VirtRegMap.cpp revision 547df1a7004df315a73894f377d31cc5a9fd9b5b
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/SmallSet.h"
36#include <algorithm>
37using namespace llvm;
38
39STATISTIC(NumSpills  , "Number of register spills");
40STATISTIC(NumPSpills , "Number of physical register spills");
41STATISTIC(NumReMats  , "Number of re-materialization");
42STATISTIC(NumDRM     , "Number of re-materializable defs elided");
43STATISTIC(NumStores  , "Number of stores added");
44STATISTIC(NumLoads   , "Number of loads added");
45STATISTIC(NumReused  , "Number of values reused");
46STATISTIC(NumDSE     , "Number of dead stores elided");
47STATISTIC(NumDCE     , "Number of copies elided");
48STATISTIC(NumDSS     , "Number of dead spill slots removed");
49STATISTIC(NumCommutes, "Number of instructions commuted");
50
51namespace {
52  enum SpillerName { simple, local };
53}
54
55static cl::opt<SpillerName>
56SpillerOpt("spiller",
57           cl::desc("Spiller to use: (default: local)"),
58           cl::Prefix,
59           cl::values(clEnumVal(simple, "  simple spiller"),
60                      clEnumVal(local,  "  local spiller"),
61                      clEnumValEnd),
62           cl::init(local));
63
64//===----------------------------------------------------------------------===//
65//  VirtRegMap implementation
66//===----------------------------------------------------------------------===//
67
68VirtRegMap::VirtRegMap(MachineFunction &mf)
69  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
70    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
71    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
72    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1),
73    LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) {
74  SpillSlotToUsesMap.resize(8);
75  ImplicitDefed.resize(MF.getRegInfo().getLastVirtReg()+1-
76                       TargetRegisterInfo::FirstVirtualRegister);
77  grow();
78}
79
80void VirtRegMap::grow() {
81  unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
82  Virt2PhysMap.grow(LastVirtReg);
83  Virt2StackSlotMap.grow(LastVirtReg);
84  Virt2ReMatIdMap.grow(LastVirtReg);
85  Virt2SplitMap.grow(LastVirtReg);
86  Virt2SplitKillMap.grow(LastVirtReg);
87  ReMatMap.grow(LastVirtReg);
88  ImplicitDefed.resize(LastVirtReg-TargetRegisterInfo::FirstVirtualRegister+1);
89}
90
91int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
92  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
93  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
94         "attempt to assign stack slot to already spilled register");
95  const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
96  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
97                                                RC->getAlignment());
98  if (LowSpillSlot == NO_STACK_SLOT)
99    LowSpillSlot = SS;
100  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
101    HighSpillSlot = SS;
102  unsigned Idx = SS-LowSpillSlot;
103  while (Idx >= SpillSlotToUsesMap.size())
104    SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2);
105  Virt2StackSlotMap[virtReg] = SS;
106  ++NumSpills;
107  return SS;
108}
109
110void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
111  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
112  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
113         "attempt to assign stack slot to already spilled register");
114  assert((SS >= 0 ||
115          (SS >= MF.getFrameInfo()->getObjectIndexBegin())) &&
116         "illegal fixed frame index");
117  Virt2StackSlotMap[virtReg] = SS;
118}
119
120int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
121  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
122  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
123         "attempt to assign re-mat id to already spilled register");
124  Virt2ReMatIdMap[virtReg] = ReMatId;
125  return ReMatId++;
126}
127
128void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
129  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
130  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
131         "attempt to assign re-mat id to already spilled register");
132  Virt2ReMatIdMap[virtReg] = id;
133}
134
135int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
136  std::map<const TargetRegisterClass*, int>::iterator I =
137    EmergencySpillSlots.find(RC);
138  if (I != EmergencySpillSlots.end())
139    return I->second;
140  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
141                                                RC->getAlignment());
142  if (LowSpillSlot == NO_STACK_SLOT)
143    LowSpillSlot = SS;
144  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
145    HighSpillSlot = SS;
146  I->second = SS;
147  return SS;
148}
149
150void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
151  if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) {
152    // If FI < LowSpillSlot, this stack reference was produced by
153    // instruction selection and is not a spill
154    if (FI >= LowSpillSlot) {
155      assert(FI >= 0 && "Spill slot index should not be negative!");
156      assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
157             && "Invalid spill slot");
158      SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI);
159    }
160  }
161}
162
163void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
164                            MachineInstr *NewMI, ModRef MRInfo) {
165  // Move previous memory references folded to new instruction.
166  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
167  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
168         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
169    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
170    MI2VirtMap.erase(I++);
171  }
172
173  // add new memory reference
174  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
175}
176
177void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
178  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
179  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
180}
181
182void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
183  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
184    MachineOperand &MO = MI->getOperand(i);
185    if (!MO.isFrameIndex())
186      continue;
187    int FI = MO.getIndex();
188    if (MF.getFrameInfo()->isFixedObjectIndex(FI))
189      continue;
190    // This stack reference was produced by instruction selection and
191    // is not a spill
192    if (FI < LowSpillSlot)
193      continue;
194    assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
195           && "Invalid spill slot");
196    SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
197  }
198  MI2VirtMap.erase(MI);
199  SpillPt2VirtMap.erase(MI);
200  RestorePt2VirtMap.erase(MI);
201  EmergencySpillMap.erase(MI);
202}
203
204void VirtRegMap::print(std::ostream &OS) const {
205  const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
206
207  OS << "********** REGISTER MAP **********\n";
208  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
209         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
210    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
211      OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i])
212         << "]\n";
213  }
214
215  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
216         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
217    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
218      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
219  OS << '\n';
220}
221
222void VirtRegMap::dump() const {
223  print(cerr);
224}
225
226
227//===----------------------------------------------------------------------===//
228// Simple Spiller Implementation
229//===----------------------------------------------------------------------===//
230
231Spiller::~Spiller() {}
232
233namespace {
234  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
235    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
236  };
237}
238
239bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
240  DOUT << "********** REWRITE MACHINE CODE **********\n";
241  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
242  const TargetMachine &TM = MF.getTarget();
243  const TargetInstrInfo &TII = *TM.getInstrInfo();
244
245
246  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
247  // each vreg once (in the case where a spilled vreg is used by multiple
248  // operands).  This is always smaller than the number of operands to the
249  // current machine instr, so it should be small.
250  std::vector<unsigned> LoadedRegs;
251
252  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
253       MBBI != E; ++MBBI) {
254    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
255    MachineBasicBlock &MBB = *MBBI;
256    for (MachineBasicBlock::iterator MII = MBB.begin(),
257           E = MBB.end(); MII != E; ++MII) {
258      MachineInstr &MI = *MII;
259      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
260        MachineOperand &MO = MI.getOperand(i);
261        if (MO.isRegister() && MO.getReg()) {
262          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
263            unsigned VirtReg = MO.getReg();
264            unsigned PhysReg = VRM.getPhys(VirtReg);
265            if (!VRM.isAssignedReg(VirtReg)) {
266              int StackSlot = VRM.getStackSlot(VirtReg);
267              const TargetRegisterClass* RC =
268                MF.getRegInfo().getRegClass(VirtReg);
269
270              if (MO.isUse() &&
271                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
272                  == LoadedRegs.end()) {
273                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
274                MachineInstr *LoadMI = prior(MII);
275                VRM.addSpillSlotUse(StackSlot, LoadMI);
276                LoadedRegs.push_back(VirtReg);
277                ++NumLoads;
278                DOUT << '\t' << *LoadMI;
279              }
280
281              if (MO.isDef()) {
282                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
283                                        StackSlot, RC);
284                MachineInstr *StoreMI = next(MII);
285                VRM.addSpillSlotUse(StackSlot, StoreMI);
286                ++NumStores;
287              }
288            }
289            MF.getRegInfo().setPhysRegUsed(PhysReg);
290            MI.getOperand(i).setReg(PhysReg);
291          } else {
292            MF.getRegInfo().setPhysRegUsed(MO.getReg());
293          }
294        }
295      }
296
297      DOUT << '\t' << MI;
298      LoadedRegs.clear();
299    }
300  }
301  return true;
302}
303
304//===----------------------------------------------------------------------===//
305//  Local Spiller Implementation
306//===----------------------------------------------------------------------===//
307
308namespace {
309  class AvailableSpills;
310
311  /// LocalSpiller - This spiller does a simple pass over the machine basic
312  /// block to attempt to keep spills in registers as much as possible for
313  /// blocks that have low register pressure (the vreg may be spilled due to
314  /// register pressure in other blocks).
315  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
316    MachineRegisterInfo *RegInfo;
317    const TargetRegisterInfo *TRI;
318    const TargetInstrInfo *TII;
319    DenseMap<MachineInstr*, unsigned> DistanceMap;
320  public:
321    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
322      RegInfo = &MF.getRegInfo();
323      TRI = MF.getTarget().getRegisterInfo();
324      TII = MF.getTarget().getInstrInfo();
325      DOUT << "\n**** Local spiller rewriting function '"
326           << MF.getFunction()->getName() << "':\n";
327      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
328              " ****\n";
329      DEBUG(MF.dump());
330
331      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
332           MBB != E; ++MBB)
333        RewriteMBB(*MBB, VRM);
334
335      // Mark unused spill slots.
336      MachineFrameInfo *MFI = MF.getFrameInfo();
337      int SS = VRM.getLowSpillSlot();
338      if (SS != VirtRegMap::NO_STACK_SLOT)
339        for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
340          if (!VRM.isSpillSlotUsed(SS)) {
341            MFI->RemoveStackObject(SS);
342            ++NumDSS;
343          }
344
345      DOUT << "**** Post Machine Instrs ****\n";
346      DEBUG(MF.dump());
347
348      return true;
349    }
350  private:
351    void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
352                          unsigned Reg, BitVector &RegKills,
353                          std::vector<MachineOperand*> &KillOps);
354    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
355                           MachineBasicBlock::iterator &MII,
356                           std::vector<MachineInstr*> &MaybeDeadStores,
357                           AvailableSpills &Spills, BitVector &RegKills,
358                           std::vector<MachineOperand*> &KillOps,
359                           VirtRegMap &VRM);
360    bool CommuteToFoldReload(MachineBasicBlock &MBB,
361                             MachineBasicBlock::iterator &MII,
362                             unsigned VirtReg, unsigned SrcReg, int SS,
363                             BitVector &RegKills,
364                             std::vector<MachineOperand*> &KillOps,
365                             const TargetRegisterInfo *TRI,
366                             VirtRegMap &VRM);
367    void SpillRegToStackSlot(MachineBasicBlock &MBB,
368                             MachineBasicBlock::iterator &MII,
369                             int Idx, unsigned PhysReg, int StackSlot,
370                             const TargetRegisterClass *RC,
371                             bool isAvailable, MachineInstr *&LastStore,
372                             AvailableSpills &Spills,
373                             SmallSet<MachineInstr*, 4> &ReMatDefs,
374                             BitVector &RegKills,
375                             std::vector<MachineOperand*> &KillOps,
376                             VirtRegMap &VRM);
377    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
378  };
379}
380
381/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
382/// top down, keep track of which spills slots or remat are available in each
383/// register.
384///
385/// Note that not all physregs are created equal here.  In particular, some
386/// physregs are reloads that we are allowed to clobber or ignore at any time.
387/// Other physregs are values that the register allocated program is using that
388/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
389/// per-stack-slot / remat id basis as the low bit in the value of the
390/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
391/// this bit and addAvailable sets it if.
392namespace {
393class VISIBILITY_HIDDEN AvailableSpills {
394  const TargetRegisterInfo *TRI;
395  const TargetInstrInfo *TII;
396
397  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
398  // or remat'ed virtual register values that are still available, due to being
399  // loaded or stored to, but not invalidated yet.
400  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
401
402  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
403  // indicating which stack slot values are currently held by a physreg.  This
404  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
405  // physreg is modified.
406  std::multimap<unsigned, int> PhysRegsAvailable;
407
408  void disallowClobberPhysRegOnly(unsigned PhysReg);
409
410  void ClobberPhysRegOnly(unsigned PhysReg);
411public:
412  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
413    : TRI(tri), TII(tii) {
414  }
415
416  const TargetRegisterInfo *getRegInfo() const { return TRI; }
417
418  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
419  /// available in a  physical register, return that PhysReg, otherwise
420  /// return 0.
421  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
422    std::map<int, unsigned>::const_iterator I =
423      SpillSlotsOrReMatsAvailable.find(Slot);
424    if (I != SpillSlotsOrReMatsAvailable.end()) {
425      return I->second >> 1;  // Remove the CanClobber bit.
426    }
427    return 0;
428  }
429
430  /// addAvailable - Mark that the specified stack slot / remat is available in
431  /// the specified physreg.  If CanClobber is true, the physreg can be modified
432  /// at any time without changing the semantics of the program.
433  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
434                    bool CanClobber = true) {
435    // If this stack slot is thought to be available in some other physreg,
436    // remove its record.
437    ModifyStackSlotOrReMat(SlotOrReMat);
438
439    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
440    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
441
442    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
443      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
444    else
445      DOUT << "Remembering SS#" << SlotOrReMat;
446    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
447  }
448
449  /// canClobberPhysReg - Return true if the spiller is allowed to change the
450  /// value of the specified stackslot register if it desires.  The specified
451  /// stack slot must be available in a physreg for this query to make sense.
452  bool canClobberPhysReg(int SlotOrReMat) const {
453    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
454           "Value not available!");
455    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
456  }
457
458  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
459  /// stackslot register. The register is still available but is no longer
460  /// allowed to be modifed.
461  void disallowClobberPhysReg(unsigned PhysReg);
462
463  /// ClobberPhysReg - This is called when the specified physreg changes
464  /// value.  We use this to invalidate any info about stuff that lives in
465  /// it and any of its aliases.
466  void ClobberPhysReg(unsigned PhysReg);
467
468  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
469  /// slot changes.  This removes information about which register the previous
470  /// value for this slot lives in (as the previous value is dead now).
471  void ModifyStackSlotOrReMat(int SlotOrReMat);
472};
473}
474
475/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
476/// stackslot register. The register is still available but is no longer
477/// allowed to be modifed.
478void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
479  std::multimap<unsigned, int>::iterator I =
480    PhysRegsAvailable.lower_bound(PhysReg);
481  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
482    int SlotOrReMat = I->second;
483    I++;
484    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
485           "Bidirectional map mismatch!");
486    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
487    DOUT << "PhysReg " << TRI->getName(PhysReg)
488         << " copied, it is available for use but can no longer be modified\n";
489  }
490}
491
492/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
493/// stackslot register and its aliases. The register and its aliases may
494/// still available but is no longer allowed to be modifed.
495void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
496  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
497    disallowClobberPhysRegOnly(*AS);
498  disallowClobberPhysRegOnly(PhysReg);
499}
500
501/// ClobberPhysRegOnly - This is called when the specified physreg changes
502/// value.  We use this to invalidate any info about stuff we thing lives in it.
503void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
504  std::multimap<unsigned, int>::iterator I =
505    PhysRegsAvailable.lower_bound(PhysReg);
506  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
507    int SlotOrReMat = I->second;
508    PhysRegsAvailable.erase(I++);
509    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
510           "Bidirectional map mismatch!");
511    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
512    DOUT << "PhysReg " << TRI->getName(PhysReg)
513         << " clobbered, invalidating ";
514    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
515      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
516    else
517      DOUT << "SS#" << SlotOrReMat << "\n";
518  }
519}
520
521/// ClobberPhysReg - This is called when the specified physreg changes
522/// value.  We use this to invalidate any info about stuff we thing lives in
523/// it and any of its aliases.
524void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
525  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
526    ClobberPhysRegOnly(*AS);
527  ClobberPhysRegOnly(PhysReg);
528}
529
530/// ModifyStackSlotOrReMat - This method is called when the value in a stack
531/// slot changes.  This removes information about which register the previous
532/// value for this slot lives in (as the previous value is dead now).
533void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
534  std::map<int, unsigned>::iterator It =
535    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
536  if (It == SpillSlotsOrReMatsAvailable.end()) return;
537  unsigned Reg = It->second >> 1;
538  SpillSlotsOrReMatsAvailable.erase(It);
539
540  // This register may hold the value of multiple stack slots, only remove this
541  // stack slot from the set of values the register contains.
542  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
543  for (; ; ++I) {
544    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
545           "Map inverse broken!");
546    if (I->second == SlotOrReMat) break;
547  }
548  PhysRegsAvailable.erase(I);
549}
550
551
552
553/// InvalidateKills - MI is going to be deleted. If any of its operands are
554/// marked kill, then invalidate the information.
555static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
556                            std::vector<MachineOperand*> &KillOps,
557                            SmallVector<unsigned, 2> *KillRegs = NULL) {
558  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
559    MachineOperand &MO = MI.getOperand(i);
560    if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
561      continue;
562    unsigned Reg = MO.getReg();
563    if (TargetRegisterInfo::isVirtualRegister(Reg))
564      continue;
565    if (KillRegs)
566      KillRegs->push_back(Reg);
567    assert(Reg < KillOps.size());
568    if (KillOps[Reg] == &MO) {
569      RegKills.reset(Reg);
570      KillOps[Reg] = NULL;
571    }
572  }
573}
574
575/// InvalidateKill - A MI that defines the specified register is being deleted,
576/// invalidate the register kill information.
577static void InvalidateKill(unsigned Reg, BitVector &RegKills,
578                           std::vector<MachineOperand*> &KillOps) {
579  if (RegKills[Reg]) {
580    KillOps[Reg]->setIsKill(false);
581    KillOps[Reg] = NULL;
582    RegKills.reset(Reg);
583  }
584}
585
586/// InvalidateRegDef - If the def operand of the specified def MI is now dead
587/// (since it's spill instruction is removed), mark it isDead. Also checks if
588/// the def MI has other definition operands that are not dead. Returns it by
589/// reference.
590static bool InvalidateRegDef(MachineBasicBlock::iterator I,
591                             MachineInstr &NewDef, unsigned Reg,
592                             bool &HasLiveDef) {
593  // Due to remat, it's possible this reg isn't being reused. That is,
594  // the def of this reg (by prev MI) is now dead.
595  MachineInstr *DefMI = I;
596  MachineOperand *DefOp = NULL;
597  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
598    MachineOperand &MO = DefMI->getOperand(i);
599    if (MO.isRegister() && MO.isDef()) {
600      if (MO.getReg() == Reg)
601        DefOp = &MO;
602      else if (!MO.isDead())
603        HasLiveDef = true;
604    }
605  }
606  if (!DefOp)
607    return false;
608
609  bool FoundUse = false, Done = false;
610  MachineBasicBlock::iterator E = &NewDef;
611  ++I; ++E;
612  for (; !Done && I != E; ++I) {
613    MachineInstr *NMI = I;
614    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
615      MachineOperand &MO = NMI->getOperand(j);
616      if (!MO.isRegister() || MO.getReg() != Reg)
617        continue;
618      if (MO.isUse())
619        FoundUse = true;
620      Done = true; // Stop after scanning all the operands of this MI.
621    }
622  }
623  if (!FoundUse) {
624    // Def is dead!
625    DefOp->setIsDead();
626    return true;
627  }
628  return false;
629}
630
631/// UpdateKills - Track and update kill info. If a MI reads a register that is
632/// marked kill, then it must be due to register reuse. Transfer the kill info
633/// over.
634static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
635                        std::vector<MachineOperand*> &KillOps) {
636  const TargetInstrDesc &TID = MI.getDesc();
637  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
638    MachineOperand &MO = MI.getOperand(i);
639    if (!MO.isRegister() || !MO.isUse())
640      continue;
641    unsigned Reg = MO.getReg();
642    if (Reg == 0)
643      continue;
644
645    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
646      // That can't be right. Register is killed but not re-defined and it's
647      // being reused. Let's fix that.
648      KillOps[Reg]->setIsKill(false);
649      KillOps[Reg] = NULL;
650      RegKills.reset(Reg);
651      if (i < TID.getNumOperands() &&
652          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
653        // Unless it's a two-address operand, this is the new kill.
654        MO.setIsKill();
655    }
656    if (MO.isKill()) {
657      RegKills.set(Reg);
658      KillOps[Reg] = &MO;
659    }
660  }
661
662  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
663    const MachineOperand &MO = MI.getOperand(i);
664    if (!MO.isRegister() || !MO.isDef())
665      continue;
666    unsigned Reg = MO.getReg();
667    RegKills.reset(Reg);
668    KillOps[Reg] = NULL;
669  }
670}
671
672/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
673///
674static void ReMaterialize(MachineBasicBlock &MBB,
675                          MachineBasicBlock::iterator &MII,
676                          unsigned DestReg, unsigned Reg,
677                          const TargetInstrInfo *TII,
678                          const TargetRegisterInfo *TRI,
679                          VirtRegMap &VRM) {
680  TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
681  MachineInstr *NewMI = prior(MII);
682  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
683    MachineOperand &MO = NewMI->getOperand(i);
684    if (!MO.isRegister() || MO.getReg() == 0)
685      continue;
686    unsigned VirtReg = MO.getReg();
687    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
688      continue;
689    assert(MO.isUse());
690    unsigned SubIdx = MO.getSubReg();
691    unsigned Phys = VRM.getPhys(VirtReg);
692    assert(Phys);
693    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
694    MO.setReg(RReg);
695  }
696  ++NumReMats;
697}
698
699
700// ReusedOp - For each reused operand, we keep track of a bit of information, in
701// case we need to rollback upon processing a new operand.  See comments below.
702namespace {
703  struct ReusedOp {
704    // The MachineInstr operand that reused an available value.
705    unsigned Operand;
706
707    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
708    unsigned StackSlotOrReMat;
709
710    // PhysRegReused - The physical register the value was available in.
711    unsigned PhysRegReused;
712
713    // AssignedPhysReg - The physreg that was assigned for use by the reload.
714    unsigned AssignedPhysReg;
715
716    // VirtReg - The virtual register itself.
717    unsigned VirtReg;
718
719    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
720             unsigned vreg)
721      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
722        AssignedPhysReg(apr), VirtReg(vreg) {}
723  };
724
725  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
726  /// is reused instead of reloaded.
727  class VISIBILITY_HIDDEN ReuseInfo {
728    MachineInstr &MI;
729    std::vector<ReusedOp> Reuses;
730    BitVector PhysRegsClobbered;
731  public:
732    ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
733      PhysRegsClobbered.resize(tri->getNumRegs());
734    }
735
736    bool hasReuses() const {
737      return !Reuses.empty();
738    }
739
740    /// addReuse - If we choose to reuse a virtual register that is already
741    /// available instead of reloading it, remember that we did so.
742    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
743                  unsigned PhysRegReused, unsigned AssignedPhysReg,
744                  unsigned VirtReg) {
745      // If the reload is to the assigned register anyway, no undo will be
746      // required.
747      if (PhysRegReused == AssignedPhysReg) return;
748
749      // Otherwise, remember this.
750      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
751                                AssignedPhysReg, VirtReg));
752    }
753
754    void markClobbered(unsigned PhysReg) {
755      PhysRegsClobbered.set(PhysReg);
756    }
757
758    bool isClobbered(unsigned PhysReg) const {
759      return PhysRegsClobbered.test(PhysReg);
760    }
761
762    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
763    /// is some other operand that is using the specified register, either pick
764    /// a new register to use, or evict the previous reload and use this reg.
765    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
766                             AvailableSpills &Spills,
767                             std::vector<MachineInstr*> &MaybeDeadStores,
768                             SmallSet<unsigned, 8> &Rejected,
769                             BitVector &RegKills,
770                             std::vector<MachineOperand*> &KillOps,
771                             VirtRegMap &VRM) {
772      const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
773                                   .getInstrInfo();
774
775      if (Reuses.empty()) return PhysReg;  // This is most often empty.
776
777      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
778        ReusedOp &Op = Reuses[ro];
779        // If we find some other reuse that was supposed to use this register
780        // exactly for its reload, we can change this reload to use ITS reload
781        // register. That is, unless its reload register has already been
782        // considered and subsequently rejected because it has also been reused
783        // by another operand.
784        if (Op.PhysRegReused == PhysReg &&
785            Rejected.count(Op.AssignedPhysReg) == 0) {
786          // Yup, use the reload register that we didn't use before.
787          unsigned NewReg = Op.AssignedPhysReg;
788          Rejected.insert(PhysReg);
789          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
790                                 RegKills, KillOps, VRM);
791        } else {
792          // Otherwise, we might also have a problem if a previously reused
793          // value aliases the new register.  If so, codegen the previous reload
794          // and use this one.
795          unsigned PRRU = Op.PhysRegReused;
796          const TargetRegisterInfo *TRI = Spills.getRegInfo();
797          if (TRI->areAliases(PRRU, PhysReg)) {
798            // Okay, we found out that an alias of a reused register
799            // was used.  This isn't good because it means we have
800            // to undo a previous reuse.
801            MachineBasicBlock *MBB = MI->getParent();
802            const TargetRegisterClass *AliasRC =
803              MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
804
805            // Copy Op out of the vector and remove it, we're going to insert an
806            // explicit load for it.
807            ReusedOp NewOp = Op;
808            Reuses.erase(Reuses.begin()+ro);
809
810            // Ok, we're going to try to reload the assigned physreg into the
811            // slot that we were supposed to in the first place.  However, that
812            // register could hold a reuse.  Check to see if it conflicts or
813            // would prefer us to use a different register.
814            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
815                                                  MI, Spills, MaybeDeadStores,
816                                              Rejected, RegKills, KillOps, VRM);
817
818            MachineBasicBlock::iterator MII = MI;
819            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
820              ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
821            } else {
822              TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
823                                        NewOp.StackSlotOrReMat, AliasRC);
824              MachineInstr *LoadMI = prior(MII);
825              VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
826              // Any stores to this stack slot are not dead anymore.
827              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
828              ++NumLoads;
829            }
830            Spills.ClobberPhysReg(NewPhysReg);
831            Spills.ClobberPhysReg(NewOp.PhysRegReused);
832
833            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
834
835            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
836            --MII;
837            UpdateKills(*MII, RegKills, KillOps);
838            DOUT << '\t' << *MII;
839
840            DOUT << "Reuse undone!\n";
841            --NumReused;
842
843            // Finally, PhysReg is now available, go ahead and use it.
844            return PhysReg;
845          }
846        }
847      }
848      return PhysReg;
849    }
850
851    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
852    /// 'Rejected' set to remember which registers have been considered and
853    /// rejected for the reload. This avoids infinite looping in case like
854    /// this:
855    /// t1 := op t2, t3
856    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
857    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
858    /// t1 <- desires r1
859    ///       sees r1 is taken by t2, tries t2's reload register r0
860    ///       sees r0 is taken by t3, tries t3's reload register r1
861    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
862    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
863                             AvailableSpills &Spills,
864                             std::vector<MachineInstr*> &MaybeDeadStores,
865                             BitVector &RegKills,
866                             std::vector<MachineOperand*> &KillOps,
867                             VirtRegMap &VRM) {
868      SmallSet<unsigned, 8> Rejected;
869      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
870                             RegKills, KillOps, VRM);
871    }
872  };
873}
874
875/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
876/// instruction. e.g.
877///     xorl  %edi, %eax
878///     movl  %eax, -32(%ebp)
879///     movl  -36(%ebp), %eax
880///     orl   %eax, -32(%ebp)
881/// ==>
882///     xorl  %edi, %eax
883///     orl   -36(%ebp), %eax
884///     mov   %eax, -32(%ebp)
885/// This enables unfolding optimization for a subsequent instruction which will
886/// also eliminate the newly introduced store instruction.
887bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
888                                    MachineBasicBlock::iterator &MII,
889                                    std::vector<MachineInstr*> &MaybeDeadStores,
890                                    AvailableSpills &Spills,
891                                    BitVector &RegKills,
892                                    std::vector<MachineOperand*> &KillOps,
893                                    VirtRegMap &VRM) {
894  MachineFunction &MF = *MBB.getParent();
895  MachineInstr &MI = *MII;
896  unsigned UnfoldedOpc = 0;
897  unsigned UnfoldPR = 0;
898  unsigned UnfoldVR = 0;
899  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
900  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
901  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
902    // Only transform a MI that folds a single register.
903    if (UnfoldedOpc)
904      return false;
905    UnfoldVR = I->second.first;
906    VirtRegMap::ModRef MR = I->second.second;
907    // MI2VirtMap be can updated which invalidate the iterator.
908    // Increment the iterator first.
909    ++I;
910    if (VRM.isAssignedReg(UnfoldVR))
911      continue;
912    // If this reference is not a use, any previous store is now dead.
913    // Otherwise, the store to this stack slot is not dead anymore.
914    FoldedSS = VRM.getStackSlot(UnfoldVR);
915    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
916    if (DeadStore && (MR & VirtRegMap::isModRef)) {
917      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
918      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
919        continue;
920      UnfoldPR = PhysReg;
921      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
922                                                    false, true);
923    }
924  }
925
926  if (!UnfoldedOpc)
927    return false;
928
929  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
930    MachineOperand &MO = MI.getOperand(i);
931    if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
932      continue;
933    unsigned VirtReg = MO.getReg();
934    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
935      continue;
936    if (VRM.isAssignedReg(VirtReg)) {
937      unsigned PhysReg = VRM.getPhys(VirtReg);
938      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
939        return false;
940    } else if (VRM.isReMaterialized(VirtReg))
941      continue;
942    int SS = VRM.getStackSlot(VirtReg);
943    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
944    if (PhysReg) {
945      if (TRI->regsOverlap(PhysReg, UnfoldPR))
946        return false;
947      continue;
948    }
949    if (VRM.hasPhys(VirtReg)) {
950      PhysReg = VRM.getPhys(VirtReg);
951      if (!TRI->regsOverlap(PhysReg, UnfoldPR))
952        continue;
953    }
954
955    // Ok, we'll need to reload the value into a register which makes
956    // it impossible to perform the store unfolding optimization later.
957    // Let's see if it is possible to fold the load if the store is
958    // unfolded. This allows us to perform the store unfolding
959    // optimization.
960    SmallVector<MachineInstr*, 4> NewMIs;
961    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
962      assert(NewMIs.size() == 1);
963      MachineInstr *NewMI = NewMIs.back();
964      NewMIs.clear();
965      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
966      assert(Idx != -1);
967      SmallVector<unsigned, 2> Ops;
968      Ops.push_back(Idx);
969      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
970      if (FoldedMI) {
971        VRM.addSpillSlotUse(SS, FoldedMI);
972        if (!VRM.hasPhys(UnfoldVR))
973          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
974        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
975        MII = MBB.insert(MII, FoldedMI);
976        InvalidateKills(MI, RegKills, KillOps);
977        VRM.RemoveMachineInstrFromMaps(&MI);
978        MBB.erase(&MI);
979        MF.DeleteMachineInstr(NewMI);
980        return true;
981      }
982      MF.DeleteMachineInstr(NewMI);
983    }
984  }
985  return false;
986}
987
988/// CommuteToFoldReload -
989/// Look for
990/// r1 = load fi#1
991/// r1 = op r1, r2<kill>
992/// store r1, fi#1
993///
994/// If op is commutable and r2 is killed, then we can xform these to
995/// r2 = op r2, fi#1
996/// store r2, fi#1
997bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
998                                    MachineBasicBlock::iterator &MII,
999                                    unsigned VirtReg, unsigned SrcReg, int SS,
1000                                    BitVector &RegKills,
1001                                    std::vector<MachineOperand*> &KillOps,
1002                                    const TargetRegisterInfo *TRI,
1003                                    VirtRegMap &VRM) {
1004  if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1005    return false;
1006
1007  MachineFunction &MF = *MBB.getParent();
1008  MachineInstr &MI = *MII;
1009  MachineBasicBlock::iterator DefMII = prior(MII);
1010  MachineInstr *DefMI = DefMII;
1011  const TargetInstrDesc &TID = DefMI->getDesc();
1012  unsigned NewDstIdx;
1013  if (DefMII != MBB.begin() &&
1014      TID.isCommutable() &&
1015      TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
1016    MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1017    unsigned NewReg = NewDstMO.getReg();
1018    if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1019      return false;
1020    MachineInstr *ReloadMI = prior(DefMII);
1021    int FrameIdx;
1022    unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1023    if (DestReg != SrcReg || FrameIdx != SS)
1024      return false;
1025    int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1026    if (UseIdx == -1)
1027      return false;
1028    int DefIdx = TID.getOperandConstraint(UseIdx, TOI::TIED_TO);
1029    if (DefIdx == -1)
1030      return false;
1031    assert(DefMI->getOperand(DefIdx).isRegister() &&
1032           DefMI->getOperand(DefIdx).getReg() == SrcReg);
1033
1034    // Now commute def instruction.
1035    MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1036    if (!CommutedMI)
1037      return false;
1038    SmallVector<unsigned, 2> Ops;
1039    Ops.push_back(NewDstIdx);
1040    MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1041    // Not needed since foldMemoryOperand returns new MI.
1042    MF.DeleteMachineInstr(CommutedMI);
1043    if (!FoldedMI)
1044      return false;
1045
1046    VRM.addSpillSlotUse(SS, FoldedMI);
1047    VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1048    // Insert new def MI and spill MI.
1049    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
1050    TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1051    MII = prior(MII);
1052    MachineInstr *StoreMI = MII;
1053    VRM.addSpillSlotUse(SS, StoreMI);
1054    VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1055    MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.
1056
1057    // Delete all 3 old instructions.
1058    InvalidateKills(*ReloadMI, RegKills, KillOps);
1059    VRM.RemoveMachineInstrFromMaps(ReloadMI);
1060    MBB.erase(ReloadMI);
1061    InvalidateKills(*DefMI, RegKills, KillOps);
1062    VRM.RemoveMachineInstrFromMaps(DefMI);
1063    MBB.erase(DefMI);
1064    InvalidateKills(MI, RegKills, KillOps);
1065    VRM.RemoveMachineInstrFromMaps(&MI);
1066    MBB.erase(&MI);
1067
1068    ++NumCommutes;
1069    return true;
1070  }
1071
1072  return false;
1073}
1074
1075/// findSuperReg - Find the SubReg's super-register of given register class
1076/// where its SubIdx sub-register is SubReg.
1077static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
1078                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
1079  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1080       I != E; ++I) {
1081    unsigned Reg = *I;
1082    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
1083      return Reg;
1084  }
1085  return 0;
1086}
1087
1088/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1089/// the last store to the same slot is now dead. If so, remove the last store.
1090void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
1091                                  MachineBasicBlock::iterator &MII,
1092                                  int Idx, unsigned PhysReg, int StackSlot,
1093                                  const TargetRegisterClass *RC,
1094                                  bool isAvailable, MachineInstr *&LastStore,
1095                                  AvailableSpills &Spills,
1096                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
1097                                  BitVector &RegKills,
1098                                  std::vector<MachineOperand*> &KillOps,
1099                                  VirtRegMap &VRM) {
1100  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1101  MachineInstr *StoreMI = next(MII);
1102  VRM.addSpillSlotUse(StackSlot, StoreMI);
1103  DOUT << "Store:\t" << *StoreMI;
1104
1105  // If there is a dead store to this stack slot, nuke it now.
1106  if (LastStore) {
1107    DOUT << "Removed dead store:\t" << *LastStore;
1108    ++NumDSE;
1109    SmallVector<unsigned, 2> KillRegs;
1110    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
1111    MachineBasicBlock::iterator PrevMII = LastStore;
1112    bool CheckDef = PrevMII != MBB.begin();
1113    if (CheckDef)
1114      --PrevMII;
1115    VRM.RemoveMachineInstrFromMaps(LastStore);
1116    MBB.erase(LastStore);
1117    if (CheckDef) {
1118      // Look at defs of killed registers on the store. Mark the defs
1119      // as dead since the store has been deleted and they aren't
1120      // being reused.
1121      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1122        bool HasOtherDef = false;
1123        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1124          MachineInstr *DeadDef = PrevMII;
1125          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1126            // FIXME: This assumes a remat def does not have side
1127            // effects.
1128            VRM.RemoveMachineInstrFromMaps(DeadDef);
1129            MBB.erase(DeadDef);
1130            ++NumDRM;
1131          }
1132        }
1133      }
1134    }
1135  }
1136
1137  LastStore = next(MII);
1138
1139  // If the stack slot value was previously available in some other
1140  // register, change it now.  Otherwise, make the register available,
1141  // in PhysReg.
1142  Spills.ModifyStackSlotOrReMat(StackSlot);
1143  Spills.ClobberPhysReg(PhysReg);
1144  Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
1145  ++NumStores;
1146}
1147
1148/// TransferDeadness - A identity copy definition is dead and it's being
1149/// removed. Find the last def or use and mark it as dead / kill.
1150void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1151                                    unsigned Reg, BitVector &RegKills,
1152                                    std::vector<MachineOperand*> &KillOps) {
1153  int LastUDDist = -1;
1154  MachineInstr *LastUDMI = NULL;
1155  for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1156         RE = RegInfo->reg_end(); RI != RE; ++RI) {
1157    MachineInstr *UDMI = &*RI;
1158    if (UDMI->getParent() != MBB)
1159      continue;
1160    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1161    if (DI == DistanceMap.end() || DI->second > CurDist)
1162      continue;
1163    if ((int)DI->second < LastUDDist)
1164      continue;
1165    LastUDDist = DI->second;
1166    LastUDMI = UDMI;
1167  }
1168
1169  if (LastUDMI) {
1170    const TargetInstrDesc &TID = LastUDMI->getDesc();
1171    MachineOperand *LastUD = NULL;
1172    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1173      MachineOperand &MO = LastUDMI->getOperand(i);
1174      if (!MO.isRegister() || MO.getReg() != Reg)
1175        continue;
1176      if (!LastUD || (LastUD->isUse() && MO.isDef()))
1177        LastUD = &MO;
1178      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
1179        return;
1180    }
1181    if (LastUD->isDef())
1182      LastUD->setIsDead();
1183    else {
1184      LastUD->setIsKill();
1185      RegKills.set(Reg);
1186      KillOps[Reg] = LastUD;
1187    }
1188  }
1189}
1190
1191/// rewriteMBB - Keep track of which spills are available even after the
1192/// register allocator is done with them.  If possible, avid reloading vregs.
1193void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
1194  DOUT << MBB.getBasicBlock()->getName() << ":\n";
1195
1196  MachineFunction &MF = *MBB.getParent();
1197
1198  // Spills - Keep track of which spilled values are available in physregs so
1199  // that we can choose to reuse the physregs instead of emitting reloads.
1200  AvailableSpills Spills(TRI, TII);
1201
1202  // MaybeDeadStores - When we need to write a value back into a stack slot,
1203  // keep track of the inserted store.  If the stack slot value is never read
1204  // (because the value was used from some available register, for example), and
1205  // subsequently stored to, the original store is dead.  This map keeps track
1206  // of inserted stores that are not used.  If we see a subsequent store to the
1207  // same stack slot, the original store is deleted.
1208  std::vector<MachineInstr*> MaybeDeadStores;
1209  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1210
1211  // ReMatDefs - These are rematerializable def MIs which are not deleted.
1212  SmallSet<MachineInstr*, 4> ReMatDefs;
1213
1214  // Keep track of kill information.
1215  BitVector RegKills(TRI->getNumRegs());
1216  std::vector<MachineOperand*>  KillOps;
1217  KillOps.resize(TRI->getNumRegs(), NULL);
1218
1219  unsigned Dist = 0;
1220  DistanceMap.clear();
1221  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1222       MII != E; ) {
1223    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
1224
1225    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1226    bool Erased = false;
1227    bool BackTracked = false;
1228    if (PrepForUnfoldOpti(MBB, MII,
1229                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1230      NextMII = next(MII);
1231
1232    MachineInstr &MI = *MII;
1233    const TargetInstrDesc &TID = MI.getDesc();
1234
1235    if (VRM.hasEmergencySpills(&MI)) {
1236      // Spill physical register(s) in the rare case the allocator has run out
1237      // of registers to allocate.
1238      SmallSet<int, 4> UsedSS;
1239      std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1240      for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1241        unsigned PhysReg = EmSpills[i];
1242        const TargetRegisterClass *RC =
1243          TRI->getPhysicalRegisterRegClass(PhysReg);
1244        assert(RC && "Unable to determine register class!");
1245        int SS = VRM.getEmergencySpillSlot(RC);
1246        if (UsedSS.count(SS))
1247          assert(0 && "Need to spill more than one physical registers!");
1248        UsedSS.insert(SS);
1249        TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1250        MachineInstr *StoreMI = prior(MII);
1251        VRM.addSpillSlotUse(SS, StoreMI);
1252        TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1253        MachineInstr *LoadMI = next(MII);
1254        VRM.addSpillSlotUse(SS, LoadMI);
1255        ++NumPSpills;
1256      }
1257      NextMII = next(MII);
1258    }
1259
1260    // Insert restores here if asked to.
1261    if (VRM.isRestorePt(&MI)) {
1262      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1263      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1264        unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
1265        if (!VRM.getPreSplitReg(VirtReg))
1266          continue; // Split interval spilled again.
1267        unsigned Phys = VRM.getPhys(VirtReg);
1268        RegInfo->setPhysRegUsed(Phys);
1269        if (VRM.isReMaterialized(VirtReg)) {
1270          ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1271        } else {
1272          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1273          int SS = VRM.getStackSlot(VirtReg);
1274          TII->loadRegFromStackSlot(MBB, &MI, Phys, SS, RC);
1275          MachineInstr *LoadMI = prior(MII);
1276          VRM.addSpillSlotUse(SS, LoadMI);
1277          ++NumLoads;
1278        }
1279        // This invalidates Phys.
1280        Spills.ClobberPhysReg(Phys);
1281        UpdateKills(*prior(MII), RegKills, KillOps);
1282        DOUT << '\t' << *prior(MII);
1283      }
1284    }
1285
1286    // Insert spills here if asked to.
1287    if (VRM.isSpillPt(&MI)) {
1288      std::vector<std::pair<unsigned,bool> > &SpillRegs =
1289        VRM.getSpillPtSpills(&MI);
1290      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1291        unsigned VirtReg = SpillRegs[i].first;
1292        bool isKill = SpillRegs[i].second;
1293        if (!VRM.getPreSplitReg(VirtReg))
1294          continue; // Split interval spilled again.
1295        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1296        unsigned Phys = VRM.getPhys(VirtReg);
1297        int StackSlot = VRM.getStackSlot(VirtReg);
1298        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1299        MachineInstr *StoreMI = next(MII);
1300        VRM.addSpillSlotUse(StackSlot, StoreMI);
1301        DOUT << "Store:\t" << *StoreMI;
1302        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1303      }
1304      NextMII = next(MII);
1305    }
1306
1307    /// ReusedOperands - Keep track of operand reuse in case we need to undo
1308    /// reuse.
1309    ReuseInfo ReusedOperands(MI, TRI);
1310    SmallVector<unsigned, 4> VirtUseOps;
1311    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1312      MachineOperand &MO = MI.getOperand(i);
1313      if (!MO.isRegister() || MO.getReg() == 0)
1314        continue;   // Ignore non-register operands.
1315
1316      unsigned VirtReg = MO.getReg();
1317      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1318        // Ignore physregs for spilling, but remember that it is used by this
1319        // function.
1320        RegInfo->setPhysRegUsed(VirtReg);
1321        continue;
1322      }
1323
1324      // We want to process implicit virtual register uses first.
1325      if (MO.isImplicit())
1326        // If the virtual register is implicitly defined, emit a implicit_def
1327        // before so scavenger knows it's "defined".
1328        VirtUseOps.insert(VirtUseOps.begin(), i);
1329      else
1330        VirtUseOps.push_back(i);
1331    }
1332
1333    // Process all of the spilled uses and all non spilled reg references.
1334    for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1335      unsigned i = VirtUseOps[j];
1336      MachineOperand &MO = MI.getOperand(i);
1337      unsigned VirtReg = MO.getReg();
1338      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1339             "Not a virtual register?");
1340
1341      unsigned SubIdx = MO.getSubReg();
1342      if (VRM.isAssignedReg(VirtReg)) {
1343        // This virtual register was assigned a physreg!
1344        unsigned Phys = VRM.getPhys(VirtReg);
1345        RegInfo->setPhysRegUsed(Phys);
1346        if (MO.isDef())
1347          ReusedOperands.markClobbered(Phys);
1348        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1349        MI.getOperand(i).setReg(RReg);
1350        if (VRM.isImplicitlyDefined(VirtReg))
1351          BuildMI(MBB, &MI, TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1352        continue;
1353      }
1354
1355      // This virtual register is now known to be a spilled value.
1356      if (!MO.isUse())
1357        continue;  // Handle defs in the loop below (handle use&def here though)
1358
1359      bool DoReMat = VRM.isReMaterialized(VirtReg);
1360      int SSorRMId = DoReMat
1361        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1362      int ReuseSlot = SSorRMId;
1363
1364      // Check to see if this stack slot is available.
1365      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1366
1367      // If this is a sub-register use, make sure the reuse register is in the
1368      // right register class. For example, for x86 not all of the 32-bit
1369      // registers have accessible sub-registers.
1370      // Similarly so for EXTRACT_SUBREG. Consider this:
1371      // EDI = op
1372      // MOV32_mr fi#1, EDI
1373      // ...
1374      //       = EXTRACT_SUBREG fi#1
1375      // fi#1 is available in EDI, but it cannot be reused because it's not in
1376      // the right register file.
1377      if (PhysReg &&
1378          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1379        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1380        if (!RC->contains(PhysReg))
1381          PhysReg = 0;
1382      }
1383
1384      if (PhysReg) {
1385        // This spilled operand might be part of a two-address operand.  If this
1386        // is the case, then changing it will necessarily require changing the
1387        // def part of the instruction as well.  However, in some cases, we
1388        // aren't allowed to modify the reused register.  If none of these cases
1389        // apply, reuse it.
1390        bool CanReuse = true;
1391        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1392        if (ti != -1 &&
1393            MI.getOperand(ti).isRegister() &&
1394            MI.getOperand(ti).getReg() == VirtReg) {
1395          // Okay, we have a two address operand.  We can reuse this physreg as
1396          // long as we are allowed to clobber the value and there isn't an
1397          // earlier def that has already clobbered the physreg.
1398          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1399            !ReusedOperands.isClobbered(PhysReg);
1400        }
1401
1402        if (CanReuse) {
1403          // If this stack slot value is already available, reuse it!
1404          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1405            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1406          else
1407            DOUT << "Reusing SS#" << ReuseSlot;
1408          DOUT << " from physreg "
1409               << TRI->getName(PhysReg) << " for vreg"
1410               << VirtReg <<" instead of reloading into physreg "
1411               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1412          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1413          MI.getOperand(i).setReg(RReg);
1414
1415          // The only technical detail we have is that we don't know that
1416          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1417          // later in the instruction.  In particular, consider 'op V1, V2'.
1418          // If V1 is available in physreg R0, we would choose to reuse it
1419          // here, instead of reloading it into the register the allocator
1420          // indicated (say R1).  However, V2 might have to be reloaded
1421          // later, and it might indicate that it needs to live in R0.  When
1422          // this occurs, we need to have information available that
1423          // indicates it is safe to use R1 for the reload instead of R0.
1424          //
1425          // To further complicate matters, we might conflict with an alias,
1426          // or R0 and R1 might not be compatible with each other.  In this
1427          // case, we actually insert a reload for V1 in R1, ensuring that
1428          // we can get at R0 or its alias.
1429          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1430                                  VRM.getPhys(VirtReg), VirtReg);
1431          if (ti != -1)
1432            // Only mark it clobbered if this is a use&def operand.
1433            ReusedOperands.markClobbered(PhysReg);
1434          ++NumReused;
1435
1436          if (MI.getOperand(i).isKill() &&
1437              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1438            // This was the last use and the spilled value is still available
1439            // for reuse. That means the spill was unnecessary!
1440            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1441            if (DeadStore) {
1442              DOUT << "Removed dead store:\t" << *DeadStore;
1443              InvalidateKills(*DeadStore, RegKills, KillOps);
1444              VRM.RemoveMachineInstrFromMaps(DeadStore);
1445              MBB.erase(DeadStore);
1446              MaybeDeadStores[ReuseSlot] = NULL;
1447              ++NumDSE;
1448            }
1449          }
1450          continue;
1451        }  // CanReuse
1452
1453        // Otherwise we have a situation where we have a two-address instruction
1454        // whose mod/ref operand needs to be reloaded.  This reload is already
1455        // available in some register "PhysReg", but if we used PhysReg as the
1456        // operand to our 2-addr instruction, the instruction would modify
1457        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1458        // to get its initial value.
1459        //
1460        // To avoid this problem, and to avoid doing a load right after a store,
1461        // we emit a copy from PhysReg into the designated register for this
1462        // operand.
1463        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1464        assert(DesignatedReg && "Must map virtreg to physreg!");
1465
1466        // Note that, if we reused a register for a previous operand, the
1467        // register we want to reload into might not actually be
1468        // available.  If this occurs, use the register indicated by the
1469        // reuser.
1470        if (ReusedOperands.hasReuses())
1471          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1472                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1473
1474        // If the mapped designated register is actually the physreg we have
1475        // incoming, we don't need to inserted a dead copy.
1476        if (DesignatedReg == PhysReg) {
1477          // If this stack slot value is already available, reuse it!
1478          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1479            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1480          else
1481            DOUT << "Reusing SS#" << ReuseSlot;
1482          DOUT << " from physreg " << TRI->getName(PhysReg)
1483               << " for vreg" << VirtReg
1484               << " instead of reloading into same physreg.\n";
1485          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1486          MI.getOperand(i).setReg(RReg);
1487          ReusedOperands.markClobbered(RReg);
1488          ++NumReused;
1489          continue;
1490        }
1491
1492        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1493        RegInfo->setPhysRegUsed(DesignatedReg);
1494        ReusedOperands.markClobbered(DesignatedReg);
1495        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1496
1497        MachineInstr *CopyMI = prior(MII);
1498        UpdateKills(*CopyMI, RegKills, KillOps);
1499
1500        // This invalidates DesignatedReg.
1501        Spills.ClobberPhysReg(DesignatedReg);
1502
1503        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1504        unsigned RReg =
1505          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1506        MI.getOperand(i).setReg(RReg);
1507        DOUT << '\t' << *prior(MII);
1508        ++NumReused;
1509        continue;
1510      } // if (PhysReg)
1511
1512      // Otherwise, reload it and remember that we have it.
1513      PhysReg = VRM.getPhys(VirtReg);
1514      assert(PhysReg && "Must map virtreg to physreg!");
1515
1516      // Note that, if we reused a register for a previous operand, the
1517      // register we want to reload into might not actually be
1518      // available.  If this occurs, use the register indicated by the
1519      // reuser.
1520      if (ReusedOperands.hasReuses())
1521        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1522                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1523
1524      RegInfo->setPhysRegUsed(PhysReg);
1525      ReusedOperands.markClobbered(PhysReg);
1526      if (DoReMat) {
1527        ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1528      } else {
1529        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1530        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1531        MachineInstr *LoadMI = prior(MII);
1532        VRM.addSpillSlotUse(SSorRMId, LoadMI);
1533        ++NumLoads;
1534      }
1535      // This invalidates PhysReg.
1536      Spills.ClobberPhysReg(PhysReg);
1537
1538      // Any stores to this stack slot are not dead anymore.
1539      if (!DoReMat)
1540        MaybeDeadStores[SSorRMId] = NULL;
1541      Spills.addAvailable(SSorRMId, &MI, PhysReg);
1542      // Assumes this is the last use. IsKill will be unset if reg is reused
1543      // unless it's a two-address operand.
1544      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
1545        MI.getOperand(i).setIsKill();
1546      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1547      MI.getOperand(i).setReg(RReg);
1548      UpdateKills(*prior(MII), RegKills, KillOps);
1549      DOUT << '\t' << *prior(MII);
1550    }
1551
1552    DOUT << '\t' << MI;
1553
1554
1555    // If we have folded references to memory operands, make sure we clear all
1556    // physical registers that may contain the value of the spilled virtual
1557    // register
1558    SmallSet<int, 2> FoldedSS;
1559    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1560      unsigned VirtReg = I->second.first;
1561      VirtRegMap::ModRef MR = I->second.second;
1562      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1563
1564      // MI2VirtMap be can updated which invalidate the iterator.
1565      // Increment the iterator first.
1566      ++I;
1567      int SS = VRM.getStackSlot(VirtReg);
1568      if (SS == VirtRegMap::NO_STACK_SLOT)
1569        continue;
1570      FoldedSS.insert(SS);
1571      DOUT << " - StackSlot: " << SS << "\n";
1572
1573      // If this folded instruction is just a use, check to see if it's a
1574      // straight load from the virt reg slot.
1575      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1576        int FrameIdx;
1577        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1578        if (DestReg && FrameIdx == SS) {
1579          // If this spill slot is available, turn it into a copy (or nothing)
1580          // instead of leaving it as a load!
1581          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1582            DOUT << "Promoted Load To Copy: " << MI;
1583            if (DestReg != InReg) {
1584              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1585              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1586              // Revisit the copy so we make sure to notice the effects of the
1587              // operation on the destreg (either needing to RA it if it's
1588              // virtual or needing to clobber any values if it's physical).
1589              NextMII = &MI;
1590              --NextMII;  // backtrack to the copy.
1591              BackTracked = true;
1592            } else {
1593              DOUT << "Removing now-noop copy: " << MI;
1594              // Unset last kill since it's being reused.
1595              InvalidateKill(InReg, RegKills, KillOps);
1596            }
1597
1598            InvalidateKills(MI, RegKills, KillOps);
1599            VRM.RemoveMachineInstrFromMaps(&MI);
1600            MBB.erase(&MI);
1601            Erased = true;
1602            goto ProcessNextInst;
1603          }
1604        } else {
1605          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1606          SmallVector<MachineInstr*, 4> NewMIs;
1607          if (PhysReg &&
1608              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1609            MBB.insert(MII, NewMIs[0]);
1610            InvalidateKills(MI, RegKills, KillOps);
1611            VRM.RemoveMachineInstrFromMaps(&MI);
1612            MBB.erase(&MI);
1613            Erased = true;
1614            --NextMII;  // backtrack to the unfolded instruction.
1615            BackTracked = true;
1616            goto ProcessNextInst;
1617          }
1618        }
1619      }
1620
1621      // If this reference is not a use, any previous store is now dead.
1622      // Otherwise, the store to this stack slot is not dead anymore.
1623      MachineInstr* DeadStore = MaybeDeadStores[SS];
1624      if (DeadStore) {
1625        bool isDead = !(MR & VirtRegMap::isRef);
1626        MachineInstr *NewStore = NULL;
1627        if (MR & VirtRegMap::isModRef) {
1628          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1629          SmallVector<MachineInstr*, 4> NewMIs;
1630          // We can reuse this physreg as long as we are allowed to clobber
1631          // the value and there isn't an earlier def that has already clobbered
1632          // the physreg.
1633          if (PhysReg &&
1634              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1635            MachineOperand *KillOpnd =
1636              DeadStore->findRegisterUseOperand(PhysReg, true);
1637            // Note, if the store is storing a sub-register, it's possible the
1638            // super-register is needed below.
1639            if (KillOpnd && !KillOpnd->getSubReg() &&
1640                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1641              MBB.insert(MII, NewMIs[0]);
1642              NewStore = NewMIs[1];
1643              MBB.insert(MII, NewStore);
1644              VRM.addSpillSlotUse(SS, NewStore);
1645              InvalidateKills(MI, RegKills, KillOps);
1646              VRM.RemoveMachineInstrFromMaps(&MI);
1647              MBB.erase(&MI);
1648              Erased = true;
1649              --NextMII;
1650              --NextMII;  // backtrack to the unfolded instruction.
1651              BackTracked = true;
1652              isDead = true;
1653            }
1654          }
1655        }
1656
1657        if (isDead) {  // Previous store is dead.
1658          // If we get here, the store is dead, nuke it now.
1659          DOUT << "Removed dead store:\t" << *DeadStore;
1660          InvalidateKills(*DeadStore, RegKills, KillOps);
1661          VRM.RemoveMachineInstrFromMaps(DeadStore);
1662          MBB.erase(DeadStore);
1663          if (!NewStore)
1664            ++NumDSE;
1665        }
1666
1667        MaybeDeadStores[SS] = NULL;
1668        if (NewStore) {
1669          // Treat this store as a spill merged into a copy. That makes the
1670          // stack slot value available.
1671          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1672          goto ProcessNextInst;
1673        }
1674      }
1675
1676      // If the spill slot value is available, and this is a new definition of
1677      // the value, the value is not available anymore.
1678      if (MR & VirtRegMap::isMod) {
1679        // Notice that the value in this stack slot has been modified.
1680        Spills.ModifyStackSlotOrReMat(SS);
1681
1682        // If this is *just* a mod of the value, check to see if this is just a
1683        // store to the spill slot (i.e. the spill got merged into the copy). If
1684        // so, realize that the vreg is available now, and add the store to the
1685        // MaybeDeadStore info.
1686        int StackSlot;
1687        if (!(MR & VirtRegMap::isRef)) {
1688          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1689            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1690                   "Src hasn't been allocated yet?");
1691
1692            if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
1693                                    RegKills, KillOps, TRI, VRM)) {
1694              NextMII = next(MII);
1695              BackTracked = true;
1696              goto ProcessNextInst;
1697            }
1698
1699            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1700            // this as a potentially dead store in case there is a subsequent
1701            // store into the stack slot without a read from it.
1702            MaybeDeadStores[StackSlot] = &MI;
1703
1704            // If the stack slot value was previously available in some other
1705            // register, change it now.  Otherwise, make the register
1706            // available in PhysReg.
1707            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*!clobber*/);
1708          }
1709        }
1710      }
1711    }
1712
1713    // Process all of the spilled defs.
1714    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1715      MachineOperand &MO = MI.getOperand(i);
1716      if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
1717        continue;
1718
1719      unsigned VirtReg = MO.getReg();
1720      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1721        // Check to see if this is a noop copy.  If so, eliminate the
1722        // instruction before considering the dest reg to be changed.
1723        unsigned Src, Dst;
1724        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1725          ++NumDCE;
1726          DOUT << "Removing now-noop copy: " << MI;
1727          SmallVector<unsigned, 2> KillRegs;
1728          InvalidateKills(MI, RegKills, KillOps, &KillRegs);
1729          if (MO.isDead() && !KillRegs.empty()) {
1730            assert(KillRegs[0] == Dst);
1731            // Last def is now dead.
1732            TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
1733          }
1734          VRM.RemoveMachineInstrFromMaps(&MI);
1735          MBB.erase(&MI);
1736          Erased = true;
1737          Spills.disallowClobberPhysReg(VirtReg);
1738          goto ProcessNextInst;
1739        }
1740
1741        // If it's not a no-op copy, it clobbers the value in the destreg.
1742        Spills.ClobberPhysReg(VirtReg);
1743        ReusedOperands.markClobbered(VirtReg);
1744
1745        // Check to see if this instruction is a load from a stack slot into
1746        // a register.  If so, this provides the stack slot value in the reg.
1747        int FrameIdx;
1748        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1749          assert(DestReg == VirtReg && "Unknown load situation!");
1750
1751          // If it is a folded reference, then it's not safe to clobber.
1752          bool Folded = FoldedSS.count(FrameIdx);
1753          // Otherwise, if it wasn't available, remember that it is now!
1754          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1755          goto ProcessNextInst;
1756        }
1757
1758        continue;
1759      }
1760
1761      unsigned SubIdx = MO.getSubReg();
1762      bool DoReMat = VRM.isReMaterialized(VirtReg);
1763      if (DoReMat)
1764        ReMatDefs.insert(&MI);
1765
1766      // The only vregs left are stack slot definitions.
1767      int StackSlot = VRM.getStackSlot(VirtReg);
1768      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1769
1770      // If this def is part of a two-address operand, make sure to execute
1771      // the store from the correct physical register.
1772      unsigned PhysReg;
1773      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
1774      if (TiedOp != -1) {
1775        PhysReg = MI.getOperand(TiedOp).getReg();
1776        if (SubIdx) {
1777          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1778          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1779                 "Can't find corresponding super-register!");
1780          PhysReg = SuperReg;
1781        }
1782      } else {
1783        PhysReg = VRM.getPhys(VirtReg);
1784        if (ReusedOperands.isClobbered(PhysReg)) {
1785          // Another def has taken the assigned physreg. It must have been a
1786          // use&def which got it due to reuse. Undo the reuse!
1787          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1788                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1789        }
1790      }
1791
1792      assert(PhysReg && "VR not assigned a physical register?");
1793      RegInfo->setPhysRegUsed(PhysReg);
1794      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1795      ReusedOperands.markClobbered(RReg);
1796      MI.getOperand(i).setReg(RReg);
1797
1798      if (!MO.isDead()) {
1799        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1800        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1801                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1802        NextMII = next(MII);
1803
1804        // Check to see if this is a noop copy.  If so, eliminate the
1805        // instruction before considering the dest reg to be changed.
1806        {
1807          unsigned Src, Dst;
1808          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1809            ++NumDCE;
1810            DOUT << "Removing now-noop copy: " << MI;
1811            InvalidateKills(MI, RegKills, KillOps);
1812            VRM.RemoveMachineInstrFromMaps(&MI);
1813            MBB.erase(&MI);
1814            Erased = true;
1815            UpdateKills(*LastStore, RegKills, KillOps);
1816            goto ProcessNextInst;
1817          }
1818        }
1819      }
1820    }
1821  ProcessNextInst:
1822    DistanceMap.insert(std::make_pair(&MI, Dist++));
1823    if (!Erased && !BackTracked) {
1824      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
1825        UpdateKills(*II, RegKills, KillOps);
1826    }
1827    MII = NextMII;
1828  }
1829}
1830
1831llvm::Spiller* llvm::createSpiller() {
1832  switch (SpillerOpt) {
1833  default: assert(0 && "Unreachable!");
1834  case local:
1835    return new LocalSpiller();
1836  case simple:
1837    return new SimpleSpiller();
1838  }
1839}
1840