VirtRegMap.cpp revision 5f56c26ff3a6ee1d71e91ca86afbc8efe1123a9b
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/ADT/SmallSet.h"
35#include <algorithm>
36using namespace llvm;
37
38STATISTIC(NumSpills, "Number of register spills");
39STATISTIC(NumPSpills,"Number of physical register spills");
40STATISTIC(NumReMats, "Number of re-materialization");
41STATISTIC(NumDRM   , "Number of re-materializable defs elided");
42STATISTIC(NumStores, "Number of stores added");
43STATISTIC(NumLoads , "Number of loads added");
44STATISTIC(NumReused, "Number of values reused");
45STATISTIC(NumDSE   , "Number of dead stores elided");
46STATISTIC(NumDCE   , "Number of copies elided");
47STATISTIC(NumDSS   , "Number of dead spill slots removed");
48
49namespace {
50  enum SpillerName { simple, local };
51}
52
53static cl::opt<SpillerName>
54SpillerOpt("spiller",
55           cl::desc("Spiller to use: (default: local)"),
56           cl::Prefix,
57           cl::values(clEnumVal(simple, "  simple spiller"),
58                      clEnumVal(local,  "  local spiller"),
59                      clEnumValEnd),
60           cl::init(local));
61
62//===----------------------------------------------------------------------===//
63//  VirtRegMap implementation
64//===----------------------------------------------------------------------===//
65
66VirtRegMap::VirtRegMap(MachineFunction &mf)
67  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
68    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
69    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
70    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1),
71    LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) {
72  SpillSlotToUsesMap.resize(8);
73  ImplicitDefed.resize(MF.getRegInfo().getLastVirtReg()+1-
74                       TargetRegisterInfo::FirstVirtualRegister);
75  grow();
76}
77
78void VirtRegMap::grow() {
79  unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
80  Virt2PhysMap.grow(LastVirtReg);
81  Virt2StackSlotMap.grow(LastVirtReg);
82  Virt2ReMatIdMap.grow(LastVirtReg);
83  Virt2SplitMap.grow(LastVirtReg);
84  Virt2SplitKillMap.grow(LastVirtReg);
85  ReMatMap.grow(LastVirtReg);
86  ImplicitDefed.resize(LastVirtReg-TargetRegisterInfo::FirstVirtualRegister+1);
87}
88
89int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
90  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
91  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
92         "attempt to assign stack slot to already spilled register");
93  const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
94  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
95                                                RC->getAlignment());
96  if (LowSpillSlot == NO_STACK_SLOT)
97    LowSpillSlot = SS;
98  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
99    HighSpillSlot = SS;
100  unsigned Idx = SS-LowSpillSlot;
101  while (Idx >= SpillSlotToUsesMap.size())
102    SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2);
103  Virt2StackSlotMap[virtReg] = SS;
104  ++NumSpills;
105  return SS;
106}
107
108void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
109  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
110  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
111         "attempt to assign stack slot to already spilled register");
112  assert((SS >= 0 ||
113          (SS >= MF.getFrameInfo()->getObjectIndexBegin())) &&
114         "illegal fixed frame index");
115  Virt2StackSlotMap[virtReg] = SS;
116}
117
118int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
119  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
120  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
121         "attempt to assign re-mat id to already spilled register");
122  Virt2ReMatIdMap[virtReg] = ReMatId;
123  return ReMatId++;
124}
125
126void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
127  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
128  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
129         "attempt to assign re-mat id to already spilled register");
130  Virt2ReMatIdMap[virtReg] = id;
131}
132
133int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
134  std::map<const TargetRegisterClass*, int>::iterator I =
135    EmergencySpillSlots.find(RC);
136  if (I != EmergencySpillSlots.end())
137    return I->second;
138  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
139                                                RC->getAlignment());
140  if (LowSpillSlot == NO_STACK_SLOT)
141    LowSpillSlot = SS;
142  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
143    HighSpillSlot = SS;
144  I->second = SS;
145  return SS;
146}
147
148void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
149  if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) {
150    assert(FI >= 0 && "Spill slot index should not be negative!");
151    SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI);
152  }
153}
154
155void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
156                            MachineInstr *NewMI, ModRef MRInfo) {
157  // Move previous memory references folded to new instruction.
158  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
159  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
160         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
161    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
162    MI2VirtMap.erase(I++);
163  }
164
165  // add new memory reference
166  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
167}
168
169void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
170  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
171  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
172}
173
174void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
175  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
176    MachineOperand &MO = MI->getOperand(i);
177    if (!MO.isFrameIndex())
178      continue;
179    int FI = MO.getIndex();
180    if (MF.getFrameInfo()->isFixedObjectIndex(FI))
181      continue;
182    SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
183  }
184  MI2VirtMap.erase(MI);
185  SpillPt2VirtMap.erase(MI);
186  RestorePt2VirtMap.erase(MI);
187  EmergencySpillMap.erase(MI);
188}
189
190void VirtRegMap::print(std::ostream &OS) const {
191  const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
192
193  OS << "********** REGISTER MAP **********\n";
194  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
195         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
196    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
197      OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i])
198         << "]\n";
199  }
200
201  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
202         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
203    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
204      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
205  OS << '\n';
206}
207
208void VirtRegMap::dump() const {
209  print(cerr);
210}
211
212
213//===----------------------------------------------------------------------===//
214// Simple Spiller Implementation
215//===----------------------------------------------------------------------===//
216
217Spiller::~Spiller() {}
218
219namespace {
220  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
221    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
222  };
223}
224
225bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
226  DOUT << "********** REWRITE MACHINE CODE **********\n";
227  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
228  const TargetMachine &TM = MF.getTarget();
229  const TargetInstrInfo &TII = *TM.getInstrInfo();
230
231
232  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
233  // each vreg once (in the case where a spilled vreg is used by multiple
234  // operands).  This is always smaller than the number of operands to the
235  // current machine instr, so it should be small.
236  std::vector<unsigned> LoadedRegs;
237
238  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
239       MBBI != E; ++MBBI) {
240    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
241    MachineBasicBlock &MBB = *MBBI;
242    for (MachineBasicBlock::iterator MII = MBB.begin(),
243           E = MBB.end(); MII != E; ++MII) {
244      MachineInstr &MI = *MII;
245      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
246        MachineOperand &MO = MI.getOperand(i);
247        if (MO.isRegister() && MO.getReg()) {
248          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
249            unsigned VirtReg = MO.getReg();
250            unsigned PhysReg = VRM.getPhys(VirtReg);
251            if (!VRM.isAssignedReg(VirtReg)) {
252              int StackSlot = VRM.getStackSlot(VirtReg);
253              const TargetRegisterClass* RC =
254                MF.getRegInfo().getRegClass(VirtReg);
255
256              if (MO.isUse() &&
257                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
258                  == LoadedRegs.end()) {
259                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
260                MachineInstr *LoadMI = prior(MII);
261                VRM.addSpillSlotUse(StackSlot, LoadMI);
262                LoadedRegs.push_back(VirtReg);
263                ++NumLoads;
264                DOUT << '\t' << *LoadMI;
265              }
266
267              if (MO.isDef()) {
268                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
269                                        StackSlot, RC);
270                MachineInstr *StoreMI = next(MII);
271                VRM.addSpillSlotUse(StackSlot, StoreMI);
272                ++NumStores;
273              }
274            }
275            MF.getRegInfo().setPhysRegUsed(PhysReg);
276            MI.getOperand(i).setReg(PhysReg);
277          } else {
278            MF.getRegInfo().setPhysRegUsed(MO.getReg());
279          }
280        }
281      }
282
283      DOUT << '\t' << MI;
284      LoadedRegs.clear();
285    }
286  }
287  return true;
288}
289
290//===----------------------------------------------------------------------===//
291//  Local Spiller Implementation
292//===----------------------------------------------------------------------===//
293
294namespace {
295  class AvailableSpills;
296
297  /// LocalSpiller - This spiller does a simple pass over the machine basic
298  /// block to attempt to keep spills in registers as much as possible for
299  /// blocks that have low register pressure (the vreg may be spilled due to
300  /// register pressure in other blocks).
301  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
302    MachineRegisterInfo *RegInfo;
303    const TargetRegisterInfo *TRI;
304    const TargetInstrInfo *TII;
305    DenseMap<MachineInstr*, unsigned> DistanceMap;
306  public:
307    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
308      RegInfo = &MF.getRegInfo();
309      TRI = MF.getTarget().getRegisterInfo();
310      TII = MF.getTarget().getInstrInfo();
311      DOUT << "\n**** Local spiller rewriting function '"
312           << MF.getFunction()->getName() << "':\n";
313      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
314              " ****\n";
315      DEBUG(MF.dump());
316
317      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
318           MBB != E; ++MBB)
319        RewriteMBB(*MBB, VRM);
320
321      // Mark unused spill slots.
322      MachineFrameInfo *MFI = MF.getFrameInfo();
323      int SS = VRM.getLowSpillSlot();
324      if (SS != VirtRegMap::NO_STACK_SLOT)
325        for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
326          if (!VRM.isSpillSlotUsed(SS)) {
327            MFI->RemoveStackObject(SS);
328            ++NumDSS;
329          }
330
331      DOUT << "**** Post Machine Instrs ****\n";
332      DEBUG(MF.dump());
333
334      return true;
335    }
336  private:
337    void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
338                          unsigned Reg, BitVector &RegKills,
339                          std::vector<MachineOperand*> &KillOps);
340    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
341                           MachineBasicBlock::iterator &MII,
342                           std::vector<MachineInstr*> &MaybeDeadStores,
343                           AvailableSpills &Spills, BitVector &RegKills,
344                           std::vector<MachineOperand*> &KillOps,
345                           VirtRegMap &VRM);
346    void SpillRegToStackSlot(MachineBasicBlock &MBB,
347                             MachineBasicBlock::iterator &MII,
348                             int Idx, unsigned PhysReg, int StackSlot,
349                             const TargetRegisterClass *RC,
350                             bool isAvailable, MachineInstr *&LastStore,
351                             AvailableSpills &Spills,
352                             SmallSet<MachineInstr*, 4> &ReMatDefs,
353                             BitVector &RegKills,
354                             std::vector<MachineOperand*> &KillOps,
355                             VirtRegMap &VRM);
356    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
357  };
358}
359
360/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
361/// top down, keep track of which spills slots or remat are available in each
362/// register.
363///
364/// Note that not all physregs are created equal here.  In particular, some
365/// physregs are reloads that we are allowed to clobber or ignore at any time.
366/// Other physregs are values that the register allocated program is using that
367/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
368/// per-stack-slot / remat id basis as the low bit in the value of the
369/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
370/// this bit and addAvailable sets it if.
371namespace {
372class VISIBILITY_HIDDEN AvailableSpills {
373  const TargetRegisterInfo *TRI;
374  const TargetInstrInfo *TII;
375
376  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
377  // or remat'ed virtual register values that are still available, due to being
378  // loaded or stored to, but not invalidated yet.
379  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
380
381  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
382  // indicating which stack slot values are currently held by a physreg.  This
383  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
384  // physreg is modified.
385  std::multimap<unsigned, int> PhysRegsAvailable;
386
387  void disallowClobberPhysRegOnly(unsigned PhysReg);
388
389  void ClobberPhysRegOnly(unsigned PhysReg);
390public:
391  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
392    : TRI(tri), TII(tii) {
393  }
394
395  const TargetRegisterInfo *getRegInfo() const { return TRI; }
396
397  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
398  /// available in a  physical register, return that PhysReg, otherwise
399  /// return 0.
400  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
401    std::map<int, unsigned>::const_iterator I =
402      SpillSlotsOrReMatsAvailable.find(Slot);
403    if (I != SpillSlotsOrReMatsAvailable.end()) {
404      return I->second >> 1;  // Remove the CanClobber bit.
405    }
406    return 0;
407  }
408
409  /// addAvailable - Mark that the specified stack slot / remat is available in
410  /// the specified physreg.  If CanClobber is true, the physreg can be modified
411  /// at any time without changing the semantics of the program.
412  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
413                    bool CanClobber = true) {
414    // If this stack slot is thought to be available in some other physreg,
415    // remove its record.
416    ModifyStackSlotOrReMat(SlotOrReMat);
417
418    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
419    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
420
421    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
422      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
423    else
424      DOUT << "Remembering SS#" << SlotOrReMat;
425    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
426  }
427
428  /// canClobberPhysReg - Return true if the spiller is allowed to change the
429  /// value of the specified stackslot register if it desires.  The specified
430  /// stack slot must be available in a physreg for this query to make sense.
431  bool canClobberPhysReg(int SlotOrReMat) const {
432    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
433           "Value not available!");
434    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
435  }
436
437  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
438  /// stackslot register. The register is still available but is no longer
439  /// allowed to be modifed.
440  void disallowClobberPhysReg(unsigned PhysReg);
441
442  /// ClobberPhysReg - This is called when the specified physreg changes
443  /// value.  We use this to invalidate any info about stuff that lives in
444  /// it and any of its aliases.
445  void ClobberPhysReg(unsigned PhysReg);
446
447  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
448  /// slot changes.  This removes information about which register the previous
449  /// value for this slot lives in (as the previous value is dead now).
450  void ModifyStackSlotOrReMat(int SlotOrReMat);
451};
452}
453
454/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
455/// stackslot register. The register is still available but is no longer
456/// allowed to be modifed.
457void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
458  std::multimap<unsigned, int>::iterator I =
459    PhysRegsAvailable.lower_bound(PhysReg);
460  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
461    int SlotOrReMat = I->second;
462    I++;
463    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
464           "Bidirectional map mismatch!");
465    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
466    DOUT << "PhysReg " << TRI->getName(PhysReg)
467         << " copied, it is available for use but can no longer be modified\n";
468  }
469}
470
471/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
472/// stackslot register and its aliases. The register and its aliases may
473/// still available but is no longer allowed to be modifed.
474void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
475  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
476    disallowClobberPhysRegOnly(*AS);
477  disallowClobberPhysRegOnly(PhysReg);
478}
479
480/// ClobberPhysRegOnly - This is called when the specified physreg changes
481/// value.  We use this to invalidate any info about stuff we thing lives in it.
482void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
483  std::multimap<unsigned, int>::iterator I =
484    PhysRegsAvailable.lower_bound(PhysReg);
485  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
486    int SlotOrReMat = I->second;
487    PhysRegsAvailable.erase(I++);
488    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
489           "Bidirectional map mismatch!");
490    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
491    DOUT << "PhysReg " << TRI->getName(PhysReg)
492         << " clobbered, invalidating ";
493    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
494      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
495    else
496      DOUT << "SS#" << SlotOrReMat << "\n";
497  }
498}
499
500/// ClobberPhysReg - This is called when the specified physreg changes
501/// value.  We use this to invalidate any info about stuff we thing lives in
502/// it and any of its aliases.
503void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
504  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
505    ClobberPhysRegOnly(*AS);
506  ClobberPhysRegOnly(PhysReg);
507}
508
509/// ModifyStackSlotOrReMat - This method is called when the value in a stack
510/// slot changes.  This removes information about which register the previous
511/// value for this slot lives in (as the previous value is dead now).
512void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
513  std::map<int, unsigned>::iterator It =
514    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
515  if (It == SpillSlotsOrReMatsAvailable.end()) return;
516  unsigned Reg = It->second >> 1;
517  SpillSlotsOrReMatsAvailable.erase(It);
518
519  // This register may hold the value of multiple stack slots, only remove this
520  // stack slot from the set of values the register contains.
521  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
522  for (; ; ++I) {
523    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
524           "Map inverse broken!");
525    if (I->second == SlotOrReMat) break;
526  }
527  PhysRegsAvailable.erase(I);
528}
529
530
531
532/// InvalidateKills - MI is going to be deleted. If any of its operands are
533/// marked kill, then invalidate the information.
534static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
535                            std::vector<MachineOperand*> &KillOps,
536                            SmallVector<unsigned, 2> *KillRegs = NULL) {
537  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
538    MachineOperand &MO = MI.getOperand(i);
539    if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
540      continue;
541    unsigned Reg = MO.getReg();
542    if (KillRegs)
543      KillRegs->push_back(Reg);
544    if (KillOps[Reg] == &MO) {
545      RegKills.reset(Reg);
546      KillOps[Reg] = NULL;
547    }
548  }
549}
550
551/// InvalidateKill - A MI that defines the specified register is being deleted,
552/// invalidate the register kill information.
553static void InvalidateKill(unsigned Reg, BitVector &RegKills,
554                           std::vector<MachineOperand*> &KillOps) {
555  if (RegKills[Reg]) {
556    KillOps[Reg]->setIsKill(false);
557    KillOps[Reg] = NULL;
558    RegKills.reset(Reg);
559  }
560}
561
562/// InvalidateRegDef - If the def operand of the specified def MI is now dead
563/// (since it's spill instruction is removed), mark it isDead. Also checks if
564/// the def MI has other definition operands that are not dead. Returns it by
565/// reference.
566static bool InvalidateRegDef(MachineBasicBlock::iterator I,
567                             MachineInstr &NewDef, unsigned Reg,
568                             bool &HasLiveDef) {
569  // Due to remat, it's possible this reg isn't being reused. That is,
570  // the def of this reg (by prev MI) is now dead.
571  MachineInstr *DefMI = I;
572  MachineOperand *DefOp = NULL;
573  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
574    MachineOperand &MO = DefMI->getOperand(i);
575    if (MO.isRegister() && MO.isDef()) {
576      if (MO.getReg() == Reg)
577        DefOp = &MO;
578      else if (!MO.isDead())
579        HasLiveDef = true;
580    }
581  }
582  if (!DefOp)
583    return false;
584
585  bool FoundUse = false, Done = false;
586  MachineBasicBlock::iterator E = NewDef;
587  ++I; ++E;
588  for (; !Done && I != E; ++I) {
589    MachineInstr *NMI = I;
590    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
591      MachineOperand &MO = NMI->getOperand(j);
592      if (!MO.isRegister() || MO.getReg() != Reg)
593        continue;
594      if (MO.isUse())
595        FoundUse = true;
596      Done = true; // Stop after scanning all the operands of this MI.
597    }
598  }
599  if (!FoundUse) {
600    // Def is dead!
601    DefOp->setIsDead();
602    return true;
603  }
604  return false;
605}
606
607/// UpdateKills - Track and update kill info. If a MI reads a register that is
608/// marked kill, then it must be due to register reuse. Transfer the kill info
609/// over.
610static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
611                        std::vector<MachineOperand*> &KillOps) {
612  const TargetInstrDesc &TID = MI.getDesc();
613  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
614    MachineOperand &MO = MI.getOperand(i);
615    if (!MO.isRegister() || !MO.isUse())
616      continue;
617    unsigned Reg = MO.getReg();
618    if (Reg == 0)
619      continue;
620
621    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
622      // That can't be right. Register is killed but not re-defined and it's
623      // being reused. Let's fix that.
624      KillOps[Reg]->setIsKill(false);
625      KillOps[Reg] = NULL;
626      RegKills.reset(Reg);
627      if (i < TID.getNumOperands() &&
628          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
629        // Unless it's a two-address operand, this is the new kill.
630        MO.setIsKill();
631    }
632    if (MO.isKill()) {
633      RegKills.set(Reg);
634      KillOps[Reg] = &MO;
635    }
636  }
637
638  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
639    const MachineOperand &MO = MI.getOperand(i);
640    if (!MO.isRegister() || !MO.isDef())
641      continue;
642    unsigned Reg = MO.getReg();
643    RegKills.reset(Reg);
644    KillOps[Reg] = NULL;
645  }
646}
647
648/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
649///
650static void ReMaterialize(MachineBasicBlock &MBB,
651                          MachineBasicBlock::iterator &MII,
652                          unsigned DestReg, unsigned Reg,
653                          const TargetInstrInfo *TII,
654                          const TargetRegisterInfo *TRI,
655                          VirtRegMap &VRM) {
656  TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
657  MachineInstr *NewMI = prior(MII);
658  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
659    MachineOperand &MO = NewMI->getOperand(i);
660    if (!MO.isRegister() || MO.getReg() == 0)
661      continue;
662    unsigned VirtReg = MO.getReg();
663    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
664      continue;
665    assert(MO.isUse());
666    unsigned SubIdx = MO.getSubReg();
667    unsigned Phys = VRM.getPhys(VirtReg);
668    assert(Phys);
669    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
670    MO.setReg(RReg);
671  }
672  ++NumReMats;
673}
674
675
676// ReusedOp - For each reused operand, we keep track of a bit of information, in
677// case we need to rollback upon processing a new operand.  See comments below.
678namespace {
679  struct ReusedOp {
680    // The MachineInstr operand that reused an available value.
681    unsigned Operand;
682
683    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
684    unsigned StackSlotOrReMat;
685
686    // PhysRegReused - The physical register the value was available in.
687    unsigned PhysRegReused;
688
689    // AssignedPhysReg - The physreg that was assigned for use by the reload.
690    unsigned AssignedPhysReg;
691
692    // VirtReg - The virtual register itself.
693    unsigned VirtReg;
694
695    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
696             unsigned vreg)
697      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
698        AssignedPhysReg(apr), VirtReg(vreg) {}
699  };
700
701  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
702  /// is reused instead of reloaded.
703  class VISIBILITY_HIDDEN ReuseInfo {
704    MachineInstr &MI;
705    std::vector<ReusedOp> Reuses;
706    BitVector PhysRegsClobbered;
707  public:
708    ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
709      PhysRegsClobbered.resize(tri->getNumRegs());
710    }
711
712    bool hasReuses() const {
713      return !Reuses.empty();
714    }
715
716    /// addReuse - If we choose to reuse a virtual register that is already
717    /// available instead of reloading it, remember that we did so.
718    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
719                  unsigned PhysRegReused, unsigned AssignedPhysReg,
720                  unsigned VirtReg) {
721      // If the reload is to the assigned register anyway, no undo will be
722      // required.
723      if (PhysRegReused == AssignedPhysReg) return;
724
725      // Otherwise, remember this.
726      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
727                                AssignedPhysReg, VirtReg));
728    }
729
730    void markClobbered(unsigned PhysReg) {
731      PhysRegsClobbered.set(PhysReg);
732    }
733
734    bool isClobbered(unsigned PhysReg) const {
735      return PhysRegsClobbered.test(PhysReg);
736    }
737
738    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
739    /// is some other operand that is using the specified register, either pick
740    /// a new register to use, or evict the previous reload and use this reg.
741    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
742                             AvailableSpills &Spills,
743                             std::vector<MachineInstr*> &MaybeDeadStores,
744                             SmallSet<unsigned, 8> &Rejected,
745                             BitVector &RegKills,
746                             std::vector<MachineOperand*> &KillOps,
747                             VirtRegMap &VRM) {
748      const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
749                                   .getInstrInfo();
750
751      if (Reuses.empty()) return PhysReg;  // This is most often empty.
752
753      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
754        ReusedOp &Op = Reuses[ro];
755        // If we find some other reuse that was supposed to use this register
756        // exactly for its reload, we can change this reload to use ITS reload
757        // register. That is, unless its reload register has already been
758        // considered and subsequently rejected because it has also been reused
759        // by another operand.
760        if (Op.PhysRegReused == PhysReg &&
761            Rejected.count(Op.AssignedPhysReg) == 0) {
762          // Yup, use the reload register that we didn't use before.
763          unsigned NewReg = Op.AssignedPhysReg;
764          Rejected.insert(PhysReg);
765          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
766                                 RegKills, KillOps, VRM);
767        } else {
768          // Otherwise, we might also have a problem if a previously reused
769          // value aliases the new register.  If so, codegen the previous reload
770          // and use this one.
771          unsigned PRRU = Op.PhysRegReused;
772          const TargetRegisterInfo *TRI = Spills.getRegInfo();
773          if (TRI->areAliases(PRRU, PhysReg)) {
774            // Okay, we found out that an alias of a reused register
775            // was used.  This isn't good because it means we have
776            // to undo a previous reuse.
777            MachineBasicBlock *MBB = MI->getParent();
778            const TargetRegisterClass *AliasRC =
779              MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
780
781            // Copy Op out of the vector and remove it, we're going to insert an
782            // explicit load for it.
783            ReusedOp NewOp = Op;
784            Reuses.erase(Reuses.begin()+ro);
785
786            // Ok, we're going to try to reload the assigned physreg into the
787            // slot that we were supposed to in the first place.  However, that
788            // register could hold a reuse.  Check to see if it conflicts or
789            // would prefer us to use a different register.
790            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
791                                                  MI, Spills, MaybeDeadStores,
792                                              Rejected, RegKills, KillOps, VRM);
793
794            MachineBasicBlock::iterator MII = MI;
795            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
796              ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
797            } else {
798              TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
799                                        NewOp.StackSlotOrReMat, AliasRC);
800              MachineInstr *LoadMI = prior(MII);
801              VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
802              // Any stores to this stack slot are not dead anymore.
803              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
804              ++NumLoads;
805            }
806            Spills.ClobberPhysReg(NewPhysReg);
807            Spills.ClobberPhysReg(NewOp.PhysRegReused);
808
809            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
810
811            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
812            --MII;
813            UpdateKills(*MII, RegKills, KillOps);
814            DOUT << '\t' << *MII;
815
816            DOUT << "Reuse undone!\n";
817            --NumReused;
818
819            // Finally, PhysReg is now available, go ahead and use it.
820            return PhysReg;
821          }
822        }
823      }
824      return PhysReg;
825    }
826
827    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
828    /// 'Rejected' set to remember which registers have been considered and
829    /// rejected for the reload. This avoids infinite looping in case like
830    /// this:
831    /// t1 := op t2, t3
832    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
833    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
834    /// t1 <- desires r1
835    ///       sees r1 is taken by t2, tries t2's reload register r0
836    ///       sees r0 is taken by t3, tries t3's reload register r1
837    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
838    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
839                             AvailableSpills &Spills,
840                             std::vector<MachineInstr*> &MaybeDeadStores,
841                             BitVector &RegKills,
842                             std::vector<MachineOperand*> &KillOps,
843                             VirtRegMap &VRM) {
844      SmallSet<unsigned, 8> Rejected;
845      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
846                             RegKills, KillOps, VRM);
847    }
848  };
849}
850
851/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
852/// instruction. e.g.
853///     xorl  %edi, %eax
854///     movl  %eax, -32(%ebp)
855///     movl  -36(%ebp), %eax
856///     orl   %eax, -32(%ebp)
857/// ==>
858///     xorl  %edi, %eax
859///     orl   -36(%ebp), %eax
860///     mov   %eax, -32(%ebp)
861/// This enables unfolding optimization for a subsequent instruction which will
862/// also eliminate the newly introduced store instruction.
863bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
864                                     MachineBasicBlock::iterator &MII,
865                                    std::vector<MachineInstr*> &MaybeDeadStores,
866                                     AvailableSpills &Spills,
867                                     BitVector &RegKills,
868                                     std::vector<MachineOperand*> &KillOps,
869                                     VirtRegMap &VRM) {
870  MachineFunction &MF = *MBB.getParent();
871  MachineInstr &MI = *MII;
872  unsigned UnfoldedOpc = 0;
873  unsigned UnfoldPR = 0;
874  unsigned UnfoldVR = 0;
875  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
876  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
877  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
878    // Only transform a MI that folds a single register.
879    if (UnfoldedOpc)
880      return false;
881    UnfoldVR = I->second.first;
882    VirtRegMap::ModRef MR = I->second.second;
883    // MI2VirtMap be can updated which invalidate the iterator.
884    // Increment the iterator first.
885    ++I;
886    if (VRM.isAssignedReg(UnfoldVR))
887      continue;
888    // If this reference is not a use, any previous store is now dead.
889    // Otherwise, the store to this stack slot is not dead anymore.
890    FoldedSS = VRM.getStackSlot(UnfoldVR);
891    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
892    if (DeadStore && (MR & VirtRegMap::isModRef)) {
893      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
894      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
895        continue;
896      UnfoldPR = PhysReg;
897      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
898                                                    false, true);
899    }
900  }
901
902  if (!UnfoldedOpc)
903    return false;
904
905  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
906    MachineOperand &MO = MI.getOperand(i);
907    if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
908      continue;
909    unsigned VirtReg = MO.getReg();
910    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
911      continue;
912    if (VRM.isAssignedReg(VirtReg)) {
913      unsigned PhysReg = VRM.getPhys(VirtReg);
914      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
915        return false;
916    } else if (VRM.isReMaterialized(VirtReg))
917      continue;
918    int SS = VRM.getStackSlot(VirtReg);
919    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
920    if (PhysReg) {
921      if (TRI->regsOverlap(PhysReg, UnfoldPR))
922        return false;
923      continue;
924    }
925    PhysReg = VRM.getPhys(VirtReg);
926    if (!TRI->regsOverlap(PhysReg, UnfoldPR))
927      continue;
928
929    // Ok, we'll need to reload the value into a register which makes
930    // it impossible to perform the store unfolding optimization later.
931    // Let's see if it is possible to fold the load if the store is
932    // unfolded. This allows us to perform the store unfolding
933    // optimization.
934    SmallVector<MachineInstr*, 4> NewMIs;
935    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
936      assert(NewMIs.size() == 1);
937      MachineInstr *NewMI = NewMIs.back();
938      NewMIs.clear();
939      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
940      assert(Idx != -1);
941      SmallVector<unsigned, 2> Ops;
942      Ops.push_back(Idx);
943      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
944      if (FoldedMI) {
945        VRM.addSpillSlotUse(SS, FoldedMI);
946        if (!VRM.hasPhys(UnfoldVR))
947          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
948        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
949        MII = MBB.insert(MII, FoldedMI);
950        InvalidateKills(MI, RegKills, KillOps);
951        VRM.RemoveMachineInstrFromMaps(&MI);
952        MBB.erase(&MI);
953        return true;
954      }
955      delete NewMI;
956    }
957  }
958  return false;
959}
960
961/// findSuperReg - Find the SubReg's super-register of given register class
962/// where its SubIdx sub-register is SubReg.
963static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
964                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
965  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
966       I != E; ++I) {
967    unsigned Reg = *I;
968    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
969      return Reg;
970  }
971  return 0;
972}
973
974/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
975/// the last store to the same slot is now dead. If so, remove the last store.
976void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
977                                  MachineBasicBlock::iterator &MII,
978                                  int Idx, unsigned PhysReg, int StackSlot,
979                                  const TargetRegisterClass *RC,
980                                  bool isAvailable, MachineInstr *&LastStore,
981                                  AvailableSpills &Spills,
982                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
983                                  BitVector &RegKills,
984                                  std::vector<MachineOperand*> &KillOps,
985                                  VirtRegMap &VRM) {
986  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
987  MachineInstr *StoreMI = next(MII);
988  VRM.addSpillSlotUse(StackSlot, StoreMI);
989  DOUT << "Store:\t" << *StoreMI;
990
991  // If there is a dead store to this stack slot, nuke it now.
992  if (LastStore) {
993    DOUT << "Removed dead store:\t" << *LastStore;
994    ++NumDSE;
995    SmallVector<unsigned, 2> KillRegs;
996    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
997    MachineBasicBlock::iterator PrevMII = LastStore;
998    bool CheckDef = PrevMII != MBB.begin();
999    if (CheckDef)
1000      --PrevMII;
1001    VRM.RemoveMachineInstrFromMaps(LastStore);
1002    MBB.erase(LastStore);
1003    if (CheckDef) {
1004      // Look at defs of killed registers on the store. Mark the defs
1005      // as dead since the store has been deleted and they aren't
1006      // being reused.
1007      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1008        bool HasOtherDef = false;
1009        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1010          MachineInstr *DeadDef = PrevMII;
1011          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1012            // FIXME: This assumes a remat def does not have side
1013            // effects.
1014            VRM.RemoveMachineInstrFromMaps(DeadDef);
1015            MBB.erase(DeadDef);
1016            ++NumDRM;
1017          }
1018        }
1019      }
1020    }
1021  }
1022
1023  LastStore = next(MII);
1024
1025  // If the stack slot value was previously available in some other
1026  // register, change it now.  Otherwise, make the register available,
1027  // in PhysReg.
1028  Spills.ModifyStackSlotOrReMat(StackSlot);
1029  Spills.ClobberPhysReg(PhysReg);
1030  Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
1031  ++NumStores;
1032}
1033
1034/// TransferDeadness - A identity copy definition is dead and it's being
1035/// removed. Find the last def or use and mark it as dead / kill.
1036void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1037                                    unsigned Reg, BitVector &RegKills,
1038                                    std::vector<MachineOperand*> &KillOps) {
1039  int LastUDDist = -1;
1040  MachineInstr *LastUDMI = NULL;
1041  for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1042         RE = RegInfo->reg_end(); RI != RE; ++RI) {
1043    MachineInstr *UDMI = &*RI;
1044    if (UDMI->getParent() != MBB)
1045      continue;
1046    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1047    if (DI == DistanceMap.end() || DI->second > CurDist)
1048      continue;
1049    if ((int)DI->second < LastUDDist)
1050      continue;
1051    LastUDDist = DI->second;
1052    LastUDMI = UDMI;
1053  }
1054
1055  if (LastUDMI) {
1056    const TargetInstrDesc &TID = LastUDMI->getDesc();
1057    MachineOperand *LastUD = NULL;
1058    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1059      MachineOperand &MO = LastUDMI->getOperand(i);
1060      if (!MO.isRegister() || MO.getReg() != Reg)
1061        continue;
1062      if (!LastUD || (LastUD->isUse() && MO.isDef()))
1063        LastUD = &MO;
1064      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
1065        return;
1066    }
1067    if (LastUD->isDef())
1068      LastUD->setIsDead();
1069    else {
1070      LastUD->setIsKill();
1071      RegKills.set(Reg);
1072      KillOps[Reg] = LastUD;
1073    }
1074  }
1075}
1076
1077/// rewriteMBB - Keep track of which spills are available even after the
1078/// register allocator is done with them.  If possible, avid reloading vregs.
1079void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
1080  DOUT << MBB.getBasicBlock()->getName() << ":\n";
1081
1082  MachineFunction &MF = *MBB.getParent();
1083
1084  // Spills - Keep track of which spilled values are available in physregs so
1085  // that we can choose to reuse the physregs instead of emitting reloads.
1086  AvailableSpills Spills(TRI, TII);
1087
1088  // MaybeDeadStores - When we need to write a value back into a stack slot,
1089  // keep track of the inserted store.  If the stack slot value is never read
1090  // (because the value was used from some available register, for example), and
1091  // subsequently stored to, the original store is dead.  This map keeps track
1092  // of inserted stores that are not used.  If we see a subsequent store to the
1093  // same stack slot, the original store is deleted.
1094  std::vector<MachineInstr*> MaybeDeadStores;
1095  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1096
1097  // ReMatDefs - These are rematerializable def MIs which are not deleted.
1098  SmallSet<MachineInstr*, 4> ReMatDefs;
1099
1100  // Keep track of kill information.
1101  BitVector RegKills(TRI->getNumRegs());
1102  std::vector<MachineOperand*>  KillOps;
1103  KillOps.resize(TRI->getNumRegs(), NULL);
1104
1105  unsigned Dist = 0;
1106  DistanceMap.clear();
1107  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1108       MII != E; ) {
1109    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
1110
1111    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1112    bool Erased = false;
1113    bool BackTracked = false;
1114    if (PrepForUnfoldOpti(MBB, MII,
1115                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1116      NextMII = next(MII);
1117
1118    MachineInstr &MI = *MII;
1119    const TargetInstrDesc &TID = MI.getDesc();
1120
1121    if (VRM.hasEmergencySpills(&MI)) {
1122      // Spill physical register(s) in the rare case the allocator has run out
1123      // of registers to allocate.
1124      SmallSet<int, 4> UsedSS;
1125      std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1126      for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1127        unsigned PhysReg = EmSpills[i];
1128        const TargetRegisterClass *RC =
1129          TRI->getPhysicalRegisterRegClass(PhysReg);
1130        assert(RC && "Unable to determine register class!");
1131        int SS = VRM.getEmergencySpillSlot(RC);
1132        if (UsedSS.count(SS))
1133          assert(0 && "Need to spill more than one physical registers!");
1134        UsedSS.insert(SS);
1135        TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1136        MachineInstr *StoreMI = prior(MII);
1137        VRM.addSpillSlotUse(SS, StoreMI);
1138        TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1139        MachineInstr *LoadMI = next(MII);
1140        VRM.addSpillSlotUse(SS, LoadMI);
1141        ++NumPSpills;
1142      }
1143      NextMII = next(MII);
1144    }
1145
1146    // Insert restores here if asked to.
1147    if (VRM.isRestorePt(&MI)) {
1148      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1149      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1150        unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
1151        if (!VRM.getPreSplitReg(VirtReg))
1152          continue; // Split interval spilled again.
1153        unsigned Phys = VRM.getPhys(VirtReg);
1154        RegInfo->setPhysRegUsed(Phys);
1155        if (VRM.isReMaterialized(VirtReg)) {
1156          ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1157        } else {
1158          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1159          int SS = VRM.getStackSlot(VirtReg);
1160          TII->loadRegFromStackSlot(MBB, &MI, Phys, SS, RC);
1161          MachineInstr *LoadMI = prior(MII);
1162          VRM.addSpillSlotUse(SS, LoadMI);
1163          ++NumLoads;
1164        }
1165        // This invalidates Phys.
1166        Spills.ClobberPhysReg(Phys);
1167        UpdateKills(*prior(MII), RegKills, KillOps);
1168        DOUT << '\t' << *prior(MII);
1169      }
1170    }
1171
1172    // Insert spills here if asked to.
1173    if (VRM.isSpillPt(&MI)) {
1174      std::vector<std::pair<unsigned,bool> > &SpillRegs =
1175        VRM.getSpillPtSpills(&MI);
1176      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1177        unsigned VirtReg = SpillRegs[i].first;
1178        bool isKill = SpillRegs[i].second;
1179        if (!VRM.getPreSplitReg(VirtReg))
1180          continue; // Split interval spilled again.
1181        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1182        unsigned Phys = VRM.getPhys(VirtReg);
1183        int StackSlot = VRM.getStackSlot(VirtReg);
1184        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1185        MachineInstr *StoreMI = next(MII);
1186        VRM.addSpillSlotUse(StackSlot, StoreMI);
1187        DOUT << "Store:\t" << *StoreMI;
1188        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1189      }
1190      NextMII = next(MII);
1191    }
1192
1193    /// ReusedOperands - Keep track of operand reuse in case we need to undo
1194    /// reuse.
1195    ReuseInfo ReusedOperands(MI, TRI);
1196    SmallVector<unsigned, 4> VirtUseOps;
1197    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1198      MachineOperand &MO = MI.getOperand(i);
1199      if (!MO.isRegister() || MO.getReg() == 0)
1200        continue;   // Ignore non-register operands.
1201
1202      unsigned VirtReg = MO.getReg();
1203      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1204        // Ignore physregs for spilling, but remember that it is used by this
1205        // function.
1206        RegInfo->setPhysRegUsed(VirtReg);
1207        continue;
1208      }
1209
1210      // We want to process implicit virtual register uses first.
1211      if (MO.isImplicit())
1212        // If the virtual register is implicitly defined, emit a implicit_def
1213        // before so scavenger knows it's "defined".
1214        VirtUseOps.insert(VirtUseOps.begin(), i);
1215      else
1216        VirtUseOps.push_back(i);
1217    }
1218
1219    // Process all of the spilled uses and all non spilled reg references.
1220    for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1221      unsigned i = VirtUseOps[j];
1222      MachineOperand &MO = MI.getOperand(i);
1223      unsigned VirtReg = MO.getReg();
1224      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1225             "Not a virtual register?");
1226
1227      unsigned SubIdx = MO.getSubReg();
1228      if (VRM.isAssignedReg(VirtReg)) {
1229        // This virtual register was assigned a physreg!
1230        unsigned Phys = VRM.getPhys(VirtReg);
1231        RegInfo->setPhysRegUsed(Phys);
1232        if (MO.isDef())
1233          ReusedOperands.markClobbered(Phys);
1234        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1235        MI.getOperand(i).setReg(RReg);
1236        if (VRM.isImplicitlyDefined(VirtReg))
1237          BuildMI(MBB, MI, TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1238        continue;
1239      }
1240
1241      // This virtual register is now known to be a spilled value.
1242      if (!MO.isUse())
1243        continue;  // Handle defs in the loop below (handle use&def here though)
1244
1245      bool DoReMat = VRM.isReMaterialized(VirtReg);
1246      int SSorRMId = DoReMat
1247        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1248      int ReuseSlot = SSorRMId;
1249
1250      // Check to see if this stack slot is available.
1251      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1252
1253      // If this is a sub-register use, make sure the reuse register is in the
1254      // right register class. For example, for x86 not all of the 32-bit
1255      // registers have accessible sub-registers.
1256      // Similarly so for EXTRACT_SUBREG. Consider this:
1257      // EDI = op
1258      // MOV32_mr fi#1, EDI
1259      // ...
1260      //       = EXTRACT_SUBREG fi#1
1261      // fi#1 is available in EDI, but it cannot be reused because it's not in
1262      // the right register file.
1263      if (PhysReg &&
1264          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1265        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1266        if (!RC->contains(PhysReg))
1267          PhysReg = 0;
1268      }
1269
1270      if (PhysReg) {
1271        // This spilled operand might be part of a two-address operand.  If this
1272        // is the case, then changing it will necessarily require changing the
1273        // def part of the instruction as well.  However, in some cases, we
1274        // aren't allowed to modify the reused register.  If none of these cases
1275        // apply, reuse it.
1276        bool CanReuse = true;
1277        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1278        if (ti != -1 &&
1279            MI.getOperand(ti).isRegister() &&
1280            MI.getOperand(ti).getReg() == VirtReg) {
1281          // Okay, we have a two address operand.  We can reuse this physreg as
1282          // long as we are allowed to clobber the value and there isn't an
1283          // earlier def that has already clobbered the physreg.
1284          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1285            !ReusedOperands.isClobbered(PhysReg);
1286        }
1287
1288        if (CanReuse) {
1289          // If this stack slot value is already available, reuse it!
1290          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1291            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1292          else
1293            DOUT << "Reusing SS#" << ReuseSlot;
1294          DOUT << " from physreg "
1295               << TRI->getName(PhysReg) << " for vreg"
1296               << VirtReg <<" instead of reloading into physreg "
1297               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1298          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1299          MI.getOperand(i).setReg(RReg);
1300
1301          // The only technical detail we have is that we don't know that
1302          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1303          // later in the instruction.  In particular, consider 'op V1, V2'.
1304          // If V1 is available in physreg R0, we would choose to reuse it
1305          // here, instead of reloading it into the register the allocator
1306          // indicated (say R1).  However, V2 might have to be reloaded
1307          // later, and it might indicate that it needs to live in R0.  When
1308          // this occurs, we need to have information available that
1309          // indicates it is safe to use R1 for the reload instead of R0.
1310          //
1311          // To further complicate matters, we might conflict with an alias,
1312          // or R0 and R1 might not be compatible with each other.  In this
1313          // case, we actually insert a reload for V1 in R1, ensuring that
1314          // we can get at R0 or its alias.
1315          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1316                                  VRM.getPhys(VirtReg), VirtReg);
1317          if (ti != -1)
1318            // Only mark it clobbered if this is a use&def operand.
1319            ReusedOperands.markClobbered(PhysReg);
1320          ++NumReused;
1321
1322          if (MI.getOperand(i).isKill() &&
1323              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1324            // This was the last use and the spilled value is still available
1325            // for reuse. That means the spill was unnecessary!
1326            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1327            if (DeadStore) {
1328              DOUT << "Removed dead store:\t" << *DeadStore;
1329              InvalidateKills(*DeadStore, RegKills, KillOps);
1330              VRM.RemoveMachineInstrFromMaps(DeadStore);
1331              MBB.erase(DeadStore);
1332              MaybeDeadStores[ReuseSlot] = NULL;
1333              ++NumDSE;
1334            }
1335          }
1336          continue;
1337        }  // CanReuse
1338
1339        // Otherwise we have a situation where we have a two-address instruction
1340        // whose mod/ref operand needs to be reloaded.  This reload is already
1341        // available in some register "PhysReg", but if we used PhysReg as the
1342        // operand to our 2-addr instruction, the instruction would modify
1343        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1344        // to get its initial value.
1345        //
1346        // To avoid this problem, and to avoid doing a load right after a store,
1347        // we emit a copy from PhysReg into the designated register for this
1348        // operand.
1349        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1350        assert(DesignatedReg && "Must map virtreg to physreg!");
1351
1352        // Note that, if we reused a register for a previous operand, the
1353        // register we want to reload into might not actually be
1354        // available.  If this occurs, use the register indicated by the
1355        // reuser.
1356        if (ReusedOperands.hasReuses())
1357          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1358                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1359
1360        // If the mapped designated register is actually the physreg we have
1361        // incoming, we don't need to inserted a dead copy.
1362        if (DesignatedReg == PhysReg) {
1363          // If this stack slot value is already available, reuse it!
1364          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1365            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1366          else
1367            DOUT << "Reusing SS#" << ReuseSlot;
1368          DOUT << " from physreg " << TRI->getName(PhysReg)
1369               << " for vreg" << VirtReg
1370               << " instead of reloading into same physreg.\n";
1371          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1372          MI.getOperand(i).setReg(RReg);
1373          ReusedOperands.markClobbered(RReg);
1374          ++NumReused;
1375          continue;
1376        }
1377
1378        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1379        RegInfo->setPhysRegUsed(DesignatedReg);
1380        ReusedOperands.markClobbered(DesignatedReg);
1381        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1382
1383        MachineInstr *CopyMI = prior(MII);
1384        UpdateKills(*CopyMI, RegKills, KillOps);
1385
1386        // This invalidates DesignatedReg.
1387        Spills.ClobberPhysReg(DesignatedReg);
1388
1389        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1390        unsigned RReg =
1391          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1392        MI.getOperand(i).setReg(RReg);
1393        DOUT << '\t' << *prior(MII);
1394        ++NumReused;
1395        continue;
1396      } // if (PhysReg)
1397
1398      // Otherwise, reload it and remember that we have it.
1399      PhysReg = VRM.getPhys(VirtReg);
1400      assert(PhysReg && "Must map virtreg to physreg!");
1401
1402      // Note that, if we reused a register for a previous operand, the
1403      // register we want to reload into might not actually be
1404      // available.  If this occurs, use the register indicated by the
1405      // reuser.
1406      if (ReusedOperands.hasReuses())
1407        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1408                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1409
1410      RegInfo->setPhysRegUsed(PhysReg);
1411      ReusedOperands.markClobbered(PhysReg);
1412      if (DoReMat) {
1413        ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1414      } else {
1415        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1416        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1417        MachineInstr *LoadMI = prior(MII);
1418        VRM.addSpillSlotUse(SSorRMId, LoadMI);
1419        ++NumLoads;
1420      }
1421      // This invalidates PhysReg.
1422      Spills.ClobberPhysReg(PhysReg);
1423
1424      // Any stores to this stack slot are not dead anymore.
1425      if (!DoReMat)
1426        MaybeDeadStores[SSorRMId] = NULL;
1427      Spills.addAvailable(SSorRMId, &MI, PhysReg);
1428      // Assumes this is the last use. IsKill will be unset if reg is reused
1429      // unless it's a two-address operand.
1430      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
1431        MI.getOperand(i).setIsKill();
1432      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1433      MI.getOperand(i).setReg(RReg);
1434      UpdateKills(*prior(MII), RegKills, KillOps);
1435      DOUT << '\t' << *prior(MII);
1436    }
1437
1438    DOUT << '\t' << MI;
1439
1440
1441    // If we have folded references to memory operands, make sure we clear all
1442    // physical registers that may contain the value of the spilled virtual
1443    // register
1444    SmallSet<int, 2> FoldedSS;
1445    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1446      unsigned VirtReg = I->second.first;
1447      VirtRegMap::ModRef MR = I->second.second;
1448      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1449
1450      // MI2VirtMap be can updated which invalidate the iterator.
1451      // Increment the iterator first.
1452      ++I;
1453      int SS = VRM.getStackSlot(VirtReg);
1454      if (SS == VirtRegMap::NO_STACK_SLOT)
1455        continue;
1456      FoldedSS.insert(SS);
1457      DOUT << " - StackSlot: " << SS << "\n";
1458
1459      // If this folded instruction is just a use, check to see if it's a
1460      // straight load from the virt reg slot.
1461      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1462        int FrameIdx;
1463        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1464        if (DestReg && FrameIdx == SS) {
1465          // If this spill slot is available, turn it into a copy (or nothing)
1466          // instead of leaving it as a load!
1467          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1468            DOUT << "Promoted Load To Copy: " << MI;
1469            if (DestReg != InReg) {
1470              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1471              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1472              // Revisit the copy so we make sure to notice the effects of the
1473              // operation on the destreg (either needing to RA it if it's
1474              // virtual or needing to clobber any values if it's physical).
1475              NextMII = &MI;
1476              --NextMII;  // backtrack to the copy.
1477              BackTracked = true;
1478            } else {
1479              DOUT << "Removing now-noop copy: " << MI;
1480              // Unset last kill since it's being reused.
1481              InvalidateKill(InReg, RegKills, KillOps);
1482            }
1483
1484            InvalidateKills(MI, RegKills, KillOps);
1485            VRM.RemoveMachineInstrFromMaps(&MI);
1486            MBB.erase(&MI);
1487            Erased = true;
1488            goto ProcessNextInst;
1489          }
1490        } else {
1491          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1492          SmallVector<MachineInstr*, 4> NewMIs;
1493          if (PhysReg &&
1494              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1495            MBB.insert(MII, NewMIs[0]);
1496            InvalidateKills(MI, RegKills, KillOps);
1497            VRM.RemoveMachineInstrFromMaps(&MI);
1498            MBB.erase(&MI);
1499            Erased = true;
1500            --NextMII;  // backtrack to the unfolded instruction.
1501            BackTracked = true;
1502            goto ProcessNextInst;
1503          }
1504        }
1505      }
1506
1507      // If this reference is not a use, any previous store is now dead.
1508      // Otherwise, the store to this stack slot is not dead anymore.
1509      MachineInstr* DeadStore = MaybeDeadStores[SS];
1510      if (DeadStore) {
1511        bool isDead = !(MR & VirtRegMap::isRef);
1512        MachineInstr *NewStore = NULL;
1513        if (MR & VirtRegMap::isModRef) {
1514          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1515          SmallVector<MachineInstr*, 4> NewMIs;
1516          // We can reuse this physreg as long as we are allowed to clobber
1517          // the value and there isn't an earlier def that has already clobbered
1518          // the physreg.
1519          if (PhysReg &&
1520              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1521            MachineOperand *KillOpnd =
1522              DeadStore->findRegisterUseOperand(PhysReg, true);
1523            // Note, if the store is storing a sub-register, it's possible the
1524            // super-register is needed below.
1525            if (KillOpnd && !KillOpnd->getSubReg() &&
1526                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1527              MBB.insert(MII, NewMIs[0]);
1528              NewStore = NewMIs[1];
1529              MBB.insert(MII, NewStore);
1530              VRM.addSpillSlotUse(SS, NewStore);
1531              InvalidateKills(MI, RegKills, KillOps);
1532              VRM.RemoveMachineInstrFromMaps(&MI);
1533              MBB.erase(&MI);
1534              Erased = true;
1535              --NextMII;
1536              --NextMII;  // backtrack to the unfolded instruction.
1537              BackTracked = true;
1538              isDead = true;
1539            }
1540          }
1541        }
1542
1543        if (isDead) {  // Previous store is dead.
1544          // If we get here, the store is dead, nuke it now.
1545          DOUT << "Removed dead store:\t" << *DeadStore;
1546          InvalidateKills(*DeadStore, RegKills, KillOps);
1547          VRM.RemoveMachineInstrFromMaps(DeadStore);
1548          MBB.erase(DeadStore);
1549          if (!NewStore)
1550            ++NumDSE;
1551        }
1552
1553        MaybeDeadStores[SS] = NULL;
1554        if (NewStore) {
1555          // Treat this store as a spill merged into a copy. That makes the
1556          // stack slot value available.
1557          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1558          goto ProcessNextInst;
1559        }
1560      }
1561
1562      // If the spill slot value is available, and this is a new definition of
1563      // the value, the value is not available anymore.
1564      if (MR & VirtRegMap::isMod) {
1565        // Notice that the value in this stack slot has been modified.
1566        Spills.ModifyStackSlotOrReMat(SS);
1567
1568        // If this is *just* a mod of the value, check to see if this is just a
1569        // store to the spill slot (i.e. the spill got merged into the copy). If
1570        // so, realize that the vreg is available now, and add the store to the
1571        // MaybeDeadStore info.
1572        int StackSlot;
1573        if (!(MR & VirtRegMap::isRef)) {
1574          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1575            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1576                   "Src hasn't been allocated yet?");
1577            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1578            // this as a potentially dead store in case there is a subsequent
1579            // store into the stack slot without a read from it.
1580            MaybeDeadStores[StackSlot] = &MI;
1581
1582            // If the stack slot value was previously available in some other
1583            // register, change it now.  Otherwise, make the register available,
1584            // in PhysReg.
1585            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
1586          }
1587        }
1588      }
1589    }
1590
1591    // Process all of the spilled defs.
1592    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1593      MachineOperand &MO = MI.getOperand(i);
1594      if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
1595        continue;
1596
1597      unsigned VirtReg = MO.getReg();
1598      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1599        // Check to see if this is a noop copy.  If so, eliminate the
1600        // instruction before considering the dest reg to be changed.
1601        unsigned Src, Dst;
1602        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1603          ++NumDCE;
1604          DOUT << "Removing now-noop copy: " << MI;
1605          SmallVector<unsigned, 2> KillRegs;
1606          InvalidateKills(MI, RegKills, KillOps, &KillRegs);
1607          if (MO.isDead() && !KillRegs.empty()) {
1608            assert(KillRegs[0] == Dst);
1609            // Last def is now dead.
1610            TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
1611          }
1612          VRM.RemoveMachineInstrFromMaps(&MI);
1613          MBB.erase(&MI);
1614          Erased = true;
1615          Spills.disallowClobberPhysReg(VirtReg);
1616          goto ProcessNextInst;
1617        }
1618
1619        // If it's not a no-op copy, it clobbers the value in the destreg.
1620        Spills.ClobberPhysReg(VirtReg);
1621        ReusedOperands.markClobbered(VirtReg);
1622
1623        // Check to see if this instruction is a load from a stack slot into
1624        // a register.  If so, this provides the stack slot value in the reg.
1625        int FrameIdx;
1626        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1627          assert(DestReg == VirtReg && "Unknown load situation!");
1628
1629          // If it is a folded reference, then it's not safe to clobber.
1630          bool Folded = FoldedSS.count(FrameIdx);
1631          // Otherwise, if it wasn't available, remember that it is now!
1632          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1633          goto ProcessNextInst;
1634        }
1635
1636        continue;
1637      }
1638
1639      unsigned SubIdx = MO.getSubReg();
1640      bool DoReMat = VRM.isReMaterialized(VirtReg);
1641      if (DoReMat)
1642        ReMatDefs.insert(&MI);
1643
1644      // The only vregs left are stack slot definitions.
1645      int StackSlot = VRM.getStackSlot(VirtReg);
1646      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1647
1648      // If this def is part of a two-address operand, make sure to execute
1649      // the store from the correct physical register.
1650      unsigned PhysReg;
1651      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
1652      if (TiedOp != -1) {
1653        PhysReg = MI.getOperand(TiedOp).getReg();
1654        if (SubIdx) {
1655          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1656          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1657                 "Can't find corresponding super-register!");
1658          PhysReg = SuperReg;
1659        }
1660      } else {
1661        PhysReg = VRM.getPhys(VirtReg);
1662        if (ReusedOperands.isClobbered(PhysReg)) {
1663          // Another def has taken the assigned physreg. It must have been a
1664          // use&def which got it due to reuse. Undo the reuse!
1665          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1666                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1667        }
1668      }
1669
1670      assert(PhysReg && "VR not assigned a physical register?");
1671      RegInfo->setPhysRegUsed(PhysReg);
1672      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1673      ReusedOperands.markClobbered(RReg);
1674      MI.getOperand(i).setReg(RReg);
1675
1676      if (!MO.isDead()) {
1677        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1678        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1679                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1680        NextMII = next(MII);
1681
1682        // Check to see if this is a noop copy.  If so, eliminate the
1683        // instruction before considering the dest reg to be changed.
1684        {
1685          unsigned Src, Dst;
1686          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1687            ++NumDCE;
1688            DOUT << "Removing now-noop copy: " << MI;
1689            InvalidateKills(MI, RegKills, KillOps);
1690            VRM.RemoveMachineInstrFromMaps(&MI);
1691            MBB.erase(&MI);
1692            Erased = true;
1693            UpdateKills(*LastStore, RegKills, KillOps);
1694            goto ProcessNextInst;
1695          }
1696        }
1697      }
1698    }
1699  ProcessNextInst:
1700    DistanceMap.insert(std::make_pair(&MI, Dist++));
1701    if (!Erased && !BackTracked) {
1702      for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II)
1703        UpdateKills(*II, RegKills, KillOps);
1704    }
1705    MII = NextMII;
1706  }
1707}
1708
1709llvm::Spiller* llvm::createSpiller() {
1710  switch (SpillerOpt) {
1711  default: assert(0 && "Unreachable!");
1712  case local:
1713    return new LocalSpiller();
1714  case simple:
1715    return new SimpleSpiller();
1716  }
1717}
1718