SSorRMId = DoReMat
1369          ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1370        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1371        // FIXME: A temporary workaround. Don't reuse available value if it's
1372        // not safe to move the def of the virtual register's class. e.g.
1373        // X86::RFP* register classes.
1374        unsigned InReg = TII->isSafeToMoveRegClassDefs(RC) ?
1375          Spills.getSpillSlotOrReMatPhysReg(SSorRMId) : 0;
1376        if (InReg == Phys) {
1377          // If the value is already available in the expected register, save
1378          // a reload / remat.
1379          if (SSorRMId)
1380            DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1381          else
1382            DOUT << "Reusing SS#" << SSorRMId;
1383          DOUT << " from physreg "
1384               << TRI->getName(InReg) << " for vreg"
1385               << VirtReg <<" instead of reloading into physreg "
1386               << TRI->getName(Phys) << "\n";
1387          ++NumOmitted;
1388          continue;
1389        } else if (InReg && InReg != Phys) {
1390          if (SSorRMId)
1391            DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1392          else
1393            DOUT << "Reusing SS#" << SSorRMId;
1394          DOUT << " from physreg "
1395               << TRI->getName(InReg) << " for vreg"
1396               << VirtReg <<" by copying it into physreg "
1397               << TRI->getName(Phys) << "\n";
1398
1399          // If the reloaded / remat value is available in another register,
1400          // copy it to the desired register.
1401          TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
1402
1403          // This invalidates Phys.
1404          Spills.ClobberPhysReg(Phys);
1405          // Remember it's available.
1406          Spills.addAvailable(SSorRMId, Phys);
1407
1408          // Mark is killed.
1409          MachineInstr *CopyMI = prior(MII);
1410          MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1411          KillOpnd->setIsKill();
1412          UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1413
1414          DOUT << '\t' << *CopyMI;
1415          ++NumCopified;
1416          continue;
1417        }
1418
1419        if (VRM.isReMaterialized(VirtReg)) {
1420          ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1421        } else {
1422          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1423          TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
1424          MachineInstr *LoadMI = prior(MII);
1425          VRM.addSpillSlotUse(SSorRMId, LoadMI);
1426          ++NumLoads;
1427        }
1428
1429        // This invalidates Phys.
1430        Spills.ClobberPhysReg(Phys);
1431        // Remember it's available.
1432        Spills.addAvailable(SSorRMId, Phys);
1433
1434        UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1435        DOUT << '\t' << *prior(MII);
1436      }
1437    }
1438
1439    // Insert spills here if asked to.
1440    if (VRM.isSpillPt(&MI)) {
1441      std::vector<std::pair<unsigned,bool> > &SpillRegs =
1442        VRM.getSpillPtSpills(&MI);
1443      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1444        unsigned VirtReg = SpillRegs[i].first;
1445        bool isKill = SpillRegs[i].second;
1446        if (!VRM.getPreSplitReg(VirtReg))
1447          continue; // Split interval spilled again.
1448        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1449        unsigned Phys = VRM.getPhys(VirtReg);
1450        int StackSlot = VRM.getStackSlot(VirtReg);
1451        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1452        MachineInstr *StoreMI = next(MII);
1453        VRM.addSpillSlotUse(StackSlot, StoreMI);
1454        DOUT << "Store:\t" << *StoreMI;
1455        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1456      }
1457      NextMII = next(MII);
1458    }
1459
1460    /// ReusedOperands - Keep track of operand reuse in case we need to undo
1461    /// reuse.
1462    ReuseInfo ReusedOperands(MI, TRI);
1463    SmallVector<unsigned, 4> VirtUseOps;
1464    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1465      MachineOperand &MO = MI.getOperand(i);
1466      if (!MO.isReg() || MO.getReg() == 0)
1467        continue;   // Ignore non-register operands.
1468
1469      unsigned VirtReg = MO.getReg();
1470      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1471        // Ignore physregs for spilling, but remember that it is used by this
1472        // function.
1473        RegInfo->setPhysRegUsed(VirtReg);
1474        continue;
1475      }
1476
1477      // We want to process implicit virtual register uses first.
1478      if (MO.isImplicit())
1479        // If the virtual register is implicitly defined, emit a implicit_def
1480        // before so scavenger knows it's "defined".
1481        VirtUseOps.insert(VirtUseOps.begin(), i);
1482      else
1483        VirtUseOps.push_back(i);
1484    }
1485
1486    // Process all of the spilled uses and all non spilled reg references.
1487    SmallVector<int, 2> PotentialDeadStoreSlots;
1488    for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1489      unsigned i = VirtUseOps[j];
1490      MachineOperand &MO = MI.getOperand(i);
1491      unsigned VirtReg = MO.getReg();
1492      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1493             "Not a virtual register?");
1494
1495      unsigned SubIdx = MO.getSubReg();
1496      if (VRM.isAssignedReg(VirtReg)) {
1497        // This virtual register was assigned a physreg!
1498        unsigned Phys = VRM.getPhys(VirtReg);
1499        RegInfo->setPhysRegUsed(Phys);
1500        if (MO.isDef())
1501          ReusedOperands.markClobbered(Phys);
1502        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1503        MI.getOperand(i).setReg(RReg);
1504        if (VRM.isImplicitlyDefined(VirtReg))
1505          BuildMI(MBB, &MI, MI.getDebugLoc(),
1506                  TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1507        continue;
1508      }
1509
1510      // This virtual register is now known to be a spilled value.
1511      if (!MO.isUse())
1512        continue;  // Handle defs in the loop below (handle use&def here though)
1513
1514      bool DoReMat = VRM.isReMaterialized(VirtReg);
1515      int SSorRMId = DoReMat
1516        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1517      int ReuseSlot = SSorRMId;
1518
1519      // Check to see if this stack slot is available.
1520      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1521
1522      // If this is a sub-register use, make sure the reuse register is in the
1523      // right register class. For example, for x86 not all of the 32-bit
1524      // registers have accessible sub-registers.
1525      // Similarly so for EXTRACT_SUBREG. Consider this:
1526      // EDI = op
1527      // MOV32_mr fi#1, EDI
1528      // ...
1529      //       = EXTRACT_SUBREG fi#1
1530      // fi#1 is available in EDI, but it cannot be reused because it's not in
1531      // the right register file.
1532      if (PhysReg &&
1533          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1534        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1535        if (!RC->contains(PhysReg))
1536          PhysReg = 0;
1537      }
1538
1539      if (PhysReg) {
1540        // This spilled operand might be part of a two-address operand.  If this
1541        // is the case, then changing it will necessarily require changing the
1542        // def part of the instruction as well.  However, in some cases, we
1543        // aren't allowed to modify the reused register.  If none of these cases
1544        // apply, reuse it.
1545        bool CanReuse = true;
1546        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1547        if (ti != -1 &&
1548            MI.getOperand(ti).isReg() &&
1549            MI.getOperand(ti).getReg() == VirtReg) {
1550          // Okay, we have a two address operand.  We can reuse this physreg as
1551          // long as we are allowed to clobber the value and there isn't an
1552          // earlier def that has already clobbered the physreg.
1553          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1554            !ReusedOperands.isClobbered(PhysReg);
1555        }
1556
1557        if (CanReuse) {
1558          // If this stack slot value is already available, reuse it!
1559          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1560            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1561          else
1562            DOUT << "Reusing SS#" << ReuseSlot;
1563          DOUT << " from physreg "
1564               << TRI->getName(PhysReg) << " for vreg"
1565               << VirtReg <<" instead of reloading into physreg "
1566               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1567          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1568          MI.getOperand(i).setReg(RReg);
1569
1570          // The only technical detail we have is that we don't know that
1571          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1572          // later in the instruction.  In particular, consider 'op V1, V2'.
1573          // If V1 is available in physreg R0, we would choose to reuse it
1574          // here, instead of reloading it into the register the allocator
1575          // indicated (say R1).  However, V2 might have to be reloaded
1576          // later, and it might indicate that it needs to live in R0.  When
1577          // this occurs, we need to have information available that
1578          // indicates it is safe to use R1 for the reload instead of R0.
1579          //
1580          // To further complicate matters, we might conflict with an alias,
1581          // or R0 and R1 might not be compatible with each other.  In this
1582          // case, we actually insert a reload for V1 in R1, ensuring that
1583          // we can get at R0 or its alias.
1584          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1585                                  VRM.getPhys(VirtReg), VirtReg);
1586          if (ti != -1)
1587            // Only mark it clobbered if this is a use&def operand.
1588            ReusedOperands.markClobbered(PhysReg);
1589          ++NumReused;
1590
1591          if (MI.getOperand(i).isKill() &&
1592              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1593
1594            // The store of this spilled value is potentially dead, but we
1595            // won't know for certain until we've confirmed that the re-use
1596            // above is valid, which means waiting until the other operands
1597            // are processed. For now we just track the spill slot, we'll
1598            // remove it after the other operands are processed if valid.
1599
1600            PotentialDeadStoreSlots.push_back(ReuseSlot);
1601          }
1602
1603          // Assumes this is the last use. IsKill will be unset if reg is reused
1604          // unless it's a two-address operand.
1605          if (ti == -1)
1606            MI.getOperand(i).setIsKill();
1607
1608          continue;
1609        }  // CanReuse
1610
1611        // Otherwise we have a situation where we have a two-address instruction
1612        // whose mod/ref operand needs to be reloaded.  This reload is already
1613        // available in some register "PhysReg", but if we used PhysReg as the
1614        // operand to our 2-addr instruction, the instruction would modify
1615        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1616        // to get its initial value.
1617        //
1618        // To avoid this problem, and to avoid doing a load right after a store,
1619        // we emit a copy from PhysReg into the designated register for this
1620        // operand.
1621        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1622        assert(DesignatedReg && "Must map virtreg to physreg!");
1623
1624        // Note that, if we reused a register for a previous operand, the
1625        // register we want to reload into might not actually be
1626        // available.  If this occurs, use the register indicated by the
1627        // reuser.
1628        if (ReusedOperands.hasReuses())
1629          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1630                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1631
1632        // If the mapped designated register is actually the physreg we have
1633        // incoming, we don't need to inserted a dead copy.
1634        if (DesignatedReg == PhysReg) {
1635          // If this stack slot value is already available, reuse it!
1636          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1637            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1638          else
1639            DOUT << "Reusing SS#" << ReuseSlot;
1640          DOUT << " from physreg " << TRI->getName(PhysReg)
1641               << " for vreg" << VirtReg
1642               << " instead of reloading into same physreg.\n";
1643          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1644          MI.getOperand(i).setReg(RReg);
1645          ReusedOperands.markClobbered(RReg);
1646          ++NumReused;
1647          continue;
1648        }
1649
1650        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1651        RegInfo->setPhysRegUsed(DesignatedReg);
1652        ReusedOperands.markClobbered(DesignatedReg);
1653        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1654
1655        MachineInstr *CopyMI = prior(MII);
1656        UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1657
1658        // This invalidates DesignatedReg.
1659        Spills.ClobberPhysReg(DesignatedReg);
1660
1661        Spills.addAvailable(ReuseSlot, DesignatedReg);
1662        unsigned RReg =
1663          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1664        MI.getOperand(i).setReg(RReg);
1665        DOUT << '\t' << *prior(MII);
1666        ++NumReused;
1667        continue;
1668      } // if (PhysReg)
1669
1670      // Otherwise, reload it and remember that we have it.
1671      PhysReg = VRM.getPhys(VirtReg);
1672      assert(PhysReg && "Must map virtreg to physreg!");
1673
1674      // Note that, if we reused a register for a previous operand, the
1675      // register we want to reload into might not actually be
1676      // available.  If this occurs, use the register indicated by the
1677      // reuser.
1678      if (ReusedOperands.hasReuses())
1679        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1680                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1681
1682      RegInfo->setPhysRegUsed(PhysReg);
1683      ReusedOperands.markClobbered(PhysReg);
1684      if (DoReMat) {
1685        ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1686      } else {
1687        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1688        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1689        MachineInstr *LoadMI = prior(MII);
1690        VRM.addSpillSlotUse(SSorRMId, LoadMI);
1691        ++NumLoads;
1692      }
1693      // This invalidates PhysReg.
1694      Spills.ClobberPhysReg(PhysReg);
1695
1696      // Any stores to this stack slot are not dead anymore.
1697      if (!DoReMat)
1698        MaybeDeadStores[SSorRMId] = NULL;
1699      Spills.addAvailable(SSorRMId, PhysReg);
1700      // Assumes this is the last use. IsKill will be unset if reg is reused
1701      // unless it's a two-address operand.
1702      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
1703        MI.getOperand(i).setIsKill();
1704      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1705      MI.getOperand(i).setReg(RReg);
1706      UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1707      DOUT << '\t' << *prior(MII);
1708    }
1709
1710    // Ok - now we can remove stores that have been confirmed dead.
1711    for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1712      // This was the last use and the spilled value is still available
1713      // for reuse. That means the spill was unnecessary!
1714      int PDSSlot = PotentialDeadStoreSlots[j];
1715      MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1716      if (DeadStore) {
1717        DOUT << "Removed dead store:\t" << *DeadStore;
1718        InvalidateKills(*DeadStore, RegKills, KillOps);
1719        VRM.RemoveMachineInstrFromMaps(DeadStore);
1720        MBB.erase(DeadStore);
1721        MaybeDeadStores[PDSSlot] = NULL;
1722        ++NumDSE;
1723      }
1724    }
1725
1726
1727    DOUT << '\t' << MI;
1728
1729
1730    // If we have folded references to memory operands, make sure we clear all
1731    // physical registers that may contain the value of the spilled virtual
1732    // register
1733    SmallSet<int, 2> FoldedSS;
1734    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1735      unsigned VirtReg = I->second.first;
1736      VirtRegMap::ModRef MR = I->second.second;
1737      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1738
1739      // MI2VirtMap be can updated which invalidate the iterator.
1740      // Increment the iterator first.
1741      ++I;
1742      int SS = VRM.getStackSlot(VirtReg);
1743      if (SS == VirtRegMap::NO_STACK_SLOT)
1744        continue;
1745      FoldedSS.insert(SS);
1746      DOUT << " - StackSlot: " << SS << "\n";
1747
1748      // If this folded instruction is just a use, check to see if it's a
1749      // straight load from the virt reg slot.
1750      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1751        int FrameIdx;
1752        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1753        if (DestReg && FrameIdx == SS) {
1754          // If this spill slot is available, turn it into a copy (or nothing)
1755          // instead of leaving it as a load!
1756          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1757            DOUT << "Promoted Load To Copy: " << MI;
1758            if (DestReg != InReg) {
1759              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1760              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1761              MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1762              unsigned SubIdx = DefMO->getSubReg();
1763              // Revisit the copy so we make sure to notice the effects of the
1764              // operation on the destreg (either needing to RA it if it's
1765              // virtual or needing to clobber any values if it's physical).
1766              NextMII = &MI;
1767              --NextMII;  // backtrack to the copy.
1768              // Propagate the sub-register index over.
1769              if (SubIdx) {
1770                DefMO = NextMII->findRegisterDefOperand(DestReg);
1771                DefMO->setSubReg(SubIdx);
1772              }
1773
1774              // Mark is killed.
1775              MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
1776              KillOpnd->setIsKill();
1777
1778              BackTracked = true;
1779            } else {
1780              DOUT << "Removing now-noop copy: " << MI;
1781              // Unset last kill since it's being reused.
1782              InvalidateKill(InReg, RegKills, KillOps);
1783            }
1784
1785            InvalidateKills(MI, RegKills, KillOps);
1786            VRM.RemoveMachineInstrFromMaps(&MI);
1787            MBB.erase(&MI);
1788            Erased = true;
1789            goto ProcessNextInst;
1790          }
1791        } else {
1792          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1793          SmallVector<MachineInstr*, 4> NewMIs;
1794          if (PhysReg &&
1795              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1796            MBB.insert(MII, NewMIs[0]);
1797            InvalidateKills(MI, RegKills, KillOps);
1798            VRM.RemoveMachineInstrFromMaps(&MI);
1799            MBB.erase(&MI);
1800            Erased = true;
1801            --NextMII;  // backtrack to the unfolded instruction.
1802            BackTracked = true;
1803            goto ProcessNextInst;
1804          }
1805        }
1806      }
1807
1808      // If this reference is not a use, any previous store is now dead.
1809      // Otherwise, the store to this stack slot is not dead anymore.
1810      MachineInstr* DeadStore = MaybeDeadStores[SS];
1811      if (DeadStore) {
1812        bool isDead = !(MR & VirtRegMap::isRef);
1813        MachineInstr *NewStore = NULL;
1814        if (MR & VirtRegMap::isModRef) {
1815          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1816          SmallVector<MachineInstr*, 4> NewMIs;
1817          // We can reuse this physreg as long as we are allowed to clobber
1818          // the value and there isn't an earlier def that has already clobbered
1819          // the physreg.
1820          if (PhysReg &&
1821              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1822            MachineOperand *KillOpnd =
1823              DeadStore->findRegisterUseOperand(PhysReg, true);
1824            // Note, if the store is storing a sub-register, it's possible the
1825            // super-register is needed below.
1826            if (KillOpnd && !KillOpnd->getSubReg() &&
1827                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1828             MBB.insert(MII, NewMIs[0]);
1829              NewStore = NewMIs[1];
1830              MBB.insert(MII, NewStore);
1831              VRM.addSpillSlotUse(SS, NewStore);
1832              InvalidateKills(MI, RegKills, KillOps);
1833              VRM.RemoveMachineInstrFromMaps(&MI);
1834              MBB.erase(&MI);
1835              Erased = true;
1836              --NextMII;
1837              --NextMII;  // backtrack to the unfolded instruction.
1838              BackTracked = true;
1839              isDead = true;
1840            }
1841          }
1842        }
1843
1844        if (isDead) {  // Previous store is dead.
1845          // If we get here, the store is dead, nuke it now.
1846          DOUT << "Removed dead store:\t" << *DeadStore;
1847          InvalidateKills(*DeadStore, RegKills, KillOps);
1848          VRM.RemoveMachineInstrFromMaps(DeadStore);
1849          MBB.erase(DeadStore);
1850          if (!NewStore)
1851            ++NumDSE;
1852        }
1853
1854        MaybeDeadStores[SS] = NULL;
1855        if (NewStore) {
1856          // Treat this store as a spill merged into a copy. That makes the
1857          // stack slot value available.
1858          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1859          goto ProcessNextInst;
1860        }
1861      }
1862
1863      // If the spill slot value is available, and this is a new definition of
1864      // the value, the value is not available anymore.
1865      if (MR & VirtRegMap::isMod) {
1866        // Notice that the value in this stack slot has been modified.
1867        Spills.ModifyStackSlotOrReMat(SS);
1868
1869        // If this is *just* a mod of the value, check to see if this is just a
1870        // store to the spill slot (i.e. the spill got merged into the copy). If
1871        // so, realize that the vreg is available now, and add the store to the
1872        // MaybeDeadStore info.
1873        int StackSlot;
1874        if (!(MR & VirtRegMap::isRef)) {
1875          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1876            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1877                   "Src hasn't been allocated yet?");
1878
1879            if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
1880                                    RegKills, KillOps, TRI, VRM)) {
1881              NextMII = next(MII);
1882              BackTracked = true;
1883              goto ProcessNextInst;
1884            }
1885
1886            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1887            // this as a potentially dead store in case there is a subsequent
1888            // store into the stack slot without a read from it.
1889            MaybeDeadStores[StackSlot] = &MI;
1890
1891            // If the stack slot value was previously available in some other
1892            // register, change it now.  Otherwise, make the register
1893            // available in PhysReg.
1894            Spills.addAvailable(StackSlot, SrcReg, false/*!clobber*/);
1895          }
1896        }
1897      }
1898    }
1899
1900    // Process all of the spilled defs.
1901    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1902      MachineOperand &MO = MI.getOperand(i);
1903      if (!(MO.isReg() && MO.getReg() && MO.isDef()))
1904        continue;
1905
1906      unsigned VirtReg = MO.getReg();
1907      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1908        // Check to see if this is a noop copy.  If so, eliminate the
1909        // instruction before considering the dest reg to be changed.
1910        unsigned Src, Dst, SrcSR, DstSR;
1911        if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
1912          ++NumDCE;
1913          DOUT << "Removing now-noop copy: " << MI;
1914          SmallVector<unsigned, 2> KillRegs;
1915          InvalidateKills(MI, RegKills, KillOps, &KillRegs);
1916          if (MO.isDead() && !KillRegs.empty()) {
1917            // Source register or an implicit super/sub-register use is killed.
1918            assert(KillRegs[0] == Dst ||
1919                   TRI->isSubRegister(KillRegs[0], Dst) ||
1920                   TRI->isSuperRegister(KillRegs[0], Dst));
1921            // Last def is now dead.
1922            TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
1923          }
1924          VRM.RemoveMachineInstrFromMaps(&MI);
1925          MBB.erase(&MI);
1926          Erased = true;
1927          Spills.disallowClobberPhysReg(VirtReg);
1928          goto ProcessNextInst;
1929        }
1930
1931        // If it's not a no-op copy, it clobbers the value in the destreg.
1932        Spills.ClobberPhysReg(VirtReg);
1933        ReusedOperands.markClobbered(VirtReg);
1934
1935        // Check to see if this instruction is a load from a stack slot into
1936        // a register.  If so, this provides the stack slot value in the reg.
1937        int FrameIdx;
1938        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1939          assert(DestReg == VirtReg && "Unknown load situation!");
1940
1941          // If it is a folded reference, then it's not safe to clobber.
1942          bool Folded = FoldedSS.count(FrameIdx);
1943          // Otherwise, if it wasn't available, remember that it is now!
1944          Spills.addAvailable(FrameIdx, DestReg, !Folded);
1945          goto ProcessNextInst;
1946        }
1947
1948        continue;
1949      }
1950
1951      unsigned SubIdx = MO.getSubReg();
1952      bool DoReMat = VRM.isReMaterialized(VirtReg);
1953      if (DoReMat)
1954        ReMatDefs.insert(&MI);
1955
1956      // The only vregs left are stack slot definitions.
1957      int StackSlot = VRM.getStackSlot(VirtReg);
1958      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1959
1960      // If this def is part of a two-address operand, make sure to execute
1961      // the store from the correct physical register.
1962      unsigned PhysReg;
1963      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
1964      if (TiedOp != -1) {
1965        PhysReg = MI.getOperand(TiedOp).getReg();
1966        if (SubIdx) {
1967          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1968          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1969                 "Can't find corresponding super-register!");
1970          PhysReg = SuperReg;
1971        }
1972      } else {
1973        PhysReg = VRM.getPhys(VirtReg);
1974        if (ReusedOperands.isClobbered(PhysReg)) {
1975          // Another def has taken the assigned physreg. It must have been a
1976          // use&def which got it due to reuse. Undo the reuse!
1977          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1978                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1979        }
1980      }
1981
1982      assert(PhysReg && "VR not assigned a physical register?");
1983      RegInfo->setPhysRegUsed(PhysReg);
1984      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1985      ReusedOperands.markClobbered(RReg);
1986      MI.getOperand(i).setReg(RReg);
1987
1988      if (!MO.isDead()) {
1989        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1990        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1991                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1992        NextMII = next(MII);
1993
1994        // Check to see if this is a noop copy.  If so, eliminate the
1995        // instruction before considering the dest reg to be changed.
1996        {
1997          unsigned Src, Dst, SrcSR, DstSR;
1998          if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
1999            ++NumDCE;
2000            DOUT << "Removing now-noop copy: " << MI;
2001            InvalidateKills(MI, RegKills, KillOps);
2002            VRM.RemoveMachineInstrFromMaps(&MI);
2003            MBB.erase(&MI);
2004            Erased = true;
2005            UpdateKills(*LastStore, RegKills, KillOps, TRI);
2006            goto ProcessNextInst;
2007          }
2008        }
2009      }
2010    }
2011  ProcessNextInst:
2012    DistanceMap.insert(std::make_pair(&MI, Dist++));
2013    if (!Erased && !BackTracked) {
2014      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2015        UpdateKills(*II, RegKills, KillOps, TRI);
2016    }
2017    MII = NextMII;
2018  }
2019
2020}
2021
2022llvm::Spiller* llvm::createSpiller() {
2023  switch (SpillerOpt) {
2024  default: assert(0 && "Unreachable!");
2025  case local:
2026    return new LocalSpiller();
2027  case simple:
2028    return new SimpleSpiller();
2029  }
2030}
2031