VirtRegMap.cpp revision 50ea01ed5ba23c8988af9fed0b91178e69140a80
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34namespace {
35  Statistic<> NumSpills("spiller", "Number of register spills");
36  Statistic<> NumStores("spiller", "Number of stores added");
37  Statistic<> NumLoads ("spiller", "Number of loads added");
38  Statistic<> NumReused("spiller", "Number of values reused");
39  Statistic<> NumDSE   ("spiller", "Number of dead stores elided");
40
41  enum SpillerName { simple, local };
42
43  cl::opt<SpillerName>
44  SpillerOpt("spiller",
45             cl::desc("Spiller to use: (default: local)"),
46             cl::Prefix,
47             cl::values(clEnumVal(simple, "  simple spiller"),
48                        clEnumVal(local,  "  local spiller"),
49                        clEnumValEnd),
50             cl::init(local));
51}
52
53//===----------------------------------------------------------------------===//
54//  VirtRegMap implementation
55//===----------------------------------------------------------------------===//
56
57void VirtRegMap::grow() {
58  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
59  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
60}
61
62int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
63  assert(MRegisterInfo::isVirtualRegister(virtReg));
64  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
65         "attempt to assign stack slot to already spilled register");
66  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
67  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
68                                                        RC->getAlignment());
69  Virt2StackSlotMap[virtReg] = frameIndex;
70  ++NumSpills;
71  return frameIndex;
72}
73
74void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
75  assert(MRegisterInfo::isVirtualRegister(virtReg));
76  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
77         "attempt to assign stack slot to already spilled register");
78  Virt2StackSlotMap[virtReg] = frameIndex;
79}
80
81void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
82                            unsigned OpNo, MachineInstr *NewMI) {
83  // Move previous memory references folded to new instruction.
84  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
85  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
86         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
87    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
88    MI2VirtMap.erase(I++);
89  }
90
91  ModRef MRInfo;
92  if (!OldMI->getOperand(OpNo).isDef()) {
93    assert(OldMI->getOperand(OpNo).isUse() && "Operand is not use or def?");
94    MRInfo = isRef;
95  } else {
96    MRInfo = OldMI->getOperand(OpNo).isUse() ? isModRef : isMod;
97  }
98
99  // add new memory reference
100  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
101}
102
103void VirtRegMap::print(std::ostream &OS) const {
104  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
105
106  OS << "********** REGISTER MAP **********\n";
107  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
108         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
109    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
110      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
111
112  }
113
114  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
115         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
116    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
117      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
118  OS << '\n';
119}
120
121void VirtRegMap::dump() const { print(std::cerr); }
122
123
124//===----------------------------------------------------------------------===//
125// Simple Spiller Implementation
126//===----------------------------------------------------------------------===//
127
128Spiller::~Spiller() {}
129
130namespace {
131  struct SimpleSpiller : public Spiller {
132    bool runOnMachineFunction(MachineFunction& mf, const VirtRegMap &VRM);
133  };
134}
135
136bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF,
137                                         const VirtRegMap &VRM) {
138  DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
139  DEBUG(std::cerr << "********** Function: "
140                  << MF.getFunction()->getName() << '\n');
141  const TargetMachine &TM = MF.getTarget();
142  const MRegisterInfo &MRI = *TM.getRegisterInfo();
143  bool *PhysRegsUsed = MF.getUsedPhysregs();
144
145  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
146  // each vreg once (in the case where a spilled vreg is used by multiple
147  // operands).  This is always smaller than the number of operands to the
148  // current machine instr, so it should be small.
149  std::vector<unsigned> LoadedRegs;
150
151  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
152       MBBI != E; ++MBBI) {
153    DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
154    MachineBasicBlock &MBB = *MBBI;
155    for (MachineBasicBlock::iterator MII = MBB.begin(),
156           E = MBB.end(); MII != E; ++MII) {
157      MachineInstr &MI = *MII;
158      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
159        MachineOperand &MO = MI.getOperand(i);
160        if (MO.isRegister() && MO.getReg())
161          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
162            unsigned VirtReg = MO.getReg();
163            unsigned PhysReg = VRM.getPhys(VirtReg);
164            if (VRM.hasStackSlot(VirtReg)) {
165              int StackSlot = VRM.getStackSlot(VirtReg);
166
167              if (MO.isUse() &&
168                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
169                  == LoadedRegs.end()) {
170                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot);
171                LoadedRegs.push_back(VirtReg);
172                ++NumLoads;
173                DEBUG(std::cerr << '\t' << *prior(MII));
174              }
175
176              if (MO.isDef()) {
177                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot);
178                ++NumStores;
179              }
180            }
181            PhysRegsUsed[PhysReg] = true;
182            MI.SetMachineOperandReg(i, PhysReg);
183          } else {
184            PhysRegsUsed[MO.getReg()] = true;
185          }
186      }
187
188      DEBUG(std::cerr << '\t' << MI);
189      LoadedRegs.clear();
190    }
191  }
192  return true;
193}
194
195//===----------------------------------------------------------------------===//
196//  Local Spiller Implementation
197//===----------------------------------------------------------------------===//
198
199namespace {
200  /// LocalSpiller - This spiller does a simple pass over the machine basic
201  /// block to attempt to keep spills in registers as much as possible for
202  /// blocks that have low register pressure (the vreg may be spilled due to
203  /// register pressure in other blocks).
204  class LocalSpiller : public Spiller {
205    const MRegisterInfo *MRI;
206    const TargetInstrInfo *TII;
207  public:
208    bool runOnMachineFunction(MachineFunction &MF, const VirtRegMap &VRM) {
209      MRI = MF.getTarget().getRegisterInfo();
210      TII = MF.getTarget().getInstrInfo();
211      DEBUG(std::cerr << "\n**** Local spiller rewriting function '"
212                      << MF.getFunction()->getName() << "':\n");
213
214      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
215           MBB != E; ++MBB)
216        RewriteMBB(*MBB, VRM);
217      return true;
218    }
219  private:
220    void RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM);
221    void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
222                        std::map<unsigned, int> &PhysRegs);
223    void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
224                            std::map<unsigned, int> &PhysRegs);
225  };
226}
227
228void LocalSpiller::ClobberPhysRegOnly(unsigned PhysReg,
229                                      std::map<int, unsigned> &SpillSlots,
230                                      std::map<unsigned, int> &PhysRegs) {
231  std::map<unsigned, int>::iterator I = PhysRegs.find(PhysReg);
232  if (I != PhysRegs.end()) {
233    int Slot = I->second;
234    PhysRegs.erase(I);
235    assert(SpillSlots[Slot] == PhysReg && "Bidirectional map mismatch!");
236    SpillSlots.erase(Slot);
237    DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg)
238          << " clobbered, invalidating SS#" << Slot << "\n");
239
240  }
241}
242
243void LocalSpiller::ClobberPhysReg(unsigned PhysReg,
244                                  std::map<int, unsigned> &SpillSlots,
245                                  std::map<unsigned, int> &PhysRegs) {
246  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
247    ClobberPhysRegOnly(*AS, SpillSlots, PhysRegs);
248  ClobberPhysRegOnly(PhysReg, SpillSlots, PhysRegs);
249}
250
251
252// ReusedOp - For each reused operand, we keep track of a bit of information, in
253// case we need to rollback upon processing a new operand.  See comments below.
254namespace {
255  struct ReusedOp {
256    // The MachineInstr operand that reused an available value.
257    unsigned Operand;
258
259    // StackSlot - The spill slot of the value being reused.
260    unsigned StackSlot;
261
262    // PhysRegReused - The physical register the value was available in.
263    unsigned PhysRegReused;
264
265    // AssignedPhysReg - The physreg that was assigned for use by the reload.
266    unsigned AssignedPhysReg;
267
268    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr)
269      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr) {}
270  };
271}
272
273
274/// rewriteMBB - Keep track of which spills are available even after the
275/// register allocator is done with them.  If possible, avoid reloading vregs.
276void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM) {
277
278  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
279  // register values that are still available, due to being loaded to stored to,
280  // but not invalidated yet.
281  std::map<int, unsigned> SpillSlotsAvailable;
282
283  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
284  // which physregs are in use holding a stack slot value.
285  std::map<unsigned, int> PhysRegsAvailable;
286
287  DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n");
288
289  std::vector<ReusedOp> ReusedOperands;
290
291  // DefAndUseVReg - When we see a def&use operand that is spilled, keep track
292  // of it.  ".first" is the machine operand index (should always be 0 for now),
293  // and ".second" is the virtual register that is spilled.
294  std::vector<std::pair<unsigned, unsigned> > DefAndUseVReg;
295
296  // MaybeDeadStores - When we need to write a value back into a stack slot,
297  // keep track of the inserted store.  If the stack slot value is never read
298  // (because the value was used from some available register, for example), and
299  // subsequently stored to, the original store is dead.  This map keeps track
300  // of inserted stores that are not used.  If we see a subsequent store to the
301  // same stack slot, the original store is deleted.
302  std::map<int, MachineInstr*> MaybeDeadStores;
303
304  bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();
305
306  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
307       MII != E; ) {
308    MachineInstr &MI = *MII;
309    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
310
311    ReusedOperands.clear();
312    DefAndUseVReg.clear();
313
314    // Process all of the spilled uses and all non spilled reg references.
315    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
316      MachineOperand &MO = MI.getOperand(i);
317      if (!MO.isRegister() || MO.getReg() == 0)
318        continue;   // Ignore non-register operands.
319
320      if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
321        // Ignore physregs for spilling, but remember that it is used by this
322        // function.
323        PhysRegsUsed[MO.getReg()] = true;
324        continue;
325      }
326
327      assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
328             "Not a virtual or a physical register?");
329
330      unsigned VirtReg = MO.getReg();
331      if (!VRM.hasStackSlot(VirtReg)) {
332        // This virtual register was assigned a physreg!
333        unsigned Phys = VRM.getPhys(VirtReg);
334        PhysRegsUsed[Phys] = true;
335        MI.SetMachineOperandReg(i, Phys);
336        continue;
337      }
338
339      // This virtual register is now known to be a spilled value.
340      if (!MO.isUse())
341        continue;  // Handle defs in the loop below (handle use&def here though)
342
343      // If this is both a def and a use, we need to emit a store to the
344      // stack slot after the instruction.  Keep track of D&U operands
345      // because we are about to change it to a physreg here.
346      if (MO.isDef()) {
347        // Remember that this was a def-and-use operand, and that the
348        // stack slot is live after this instruction executes.
349        DefAndUseVReg.push_back(std::make_pair(i, VirtReg));
350      }
351
352      int StackSlot = VRM.getStackSlot(VirtReg);
353      unsigned PhysReg;
354
355      // Check to see if this stack slot is available.
356      std::map<int, unsigned>::iterator SSI =
357        SpillSlotsAvailable.find(StackSlot);
358      if (SSI != SpillSlotsAvailable.end()) {
359        DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
360                        << MRI->getName(SSI->second) << " for vreg"
361                        << VirtReg <<" instead of reloading into physreg "
362                        << MRI->getName(VRM.getPhys(VirtReg)) << "\n");
363        // If this stack slot value is already available, reuse it!
364        PhysReg = SSI->second;
365        MI.SetMachineOperandReg(i, PhysReg);
366
367        // The only technical detail we have is that we don't know that
368        // PhysReg won't be clobbered by a reloaded stack slot that occurs
369        // later in the instruction.  In particular, consider 'op V1, V2'.
370        // If V1 is available in physreg R0, we would choose to reuse it
371        // here, instead of reloading it into the register the allocator
372        // indicated (say R1).  However, V2 might have to be reloaded
373        // later, and it might indicate that it needs to live in R0.  When
374        // this occurs, we need to have information available that
375        // indicates it is safe to use R1 for the reload instead of R0.
376        //
377        // To further complicate matters, we might conflict with an alias,
378        // or R0 and R1 might not be compatible with each other.  In this
379        // case, we actually insert a reload for V1 in R1, ensuring that
380        // we can get at R0 or its alias.
381        ReusedOperands.push_back(ReusedOp(i, StackSlot, PhysReg,
382                                          VRM.getPhys(VirtReg)));
383        ++NumReused;
384        continue;
385      }
386
387      // Otherwise, reload it and remember that we have it.
388      PhysReg = VRM.getPhys(VirtReg);
389
390    RecheckRegister:
391      // Note that, if we reused a register for a previous operand, the
392      // register we want to reload into might not actually be
393      // available.  If this occurs, use the register indicated by the
394      // reuser.
395      if (!ReusedOperands.empty())   // This is most often empty.
396        for (unsigned ro = 0, e = ReusedOperands.size(); ro != e; ++ro)
397          if (ReusedOperands[ro].PhysRegReused == PhysReg) {
398            // Yup, use the reload register that we didn't use before.
399            PhysReg = ReusedOperands[ro].AssignedPhysReg;
400            goto RecheckRegister;
401          } else {
402            ReusedOp &Op = ReusedOperands[ro];
403            unsigned PRRU = Op.PhysRegReused;
404            if (MRI->areAliases(PRRU, PhysReg)) {
405              // Okay, we found out that an alias of a reused register
406              // was used.  This isn't good because it means we have
407              // to undo a previous reuse.
408              MRI->loadRegFromStackSlot(MBB, &MI, Op.AssignedPhysReg,
409                                        Op.StackSlot);
410              ClobberPhysReg(Op.AssignedPhysReg, SpillSlotsAvailable,
411                             PhysRegsAvailable);
412
413              // Any stores to this stack slot are not dead anymore.
414              MaybeDeadStores.erase(Op.StackSlot);
415
416              MI.SetMachineOperandReg(Op.Operand, Op.AssignedPhysReg);
417              PhysRegsAvailable[Op.AssignedPhysReg] = Op.StackSlot;
418              SpillSlotsAvailable[Op.StackSlot] = Op.AssignedPhysReg;
419              PhysRegsAvailable.erase(Op.PhysRegReused);
420              DEBUG(std::cerr << "Remembering SS#" << Op.StackSlot
421                    << " in physreg "
422                    << MRI->getName(Op.AssignedPhysReg) << "\n");
423              ++NumLoads;
424              DEBUG(std::cerr << '\t' << *prior(MII));
425
426              DEBUG(std::cerr << "Reuse undone!\n");
427              ReusedOperands.erase(ReusedOperands.begin()+ro);
428              --NumReused;
429              goto ContinueReload;
430            }
431          }
432    ContinueReload:
433      PhysRegsUsed[PhysReg] = true;
434      MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot);
435      // This invalidates PhysReg.
436      ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
437
438      // Any stores to this stack slot are not dead anymore.
439      MaybeDeadStores.erase(StackSlot);
440
441      MI.SetMachineOperandReg(i, PhysReg);
442      PhysRegsAvailable[PhysReg] = StackSlot;
443      SpillSlotsAvailable[StackSlot] = PhysReg;
444      DEBUG(std::cerr << "Remembering SS#" << StackSlot <<" in physreg "
445                      << MRI->getName(PhysReg) << "\n");
446      ++NumLoads;
447      DEBUG(std::cerr << '\t' << *prior(MII));
448    }
449
450    // Loop over all of the implicit defs, clearing them from our available
451    // sets.
452    for (const unsigned *ImpDef = TII->getImplicitDefs(MI.getOpcode());
453         *ImpDef; ++ImpDef) {
454      PhysRegsUsed[*ImpDef] = true;
455      ClobberPhysReg(*ImpDef, SpillSlotsAvailable, PhysRegsAvailable);
456    }
457
458    DEBUG(std::cerr << '\t' << MI);
459
460    // If we have folded references to memory operands, make sure we clear all
461    // physical registers that may contain the value of the spilled virtual
462    // register
463    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
464    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
465      DEBUG(std::cerr << "Folded vreg: " << I->second.first << "  MR: "
466                      << I->second.second);
467      unsigned VirtReg = I->second.first;
468      VirtRegMap::ModRef MR = I->second.second;
469      if (VRM.hasStackSlot(VirtReg)) {
470        int SS = VRM.getStackSlot(VirtReg);
471        DEBUG(std::cerr << " - StackSlot: " << SS << "\n");
472
473        // If this reference is not a use, any previous store is now dead.
474        // Otherwise, the store to this stack slot is not dead anymore.
475        std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
476        if (MDSI != MaybeDeadStores.end()) {
477          if (MR & VirtRegMap::isRef)   // Previous store is not dead.
478            MaybeDeadStores.erase(MDSI);
479          else {
480            // If we get here, the store is dead, nuke it now.
481            assert(MR == VirtRegMap::isMod && "Can't be modref!");
482            MBB.erase(MDSI->second);
483            MaybeDeadStores.erase(MDSI);
484            ++NumDSE;
485          }
486        }
487
488        // If the spill slot value is available, and this is a new definition of
489        // the value, the value is not available anymore.
490        if (MR & VirtRegMap::isMod) {
491          std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(SS);
492          if (It != SpillSlotsAvailable.end()) {
493            PhysRegsAvailable.erase(It->second);
494            SpillSlotsAvailable.erase(It);
495          }
496        }
497      } else {
498        DEBUG(std::cerr << ": No stack slot!\n");
499      }
500    }
501
502    // Process all of the spilled defs.
503    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
504      MachineOperand &MO = MI.getOperand(i);
505      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
506        unsigned VirtReg = MO.getReg();
507
508        bool TakenCareOf = false;
509        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
510          // Check to see if this is a def-and-use vreg operand that we do need
511          // to insert a store for.
512          bool OpTakenCareOf = false;
513          if (MO.isUse() && !DefAndUseVReg.empty()) {
514            for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau)
515              if (DefAndUseVReg[dau].first == i) {
516                VirtReg = DefAndUseVReg[dau].second;
517                OpTakenCareOf = true;
518                break;
519              }
520          }
521
522          if (!OpTakenCareOf) {
523            ClobberPhysReg(VirtReg, SpillSlotsAvailable, PhysRegsAvailable);
524            TakenCareOf = true;
525          }
526        }
527
528        if (!TakenCareOf) {
529          // The only vregs left are stack slot definitions.
530          int StackSlot    = VRM.getStackSlot(VirtReg);
531          unsigned PhysReg;
532
533          // If this is a def&use operand, and we used a different physreg for
534          // it than the one assigned, make sure to execute the store from the
535          // correct physical register.
536          if (MO.getReg() == VirtReg)
537            PhysReg = VRM.getPhys(VirtReg);
538          else
539            PhysReg = MO.getReg();
540
541          PhysRegsUsed[PhysReg] = true;
542          MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot);
543          DEBUG(std::cerr << "Store:\t" << *next(MII));
544          MI.SetMachineOperandReg(i, PhysReg);
545
546          // If there is a dead store to this stack slot, nuke it now.
547          MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
548          if (LastStore) {
549            DEBUG(std::cerr << " Killed store:\t" << *LastStore);
550            ++NumDSE;
551            MBB.erase(LastStore);
552          }
553          LastStore = next(MII);
554
555          // If the stack slot value was previously available in some other
556          // register, change it now.  Otherwise, make the register available,
557          // in PhysReg.
558          std::map<int, unsigned>::iterator SSA =
559            SpillSlotsAvailable.find(StackSlot);
560          if (SSA != SpillSlotsAvailable.end()) {
561            // Remove the record for physreg.
562            PhysRegsAvailable.erase(SSA->second);
563            SpillSlotsAvailable.erase(SSA);
564          }
565          ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
566
567          PhysRegsAvailable[PhysReg] = StackSlot;
568          SpillSlotsAvailable[StackSlot] = PhysReg;
569          DEBUG(std::cerr << "Updating SS#" << StackSlot <<" in physreg "
570                          << MRI->getName(PhysReg) << " for virtreg #"
571                          << VirtReg << "\n");
572
573          ++NumStores;
574          VirtReg = PhysReg;
575        }
576      }
577    }
578    MII = NextMII;
579  }
580}
581
582
583
584llvm::Spiller* llvm::createSpiller() {
585  switch (SpillerOpt) {
586  default: assert(0 && "Unreachable!");
587  case local:
588    return new LocalSpiller();
589  case simple:
590    return new SimpleSpiller();
591  }
592}
593