VirtRegMap.cpp revision 6784598895c184889b82a9d213c307c70b1ea444
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/SmallSet.h"
36#include <algorithm>
37using namespace llvm;
38
39STATISTIC(NumSpills  , "Number of register spills");
40STATISTIC(NumPSpills , "Number of physical register spills");
41STATISTIC(NumReMats  , "Number of re-materialization");
42STATISTIC(NumDRM     , "Number of re-materializable defs elided");
43STATISTIC(NumStores  , "Number of stores added");
44STATISTIC(NumLoads   , "Number of loads added");
45STATISTIC(NumReused  , "Number of values reused");
46STATISTIC(NumDSE     , "Number of dead stores elided");
47STATISTIC(NumDCE     , "Number of copies elided");
48STATISTIC(NumDSS     , "Number of dead spill slots removed");
49STATISTIC(NumCommutes, "Number of instructions commuted");
50
51namespace {
52  enum SpillerName { simple, local };
53}
54
55static cl::opt<SpillerName>
56SpillerOpt("spiller",
57           cl::desc("Spiller to use: (default: local)"),
58           cl::Prefix,
59           cl::values(clEnumVal(simple, "simple spiller"),
60                      clEnumVal(local,  "local spiller"),
61                      clEnumValEnd),
62           cl::init(local));
63
64//===----------------------------------------------------------------------===//
65//  VirtRegMap implementation
66//===----------------------------------------------------------------------===//
67
68VirtRegMap::VirtRegMap(MachineFunction &mf)
69  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
70    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
71    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
72    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1),
73    LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) {
74  SpillSlotToUsesMap.resize(8);
75  ImplicitDefed.resize(MF.getRegInfo().getLastVirtReg()+1-
76                       TargetRegisterInfo::FirstVirtualRegister);
77  grow();
78}
79
80void VirtRegMap::grow() {
81  unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
82  Virt2PhysMap.grow(LastVirtReg);
83  Virt2StackSlotMap.grow(LastVirtReg);
84  Virt2ReMatIdMap.grow(LastVirtReg);
85  Virt2SplitMap.grow(LastVirtReg);
86  Virt2SplitKillMap.grow(LastVirtReg);
87  ReMatMap.grow(LastVirtReg);
88  ImplicitDefed.resize(LastVirtReg-TargetRegisterInfo::FirstVirtualRegister+1);
89}
90
91int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
92  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
93  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
94         "attempt to assign stack slot to already spilled register");
95  const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
96  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
97                                                RC->getAlignment());
98  if (LowSpillSlot == NO_STACK_SLOT)
99    LowSpillSlot = SS;
100  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
101    HighSpillSlot = SS;
102  unsigned Idx = SS-LowSpillSlot;
103  while (Idx >= SpillSlotToUsesMap.size())
104    SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2);
105  Virt2StackSlotMap[virtReg] = SS;
106  ++NumSpills;
107  return SS;
108}
109
110void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
111  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
112  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
113         "attempt to assign stack slot to already spilled register");
114  assert((SS >= 0 ||
115          (SS >= MF.getFrameInfo()->getObjectIndexBegin())) &&
116         "illegal fixed frame index");
117  Virt2StackSlotMap[virtReg] = SS;
118}
119
120int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
121  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
122  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
123         "attempt to assign re-mat id to already spilled register");
124  Virt2ReMatIdMap[virtReg] = ReMatId;
125  return ReMatId++;
126}
127
128void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
129  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
130  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
131         "attempt to assign re-mat id to already spilled register");
132  Virt2ReMatIdMap[virtReg] = id;
133}
134
135int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
136  std::map<const TargetRegisterClass*, int>::iterator I =
137    EmergencySpillSlots.find(RC);
138  if (I != EmergencySpillSlots.end())
139    return I->second;
140  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
141                                                RC->getAlignment());
142  if (LowSpillSlot == NO_STACK_SLOT)
143    LowSpillSlot = SS;
144  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
145    HighSpillSlot = SS;
146  EmergencySpillSlots[RC] = SS;
147  return SS;
148}
149
150void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
151  if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) {
152    // If FI < LowSpillSlot, this stack reference was produced by
153    // instruction selection and is not a spill
154    if (FI >= LowSpillSlot) {
155      assert(FI >= 0 && "Spill slot index should not be negative!");
156      assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
157             && "Invalid spill slot");
158      SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI);
159    }
160  }
161}
162
163void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
164                            MachineInstr *NewMI, ModRef MRInfo) {
165  // Move previous memory references folded to new instruction.
166  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
167  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
168         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
169    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
170    MI2VirtMap.erase(I++);
171  }
172
173  // add new memory reference
174  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
175}
176
177void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
178  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
179  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
180}
181
182void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
183  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
184    MachineOperand &MO = MI->getOperand(i);
185    if (!MO.isFI())
186      continue;
187    int FI = MO.getIndex();
188    if (MF.getFrameInfo()->isFixedObjectIndex(FI))
189      continue;
190    // This stack reference was produced by instruction selection and
191    // is not a spill
192    if (FI < LowSpillSlot)
193      continue;
194    assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
195           && "Invalid spill slot");
196    SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
197  }
198  MI2VirtMap.erase(MI);
199  SpillPt2VirtMap.erase(MI);
200  RestorePt2VirtMap.erase(MI);
201  EmergencySpillMap.erase(MI);
202}
203
204void VirtRegMap::print(std::ostream &OS) const {
205  const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
206
207  OS << "********** REGISTER MAP **********\n";
208  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
209         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
210    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
211      OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i])
212         << "]\n";
213  }
214
215  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
216         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
217    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
218      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
219  OS << '\n';
220}
221
222void VirtRegMap::dump() const {
223  print(cerr);
224}
225
226
227//===----------------------------------------------------------------------===//
228// Simple Spiller Implementation
229//===----------------------------------------------------------------------===//
230
231Spiller::~Spiller() {}
232
233namespace {
234  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
235    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
236  };
237}
238
239bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
240  DOUT << "********** REWRITE MACHINE CODE **********\n";
241  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
242  const TargetMachine &TM = MF.getTarget();
243  const TargetInstrInfo &TII = *TM.getInstrInfo();
244  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
245
246
247  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
248  // each vreg once (in the case where a spilled vreg is used by multiple
249  // operands).  This is always smaller than the number of operands to the
250  // current machine instr, so it should be small.
251  std::vector<unsigned> LoadedRegs;
252
253  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
254       MBBI != E; ++MBBI) {
255    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
256    MachineBasicBlock &MBB = *MBBI;
257    for (MachineBasicBlock::iterator MII = MBB.begin(),
258           E = MBB.end(); MII != E; ++MII) {
259      MachineInstr &MI = *MII;
260      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
261        MachineOperand &MO = MI.getOperand(i);
262        if (MO.isReg() && MO.getReg()) {
263          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
264            unsigned VirtReg = MO.getReg();
265            unsigned SubIdx = MO.getSubReg();
266            unsigned PhysReg = VRM.getPhys(VirtReg);
267            unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
268            if (!VRM.isAssignedReg(VirtReg)) {
269              int StackSlot = VRM.getStackSlot(VirtReg);
270              const TargetRegisterClass* RC =
271                MF.getRegInfo().getRegClass(VirtReg);
272
273              if (MO.isUse() &&
274                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
275                  == LoadedRegs.end()) {
276                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
277                MachineInstr *LoadMI = prior(MII);
278                VRM.addSpillSlotUse(StackSlot, LoadMI);
279                LoadedRegs.push_back(VirtReg);
280                ++NumLoads;
281                DOUT << '\t' << *LoadMI;
282              }
283
284              if (MO.isDef()) {
285                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
286                                        StackSlot, RC);
287                MachineInstr *StoreMI = next(MII);
288                VRM.addSpillSlotUse(StackSlot, StoreMI);
289                ++NumStores;
290              }
291            }
292            MF.getRegInfo().setPhysRegUsed(RReg);
293            MI.getOperand(i).setReg(RReg);
294          } else {
295            MF.getRegInfo().setPhysRegUsed(MO.getReg());
296          }
297        }
298      }
299
300      DOUT << '\t' << MI;
301      LoadedRegs.clear();
302    }
303  }
304  return true;
305}
306
307//===----------------------------------------------------------------------===//
308//  Local Spiller Implementation
309//===----------------------------------------------------------------------===//
310
311namespace {
312  class AvailableSpills;
313
314  /// LocalSpiller - This spiller does a simple pass over the machine basic
315  /// block to attempt to keep spills in registers as much as possible for
316  /// blocks that have low register pressure (the vreg may be spilled due to
317  /// register pressure in other blocks).
318  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
319    MachineRegisterInfo *RegInfo;
320    const TargetRegisterInfo *TRI;
321    const TargetInstrInfo *TII;
322    DenseMap<MachineInstr*, unsigned> DistanceMap;
323  public:
324    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
325      RegInfo = &MF.getRegInfo();
326      TRI = MF.getTarget().getRegisterInfo();
327      TII = MF.getTarget().getInstrInfo();
328      DOUT << "\n**** Local spiller rewriting function '"
329           << MF.getFunction()->getName() << "':\n";
330      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
331              " ****\n";
332      DEBUG(MF.dump());
333
334      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
335           MBB != E; ++MBB)
336        RewriteMBB(*MBB, VRM);
337
338      // Mark unused spill slots.
339      MachineFrameInfo *MFI = MF.getFrameInfo();
340      int SS = VRM.getLowSpillSlot();
341      if (SS != VirtRegMap::NO_STACK_SLOT)
342        for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
343          if (!VRM.isSpillSlotUsed(SS)) {
344            MFI->RemoveStackObject(SS);
345            ++NumDSS;
346          }
347
348      DOUT << "**** Post Machine Instrs ****\n";
349      DEBUG(MF.dump());
350
351      return true;
352    }
353  private:
354    void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
355                          unsigned Reg, BitVector &RegKills,
356                          std::vector<MachineOperand*> &KillOps);
357    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
358                           MachineBasicBlock::iterator &MII,
359                           std::vector<MachineInstr*> &MaybeDeadStores,
360                           AvailableSpills &Spills, BitVector &RegKills,
361                           std::vector<MachineOperand*> &KillOps,
362                           VirtRegMap &VRM);
363    bool CommuteToFoldReload(MachineBasicBlock &MBB,
364                             MachineBasicBlock::iterator &MII,
365                             unsigned VirtReg, unsigned SrcReg, int SS,
366                             BitVector &RegKills,
367                             std::vector<MachineOperand*> &KillOps,
368                             const TargetRegisterInfo *TRI,
369                             VirtRegMap &VRM);
370    void SpillRegToStackSlot(MachineBasicBlock &MBB,
371                             MachineBasicBlock::iterator &MII,
372                             int Idx, unsigned PhysReg, int StackSlot,
373                             const TargetRegisterClass *RC,
374                             bool isAvailable, MachineInstr *&LastStore,
375                             AvailableSpills &Spills,
376                             SmallSet<MachineInstr*, 4> &ReMatDefs,
377                             BitVector &RegKills,
378                             std::vector<MachineOperand*> &KillOps,
379                             VirtRegMap &VRM);
380    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
381  };
382}
383
384/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
385/// top down, keep track of which spills slots or remat are available in each
386/// register.
387///
388/// Note that not all physregs are created equal here.  In particular, some
389/// physregs are reloads that we are allowed to clobber or ignore at any time.
390/// Other physregs are values that the register allocated program is using that
391/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
392/// per-stack-slot / remat id basis as the low bit in the value of the
393/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
394/// this bit and addAvailable sets it if.
395namespace {
396class VISIBILITY_HIDDEN AvailableSpills {
397  const TargetRegisterInfo *TRI;
398  const TargetInstrInfo *TII;
399
400  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
401  // or remat'ed virtual register values that are still available, due to being
402  // loaded or stored to, but not invalidated yet.
403  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
404
405  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
406  // indicating which stack slot values are currently held by a physreg.  This
407  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
408  // physreg is modified.
409  std::multimap<unsigned, int> PhysRegsAvailable;
410
411  void disallowClobberPhysRegOnly(unsigned PhysReg);
412
413  void ClobberPhysRegOnly(unsigned PhysReg);
414public:
415  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
416    : TRI(tri), TII(tii) {
417  }
418
419  const TargetRegisterInfo *getRegInfo() const { return TRI; }
420
421  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
422  /// available in a  physical register, return that PhysReg, otherwise
423  /// return 0.
424  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
425    std::map<int, unsigned>::const_iterator I =
426      SpillSlotsOrReMatsAvailable.find(Slot);
427    if (I != SpillSlotsOrReMatsAvailable.end()) {
428      return I->second >> 1;  // Remove the CanClobber bit.
429    }
430    return 0;
431  }
432
433  /// addAvailable - Mark that the specified stack slot / remat is available in
434  /// the specified physreg.  If CanClobber is true, the physreg can be modified
435  /// at any time without changing the semantics of the program.
436  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
437                    bool CanClobber = true) {
438    // If this stack slot is thought to be available in some other physreg,
439    // remove its record.
440    ModifyStackSlotOrReMat(SlotOrReMat);
441
442    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
443    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
444
445    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
446      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
447    else
448      DOUT << "Remembering SS#" << SlotOrReMat;
449    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
450  }
451
452  /// canClobberPhysReg - Return true if the spiller is allowed to change the
453  /// value of the specified stackslot register if it desires.  The specified
454  /// stack slot must be available in a physreg for this query to make sense.
455  bool canClobberPhysReg(int SlotOrReMat) const {
456    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
457           "Value not available!");
458    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
459  }
460
461  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
462  /// stackslot register. The register is still available but is no longer
463  /// allowed to be modifed.
464  void disallowClobberPhysReg(unsigned PhysReg);
465
466  /// ClobberPhysReg - This is called when the specified physreg changes
467  /// value.  We use this to invalidate any info about stuff that lives in
468  /// it and any of its aliases.
469  void ClobberPhysReg(unsigned PhysReg);
470
471  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
472  /// slot changes.  This removes information about which register the previous
473  /// value for this slot lives in (as the previous value is dead now).
474  void ModifyStackSlotOrReMat(int SlotOrReMat);
475};
476}
477
478/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
479/// stackslot register. The register is still available but is no longer
480/// allowed to be modifed.
481void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
482  std::multimap<unsigned, int>::iterator I =
483    PhysRegsAvailable.lower_bound(PhysReg);
484  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
485    int SlotOrReMat = I->second;
486    I++;
487    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
488           "Bidirectional map mismatch!");
489    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
490    DOUT << "PhysReg " << TRI->getName(PhysReg)
491         << " copied, it is available for use but can no longer be modified\n";
492  }
493}
494
495/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
496/// stackslot register and its aliases. The register and its aliases may
497/// still available but is no longer allowed to be modifed.
498void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
499  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
500    disallowClobberPhysRegOnly(*AS);
501  disallowClobberPhysRegOnly(PhysReg);
502}
503
504/// ClobberPhysRegOnly - This is called when the specified physreg changes
505/// value.  We use this to invalidate any info about stuff we thing lives in it.
506void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
507  std::multimap<unsigned, int>::iterator I =
508    PhysRegsAvailable.lower_bound(PhysReg);
509  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
510    int SlotOrReMat = I->second;
511    PhysRegsAvailable.erase(I++);
512    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
513           "Bidirectional map mismatch!");
514    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
515    DOUT << "PhysReg " << TRI->getName(PhysReg)
516         << " clobbered, invalidating ";
517    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
518      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
519    else
520      DOUT << "SS#" << SlotOrReMat << "\n";
521  }
522}
523
524/// ClobberPhysReg - This is called when the specified physreg changes
525/// value.  We use this to invalidate any info about stuff we thing lives in
526/// it and any of its aliases.
527void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
528  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
529    ClobberPhysRegOnly(*AS);
530  ClobberPhysRegOnly(PhysReg);
531}
532
533/// ModifyStackSlotOrReMat - This method is called when the value in a stack
534/// slot changes.  This removes information about which register the previous
535/// value for this slot lives in (as the previous value is dead now).
536void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
537  std::map<int, unsigned>::iterator It =
538    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
539  if (It == SpillSlotsOrReMatsAvailable.end()) return;
540  unsigned Reg = It->second >> 1;
541  SpillSlotsOrReMatsAvailable.erase(It);
542
543  // This register may hold the value of multiple stack slots, only remove this
544  // stack slot from the set of values the register contains.
545  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
546  for (; ; ++I) {
547    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
548           "Map inverse broken!");
549    if (I->second == SlotOrReMat) break;
550  }
551  PhysRegsAvailable.erase(I);
552}
553
554
555
556/// InvalidateKills - MI is going to be deleted. If any of its operands are
557/// marked kill, then invalidate the information.
558static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
559                            std::vector<MachineOperand*> &KillOps,
560                            SmallVector<unsigned, 2> *KillRegs = NULL) {
561  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
562    MachineOperand &MO = MI.getOperand(i);
563    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
564      continue;
565    unsigned Reg = MO.getReg();
566    if (TargetRegisterInfo::isVirtualRegister(Reg))
567      continue;
568    if (KillRegs)
569      KillRegs->push_back(Reg);
570    assert(Reg < KillOps.size());
571    if (KillOps[Reg] == &MO) {
572      RegKills.reset(Reg);
573      KillOps[Reg] = NULL;
574    }
575  }
576}
577
578/// InvalidateKill - A MI that defines the specified register is being deleted,
579/// invalidate the register kill information.
580static void InvalidateKill(unsigned Reg, BitVector &RegKills,
581                           std::vector<MachineOperand*> &KillOps) {
582  if (RegKills[Reg]) {
583    KillOps[Reg]->setIsKill(false);
584    KillOps[Reg] = NULL;
585    RegKills.reset(Reg);
586  }
587}
588
589/// InvalidateRegDef - If the def operand of the specified def MI is now dead
590/// (since it's spill instruction is removed), mark it isDead. Also checks if
591/// the def MI has other definition operands that are not dead. Returns it by
592/// reference.
593static bool InvalidateRegDef(MachineBasicBlock::iterator I,
594                             MachineInstr &NewDef, unsigned Reg,
595                             bool &HasLiveDef) {
596  // Due to remat, it's possible this reg isn't being reused. That is,
597  // the def of this reg (by prev MI) is now dead.
598  MachineInstr *DefMI = I;
599  MachineOperand *DefOp = NULL;
600  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
601    MachineOperand &MO = DefMI->getOperand(i);
602    if (MO.isReg() && MO.isDef()) {
603      if (MO.getReg() == Reg)
604        DefOp = &MO;
605      else if (!MO.isDead())
606        HasLiveDef = true;
607    }
608  }
609  if (!DefOp)
610    return false;
611
612  bool FoundUse = false, Done = false;
613  MachineBasicBlock::iterator E = &NewDef;
614  ++I; ++E;
615  for (; !Done && I != E; ++I) {
616    MachineInstr *NMI = I;
617    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
618      MachineOperand &MO = NMI->getOperand(j);
619      if (!MO.isReg() || MO.getReg() != Reg)
620        continue;
621      if (MO.isUse())
622        FoundUse = true;
623      Done = true; // Stop after scanning all the operands of this MI.
624    }
625  }
626  if (!FoundUse) {
627    // Def is dead!
628    DefOp->setIsDead();
629    return true;
630  }
631  return false;
632}
633
634/// UpdateKills - Track and update kill info. If a MI reads a register that is
635/// marked kill, then it must be due to register reuse. Transfer the kill info
636/// over.
637static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
638                        std::vector<MachineOperand*> &KillOps,
639                        const TargetRegisterInfo* TRI) {
640  const TargetInstrDesc &TID = MI.getDesc();
641  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
642    MachineOperand &MO = MI.getOperand(i);
643    if (!MO.isReg() || !MO.isUse())
644      continue;
645    unsigned Reg = MO.getReg();
646    if (Reg == 0)
647      continue;
648
649    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
650      // That can't be right. Register is killed but not re-defined and it's
651      // being reused. Let's fix that.
652      KillOps[Reg]->setIsKill(false);
653      KillOps[Reg] = NULL;
654      RegKills.reset(Reg);
655      if (i < TID.getNumOperands() &&
656          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
657        // Unless it's a two-address operand, this is the new kill.
658        MO.setIsKill();
659    }
660    if (MO.isKill()) {
661      RegKills.set(Reg);
662      KillOps[Reg] = &MO;
663    }
664  }
665
666  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
667    const MachineOperand &MO = MI.getOperand(i);
668    if (!MO.isReg() || !MO.isDef())
669      continue;
670    unsigned Reg = MO.getReg();
671    RegKills.reset(Reg);
672    KillOps[Reg] = NULL;
673    // It also defines (or partially define) aliases.
674    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
675      RegKills.reset(*AS);
676      KillOps[*AS] = NULL;
677    }
678  }
679}
680
681/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
682///
683static void ReMaterialize(MachineBasicBlock &MBB,
684                          MachineBasicBlock::iterator &MII,
685                          unsigned DestReg, unsigned Reg,
686                          const TargetInstrInfo *TII,
687                          const TargetRegisterInfo *TRI,
688                          VirtRegMap &VRM) {
689  TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
690  MachineInstr *NewMI = prior(MII);
691  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
692    MachineOperand &MO = NewMI->getOperand(i);
693    if (!MO.isReg() || MO.getReg() == 0)
694      continue;
695    unsigned VirtReg = MO.getReg();
696    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
697      continue;
698    assert(MO.isUse());
699    unsigned SubIdx = MO.getSubReg();
700    unsigned Phys = VRM.getPhys(VirtReg);
701    assert(Phys);
702    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
703    MO.setReg(RReg);
704  }
705  ++NumReMats;
706}
707
708
709// ReusedOp - For each reused operand, we keep track of a bit of information, in
710// case we need to rollback upon processing a new operand.  See comments below.
711namespace {
712  struct ReusedOp {
713    // The MachineInstr operand that reused an available value.
714    unsigned Operand;
715
716    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
717    unsigned StackSlotOrReMat;
718
719    // PhysRegReused - The physical register the value was available in.
720    unsigned PhysRegReused;
721
722    // AssignedPhysReg - The physreg that was assigned for use by the reload.
723    unsigned AssignedPhysReg;
724
725    // VirtReg - The virtual register itself.
726    unsigned VirtReg;
727
728    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
729             unsigned vreg)
730      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
731        AssignedPhysReg(apr), VirtReg(vreg) {}
732  };
733
734  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
735  /// is reused instead of reloaded.
736  class VISIBILITY_HIDDEN ReuseInfo {
737    MachineInstr &MI;
738    std::vector<ReusedOp> Reuses;
739    BitVector PhysRegsClobbered;
740  public:
741    ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
742      PhysRegsClobbered.resize(tri->getNumRegs());
743    }
744
745    bool hasReuses() const {
746      return !Reuses.empty();
747    }
748
749    /// addReuse - If we choose to reuse a virtual register that is already
750    /// available instead of reloading it, remember that we did so.
751    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
752                  unsigned PhysRegReused, unsigned AssignedPhysReg,
753                  unsigned VirtReg) {
754      // If the reload is to the assigned register anyway, no undo will be
755      // required.
756      if (PhysRegReused == AssignedPhysReg) return;
757
758      // Otherwise, remember this.
759      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
760                                AssignedPhysReg, VirtReg));
761    }
762
763    void markClobbered(unsigned PhysReg) {
764      PhysRegsClobbered.set(PhysReg);
765    }
766
767    bool isClobbered(unsigned PhysReg) const {
768      return PhysRegsClobbered.test(PhysReg);
769    }
770
771    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
772    /// is some other operand that is using the specified register, either pick
773    /// a new register to use, or evict the previous reload and use this reg.
774    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
775                             AvailableSpills &Spills,
776                             std::vector<MachineInstr*> &MaybeDeadStores,
777                             SmallSet<unsigned, 8> &Rejected,
778                             BitVector &RegKills,
779                             std::vector<MachineOperand*> &KillOps,
780                             VirtRegMap &VRM) {
781      const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
782                                   .getInstrInfo();
783
784      if (Reuses.empty()) return PhysReg;  // This is most often empty.
785
786      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
787        ReusedOp &Op = Reuses[ro];
788        // If we find some other reuse that was supposed to use this register
789        // exactly for its reload, we can change this reload to use ITS reload
790        // register. That is, unless its reload register has already been
791        // considered and subsequently rejected because it has also been reused
792        // by another operand.
793        if (Op.PhysRegReused == PhysReg &&
794            Rejected.count(Op.AssignedPhysReg) == 0) {
795          // Yup, use the reload register that we didn't use before.
796          unsigned NewReg = Op.AssignedPhysReg;
797          Rejected.insert(PhysReg);
798          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
799                                 RegKills, KillOps, VRM);
800        } else {
801          // Otherwise, we might also have a problem if a previously reused
802          // value aliases the new register.  If so, codegen the previous reload
803          // and use this one.
804          unsigned PRRU = Op.PhysRegReused;
805          const TargetRegisterInfo *TRI = Spills.getRegInfo();
806          if (TRI->areAliases(PRRU, PhysReg)) {
807            // Okay, we found out that an alias of a reused register
808            // was used.  This isn't good because it means we have
809            // to undo a previous reuse.
810            MachineBasicBlock *MBB = MI->getParent();
811            const TargetRegisterClass *AliasRC =
812              MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
813
814            // Copy Op out of the vector and remove it, we're going to insert an
815            // explicit load for it.
816            ReusedOp NewOp = Op;
817            Reuses.erase(Reuses.begin()+ro);
818
819            // Ok, we're going to try to reload the assigned physreg into the
820            // slot that we were supposed to in the first place.  However, that
821            // register could hold a reuse.  Check to see if it conflicts or
822            // would prefer us to use a different register.
823            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
824                                                  MI, Spills, MaybeDeadStores,
825                                              Rejected, RegKills, KillOps, VRM);
826
827            MachineBasicBlock::iterator MII = MI;
828            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
829              ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
830            } else {
831              TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
832                                        NewOp.StackSlotOrReMat, AliasRC);
833              MachineInstr *LoadMI = prior(MII);
834              VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
835              // Any stores to this stack slot are not dead anymore.
836              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
837              ++NumLoads;
838            }
839            Spills.ClobberPhysReg(NewPhysReg);
840            Spills.ClobberPhysReg(NewOp.PhysRegReused);
841
842            unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
843            unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
844            MI->getOperand(NewOp.Operand).setReg(RReg);
845
846            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
847            --MII;
848            UpdateKills(*MII, RegKills, KillOps, TRI);
849            DOUT << '\t' << *MII;
850
851            DOUT << "Reuse undone!\n";
852            --NumReused;
853
854            // Finally, PhysReg is now available, go ahead and use it.
855            return PhysReg;
856          }
857        }
858      }
859      return PhysReg;
860    }
861
862    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
863    /// 'Rejected' set to remember which registers have been considered and
864    /// rejected for the reload. This avoids infinite looping in case like
865    /// this:
866    /// t1 := op t2, t3
867    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
868    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
869    /// t1 <- desires r1
870    ///       sees r1 is taken by t2, tries t2's reload register r0
871    ///       sees r0 is taken by t3, tries t3's reload register r1
872    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
873    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
874                             AvailableSpills &Spills,
875                             std::vector<MachineInstr*> &MaybeDeadStores,
876                             BitVector &RegKills,
877                             std::vector<MachineOperand*> &KillOps,
878                             VirtRegMap &VRM) {
879      SmallSet<unsigned, 8> Rejected;
880      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
881                             RegKills, KillOps, VRM);
882    }
883  };
884}
885
886/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
887/// instruction. e.g.
888///     xorl  %edi, %eax
889///     movl  %eax, -32(%ebp)
890///     movl  -36(%ebp), %eax
891///     orl   %eax, -32(%ebp)
892/// ==>
893///     xorl  %edi, %eax
894///     orl   -36(%ebp), %eax
895///     mov   %eax, -32(%ebp)
896/// This enables unfolding optimization for a subsequent instruction which will
897/// also eliminate the newly introduced store instruction.
898bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
899                                    MachineBasicBlock::iterator &MII,
900                                    std::vector<MachineInstr*> &MaybeDeadStores,
901                                    AvailableSpills &Spills,
902                                    BitVector &RegKills,
903                                    std::vector<MachineOperand*> &KillOps,
904                                    VirtRegMap &VRM) {
905  MachineFunction &MF = *MBB.getParent();
906  MachineInstr &MI = *MII;
907  unsigned UnfoldedOpc = 0;
908  unsigned UnfoldPR = 0;
909  unsigned UnfoldVR = 0;
910  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
911  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
912  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
913    // Only transform a MI that folds a single register.
914    if (UnfoldedOpc)
915      return false;
916    UnfoldVR = I->second.first;
917    VirtRegMap::ModRef MR = I->second.second;
918    // MI2VirtMap be can updated which invalidate the iterator.
919    // Increment the iterator first.
920    ++I;
921    if (VRM.isAssignedReg(UnfoldVR))
922      continue;
923    // If this reference is not a use, any previous store is now dead.
924    // Otherwise, the store to this stack slot is not dead anymore.
925    FoldedSS = VRM.getStackSlot(UnfoldVR);
926    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
927    if (DeadStore && (MR & VirtRegMap::isModRef)) {
928      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
929      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
930        continue;
931      UnfoldPR = PhysReg;
932      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
933                                                    false, true);
934    }
935  }
936
937  if (!UnfoldedOpc)
938    return false;
939
940  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
941    MachineOperand &MO = MI.getOperand(i);
942    if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
943      continue;
944    unsigned VirtReg = MO.getReg();
945    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
946      continue;
947    if (VRM.isAssignedReg(VirtReg)) {
948      unsigned PhysReg = VRM.getPhys(VirtReg);
949      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
950        return false;
951    } else if (VRM.isReMaterialized(VirtReg))
952      continue;
953    int SS = VRM.getStackSlot(VirtReg);
954    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
955    if (PhysReg) {
956      if (TRI->regsOverlap(PhysReg, UnfoldPR))
957        return false;
958      continue;
959    }
960    if (VRM.hasPhys(VirtReg)) {
961      PhysReg = VRM.getPhys(VirtReg);
962      if (!TRI->regsOverlap(PhysReg, UnfoldPR))
963        continue;
964    }
965
966    // Ok, we'll need to reload the value into a register which makes
967    // it impossible to perform the store unfolding optimization later.
968    // Let's see if it is possible to fold the load if the store is
969    // unfolded. This allows us to perform the store unfolding
970    // optimization.
971    SmallVector<MachineInstr*, 4> NewMIs;
972    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
973      assert(NewMIs.size() == 1);
974      MachineInstr *NewMI = NewMIs.back();
975      NewMIs.clear();
976      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
977      assert(Idx != -1);
978      SmallVector<unsigned, 2> Ops;
979      Ops.push_back(Idx);
980      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
981      if (FoldedMI) {
982        VRM.addSpillSlotUse(SS, FoldedMI);
983        if (!VRM.hasPhys(UnfoldVR))
984          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
985        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
986        MII = MBB.insert(MII, FoldedMI);
987        InvalidateKills(MI, RegKills, KillOps);
988        VRM.RemoveMachineInstrFromMaps(&MI);
989        MBB.erase(&MI);
990        MF.DeleteMachineInstr(NewMI);
991        return true;
992      }
993      MF.DeleteMachineInstr(NewMI);
994    }
995  }
996  return false;
997}
998
999/// CommuteToFoldReload -
1000/// Look for
1001/// r1 = load fi#1
1002/// r1 = op r1, r2<kill>
1003/// store r1, fi#1
1004///
1005/// If op is commutable and r2 is killed, then we can xform these to
1006/// r2 = op r2, fi#1
1007/// store r2, fi#1
1008bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
1009                                    MachineBasicBlock::iterator &MII,
1010                                    unsigned VirtReg, unsigned SrcReg, int SS,
1011                                    BitVector &RegKills,
1012                                    std::vector<MachineOperand*> &KillOps,
1013                                    const TargetRegisterInfo *TRI,
1014                                    VirtRegMap &VRM) {
1015  if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1016    return false;
1017
1018  MachineFunction &MF = *MBB.getParent();
1019  MachineInstr &MI = *MII;
1020  MachineBasicBlock::iterator DefMII = prior(MII);
1021  MachineInstr *DefMI = DefMII;
1022  const TargetInstrDesc &TID = DefMI->getDesc();
1023  unsigned NewDstIdx;
1024  if (DefMII != MBB.begin() &&
1025      TID.isCommutable() &&
1026      TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
1027    MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1028    unsigned NewReg = NewDstMO.getReg();
1029    if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1030      return false;
1031    MachineInstr *ReloadMI = prior(DefMII);
1032    int FrameIdx;
1033    unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1034    if (DestReg != SrcReg || FrameIdx != SS)
1035      return false;
1036    int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1037    if (UseIdx == -1)
1038      return false;
1039    int DefIdx = TID.getOperandConstraint(UseIdx, TOI::TIED_TO);
1040    if (DefIdx == -1)
1041      return false;
1042    assert(DefMI->getOperand(DefIdx).isReg() &&
1043           DefMI->getOperand(DefIdx).getReg() == SrcReg);
1044
1045    // Now commute def instruction.
1046    MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1047    if (!CommutedMI)
1048      return false;
1049    SmallVector<unsigned, 2> Ops;
1050    Ops.push_back(NewDstIdx);
1051    MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1052    // Not needed since foldMemoryOperand returns new MI.
1053    MF.DeleteMachineInstr(CommutedMI);
1054    if (!FoldedMI)
1055      return false;
1056
1057    VRM.addSpillSlotUse(SS, FoldedMI);
1058    VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1059    // Insert new def MI and spill MI.
1060    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
1061    TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1062    MII = prior(MII);
1063    MachineInstr *StoreMI = MII;
1064    VRM.addSpillSlotUse(SS, StoreMI);
1065    VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1066    MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.
1067
1068    // Delete all 3 old instructions.
1069    InvalidateKills(*ReloadMI, RegKills, KillOps);
1070    VRM.RemoveMachineInstrFromMaps(ReloadMI);
1071    MBB.erase(ReloadMI);
1072    InvalidateKills(*DefMI, RegKills, KillOps);
1073    VRM.RemoveMachineInstrFromMaps(DefMI);
1074    MBB.erase(DefMI);
1075    InvalidateKills(MI, RegKills, KillOps);
1076    VRM.RemoveMachineInstrFromMaps(&MI);
1077    MBB.erase(&MI);
1078
1079    ++NumCommutes;
1080    return true;
1081  }
1082
1083  return false;
1084}
1085
1086/// findSuperReg - Find the SubReg's super-register of given register class
1087/// where its SubIdx sub-register is SubReg.
1088static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
1089                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
1090  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1091       I != E; ++I) {
1092    unsigned Reg = *I;
1093    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
1094      return Reg;
1095  }
1096  return 0;
1097}
1098
1099/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1100/// the last store to the same slot is now dead. If so, remove the last store.
1101void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
1102                                  MachineBasicBlock::iterator &MII,
1103                                  int Idx, unsigned PhysReg, int StackSlot,
1104                                  const TargetRegisterClass *RC,
1105                                  bool isAvailable, MachineInstr *&LastStore,
1106                                  AvailableSpills &Spills,
1107                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
1108                                  BitVector &RegKills,
1109                                  std::vector<MachineOperand*> &KillOps,
1110                                  VirtRegMap &VRM) {
1111  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1112  MachineInstr *StoreMI = next(MII);
1113  VRM.addSpillSlotUse(StackSlot, StoreMI);
1114  DOUT << "Store:\t" << *StoreMI;
1115
1116  // If there is a dead store to this stack slot, nuke it now.
1117  if (LastStore) {
1118    DOUT << "Removed dead store:\t" << *LastStore;
1119    ++NumDSE;
1120    SmallVector<unsigned, 2> KillRegs;
1121    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
1122    MachineBasicBlock::iterator PrevMII = LastStore;
1123    bool CheckDef = PrevMII != MBB.begin();
1124    if (CheckDef)
1125      --PrevMII;
1126    VRM.RemoveMachineInstrFromMaps(LastStore);
1127    MBB.erase(LastStore);
1128    if (CheckDef) {
1129      // Look at defs of killed registers on the store. Mark the defs
1130      // as dead since the store has been deleted and they aren't
1131      // being reused.
1132      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1133        bool HasOtherDef = false;
1134        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1135          MachineInstr *DeadDef = PrevMII;
1136          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1137            // FIXME: This assumes a remat def does not have side
1138            // effects.
1139            VRM.RemoveMachineInstrFromMaps(DeadDef);
1140            MBB.erase(DeadDef);
1141            ++NumDRM;
1142          }
1143        }
1144      }
1145    }
1146  }
1147
1148  LastStore = next(MII);
1149
1150  // If the stack slot value was previously available in some other
1151  // register, change it now.  Otherwise, make the register available,
1152  // in PhysReg.
1153  Spills.ModifyStackSlotOrReMat(StackSlot);
1154  Spills.ClobberPhysReg(PhysReg);
1155  Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
1156  ++NumStores;
1157}
1158
1159/// TransferDeadness - A identity copy definition is dead and it's being
1160/// removed. Find the last def or use and mark it as dead / kill.
1161void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1162                                    unsigned Reg, BitVector &RegKills,
1163                                    std::vector<MachineOperand*> &KillOps) {
1164  int LastUDDist = -1;
1165  MachineInstr *LastUDMI = NULL;
1166  for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1167         RE = RegInfo->reg_end(); RI != RE; ++RI) {
1168    MachineInstr *UDMI = &*RI;
1169    if (UDMI->getParent() != MBB)
1170      continue;
1171    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1172    if (DI == DistanceMap.end() || DI->second > CurDist)
1173      continue;
1174    if ((int)DI->second < LastUDDist)
1175      continue;
1176    LastUDDist = DI->second;
1177    LastUDMI = UDMI;
1178  }
1179
1180  if (LastUDMI) {
1181    const TargetInstrDesc &TID = LastUDMI->getDesc();
1182    MachineOperand *LastUD = NULL;
1183    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1184      MachineOperand &MO = LastUDMI->getOperand(i);
1185      if (!MO.isReg() || MO.getReg() != Reg)
1186        continue;
1187      if (!LastUD || (LastUD->isUse() && MO.isDef()))
1188        LastUD = &MO;
1189      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
1190        return;
1191    }
1192    if (LastUD->isDef())
1193      LastUD->setIsDead();
1194    else {
1195      LastUD->setIsKill();
1196      RegKills.set(Reg);
1197      KillOps[Reg] = LastUD;
1198    }
1199  }
1200}
1201
1202/// rewriteMBB - Keep track of which spills are available even after the
1203/// register allocator is done with them.  If possible, avid reloading vregs.
1204void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
1205  DOUT << MBB.getBasicBlock()->getName() << ":\n";
1206
1207  MachineFunction &MF = *MBB.getParent();
1208
1209  // Spills - Keep track of which spilled values are available in physregs so
1210  // that we can choose to reuse the physregs instead of emitting reloads.
1211  AvailableSpills Spills(TRI, TII);
1212
1213  // MaybeDeadStores - When we need to write a value back into a stack slot,
1214  // keep track of the inserted store.  If the stack slot value is never read
1215  // (because the value was used from some available register, for example), and
1216  // subsequently stored to, the original store is dead.  This map keeps track
1217  // of inserted stores that are not used.  If we see a subsequent store to the
1218  // same stack slot, the original store is deleted.
1219  std::vector<MachineInstr*> MaybeDeadStores;
1220  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1221
1222  // ReMatDefs - These are rematerializable def MIs which are not deleted.
1223  SmallSet<MachineInstr*, 4> ReMatDefs;
1224
1225  // Keep track of kill information.
1226  BitVector RegKills(TRI->getNumRegs());
1227  std::vector<MachineOperand*>  KillOps;
1228  KillOps.resize(TRI->getNumRegs(), NULL);
1229
1230  unsigned Dist = 0;
1231  DistanceMap.clear();
1232  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1233       MII != E; ) {
1234    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
1235
1236    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1237    bool Erased = false;
1238    bool BackTracked = false;
1239    if (PrepForUnfoldOpti(MBB, MII,
1240                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1241      NextMII = next(MII);
1242
1243    MachineInstr &MI = *MII;
1244    const TargetInstrDesc &TID = MI.getDesc();
1245
1246    if (VRM.hasEmergencySpills(&MI)) {
1247      // Spill physical register(s) in the rare case the allocator has run out
1248      // of registers to allocate.
1249      SmallSet<int, 4> UsedSS;
1250      std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1251      for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1252        unsigned PhysReg = EmSpills[i];
1253        const TargetRegisterClass *RC =
1254          TRI->getPhysicalRegisterRegClass(PhysReg);
1255        assert(RC && "Unable to determine register class!");
1256        int SS = VRM.getEmergencySpillSlot(RC);
1257        if (UsedSS.count(SS))
1258          assert(0 && "Need to spill more than one physical registers!");
1259        UsedSS.insert(SS);
1260        TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1261        MachineInstr *StoreMI = prior(MII);
1262        VRM.addSpillSlotUse(SS, StoreMI);
1263        TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1264        MachineInstr *LoadMI = next(MII);
1265        VRM.addSpillSlotUse(SS, LoadMI);
1266        ++NumPSpills;
1267      }
1268      NextMII = next(MII);
1269    }
1270
1271    // Insert restores here if asked to.
1272    if (VRM.isRestorePt(&MI)) {
1273      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1274      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1275        unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
1276        if (!VRM.getPreSplitReg(VirtReg))
1277          continue; // Split interval spilled again.
1278        unsigned Phys = VRM.getPhys(VirtReg);
1279        RegInfo->setPhysRegUsed(Phys);
1280        if (VRM.isReMaterialized(VirtReg)) {
1281          ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1282        } else {
1283          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1284          int SS = VRM.getStackSlot(VirtReg);
1285          TII->loadRegFromStackSlot(MBB, &MI, Phys, SS, RC);
1286          MachineInstr *LoadMI = prior(MII);
1287          VRM.addSpillSlotUse(SS, LoadMI);
1288          ++NumLoads;
1289        }
1290        // This invalidates Phys.
1291        Spills.ClobberPhysReg(Phys);
1292        UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1293        DOUT << '\t' << *prior(MII);
1294      }
1295    }
1296
1297    // Insert spills here if asked to.
1298    if (VRM.isSpillPt(&MI)) {
1299      std::vector<std::pair<unsigned,bool> > &SpillRegs =
1300        VRM.getSpillPtSpills(&MI);
1301      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1302        unsigned VirtReg = SpillRegs[i].first;
1303        bool isKill = SpillRegs[i].second;
1304        if (!VRM.getPreSplitReg(VirtReg))
1305          continue; // Split interval spilled again.
1306        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1307        unsigned Phys = VRM.getPhys(VirtReg);
1308        int StackSlot = VRM.getStackSlot(VirtReg);
1309        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1310        MachineInstr *StoreMI = next(MII);
1311        VRM.addSpillSlotUse(StackSlot, StoreMI);
1312        DOUT << "Store:\t" << *StoreMI;
1313        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1314      }
1315      NextMII = next(MII);
1316    }
1317
1318    /// ReusedOperands - Keep track of operand reuse in case we need to undo
1319    /// reuse.
1320    ReuseInfo ReusedOperands(MI, TRI);
1321    SmallVector<unsigned, 4> VirtUseOps;
1322    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1323      MachineOperand &MO = MI.getOperand(i);
1324      if (!MO.isReg() || MO.getReg() == 0)
1325        continue;   // Ignore non-register operands.
1326
1327      unsigned VirtReg = MO.getReg();
1328      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1329        // Ignore physregs for spilling, but remember that it is used by this
1330        // function.
1331        RegInfo->setPhysRegUsed(VirtReg);
1332        continue;
1333      }
1334
1335      // We want to process implicit virtual register uses first.
1336      if (MO.isImplicit())
1337        // If the virtual register is implicitly defined, emit a implicit_def
1338        // before so scavenger knows it's "defined".
1339        VirtUseOps.insert(VirtUseOps.begin(), i);
1340      else
1341        VirtUseOps.push_back(i);
1342    }
1343
1344    // Process all of the spilled uses and all non spilled reg references.
1345    for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1346      unsigned i = VirtUseOps[j];
1347      MachineOperand &MO = MI.getOperand(i);
1348      unsigned VirtReg = MO.getReg();
1349      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1350             "Not a virtual register?");
1351
1352      unsigned SubIdx = MO.getSubReg();
1353      if (VRM.isAssignedReg(VirtReg)) {
1354        // This virtual register was assigned a physreg!
1355        unsigned Phys = VRM.getPhys(VirtReg);
1356        RegInfo->setPhysRegUsed(Phys);
1357        if (MO.isDef())
1358          ReusedOperands.markClobbered(Phys);
1359        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1360        MI.getOperand(i).setReg(RReg);
1361        if (VRM.isImplicitlyDefined(VirtReg))
1362          BuildMI(MBB, &MI, TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1363        continue;
1364      }
1365
1366      // This virtual register is now known to be a spilled value.
1367      if (!MO.isUse())
1368        continue;  // Handle defs in the loop below (handle use&def here though)
1369
1370      bool DoReMat = VRM.isReMaterialized(VirtReg);
1371      int SSorRMId = DoReMat
1372        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1373      int ReuseSlot = SSorRMId;
1374
1375      // Check to see if this stack slot is available.
1376      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1377
1378      // If this is a sub-register use, make sure the reuse register is in the
1379      // right register class. For example, for x86 not all of the 32-bit
1380      // registers have accessible sub-registers.
1381      // Similarly so for EXTRACT_SUBREG. Consider this:
1382      // EDI = op
1383      // MOV32_mr fi#1, EDI
1384      // ...
1385      //       = EXTRACT_SUBREG fi#1
1386      // fi#1 is available in EDI, but it cannot be reused because it's not in
1387      // the right register file.
1388      if (PhysReg &&
1389          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1390        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1391        if (!RC->contains(PhysReg))
1392          PhysReg = 0;
1393      }
1394
1395      if (PhysReg) {
1396        // This spilled operand might be part of a two-address operand.  If this
1397        // is the case, then changing it will necessarily require changing the
1398        // def part of the instruction as well.  However, in some cases, we
1399        // aren't allowed to modify the reused register.  If none of these cases
1400        // apply, reuse it.
1401        bool CanReuse = true;
1402        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1403        if (ti != -1 &&
1404            MI.getOperand(ti).isReg() &&
1405            MI.getOperand(ti).getReg() == VirtReg) {
1406          // Okay, we have a two address operand.  We can reuse this physreg as
1407          // long as we are allowed to clobber the value and there isn't an
1408          // earlier def that has already clobbered the physreg.
1409          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1410            !ReusedOperands.isClobbered(PhysReg);
1411        }
1412
1413        if (CanReuse) {
1414          // If this stack slot value is already available, reuse it!
1415          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1416            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1417          else
1418            DOUT << "Reusing SS#" << ReuseSlot;
1419          DOUT << " from physreg "
1420               << TRI->getName(PhysReg) << " for vreg"
1421               << VirtReg <<" instead of reloading into physreg "
1422               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1423          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1424          MI.getOperand(i).setReg(RReg);
1425
1426          // The only technical detail we have is that we don't know that
1427          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1428          // later in the instruction.  In particular, consider 'op V1, V2'.
1429          // If V1 is available in physreg R0, we would choose to reuse it
1430          // here, instead of reloading it into the register the allocator
1431          // indicated (say R1).  However, V2 might have to be reloaded
1432          // later, and it might indicate that it needs to live in R0.  When
1433          // this occurs, we need to have information available that
1434          // indicates it is safe to use R1 for the reload instead of R0.
1435          //
1436          // To further complicate matters, we might conflict with an alias,
1437          // or R0 and R1 might not be compatible with each other.  In this
1438          // case, we actually insert a reload for V1 in R1, ensuring that
1439          // we can get at R0 or its alias.
1440          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1441                                  VRM.getPhys(VirtReg), VirtReg);
1442          if (ti != -1)
1443            // Only mark it clobbered if this is a use&def operand.
1444            ReusedOperands.markClobbered(PhysReg);
1445          ++NumReused;
1446
1447          if (MI.getOperand(i).isKill() &&
1448              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1449            // This was the last use and the spilled value is still available
1450            // for reuse. That means the spill was unnecessary!
1451            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1452            if (DeadStore) {
1453              DOUT << "Removed dead store:\t" << *DeadStore;
1454              InvalidateKills(*DeadStore, RegKills, KillOps);
1455              VRM.RemoveMachineInstrFromMaps(DeadStore);
1456              MBB.erase(DeadStore);
1457              MaybeDeadStores[ReuseSlot] = NULL;
1458              ++NumDSE;
1459            }
1460          }
1461          continue;
1462        }  // CanReuse
1463
1464        // Otherwise we have a situation where we have a two-address instruction
1465        // whose mod/ref operand needs to be reloaded.  This reload is already
1466        // available in some register "PhysReg", but if we used PhysReg as the
1467        // operand to our 2-addr instruction, the instruction would modify
1468        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1469        // to get its initial value.
1470        //
1471        // To avoid this problem, and to avoid doing a load right after a store,
1472        // we emit a copy from PhysReg into the designated register for this
1473        // operand.
1474        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1475        assert(DesignatedReg && "Must map virtreg to physreg!");
1476
1477        // Note that, if we reused a register for a previous operand, the
1478        // register we want to reload into might not actually be
1479        // available.  If this occurs, use the register indicated by the
1480        // reuser.
1481        if (ReusedOperands.hasReuses())
1482          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1483                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1484
1485        // If the mapped designated register is actually the physreg we have
1486        // incoming, we don't need to inserted a dead copy.
1487        if (DesignatedReg == PhysReg) {
1488          // If this stack slot value is already available, reuse it!
1489          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1490            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1491          else
1492            DOUT << "Reusing SS#" << ReuseSlot;
1493          DOUT << " from physreg " << TRI->getName(PhysReg)
1494               << " for vreg" << VirtReg
1495               << " instead of reloading into same physreg.\n";
1496          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1497          MI.getOperand(i).setReg(RReg);
1498          ReusedOperands.markClobbered(RReg);
1499          ++NumReused;
1500          continue;
1501        }
1502
1503        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1504        RegInfo->setPhysRegUsed(DesignatedReg);
1505        ReusedOperands.markClobbered(DesignatedReg);
1506        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1507
1508        MachineInstr *CopyMI = prior(MII);
1509        UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1510
1511        // This invalidates DesignatedReg.
1512        Spills.ClobberPhysReg(DesignatedReg);
1513
1514        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1515        unsigned RReg =
1516          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1517        MI.getOperand(i).setReg(RReg);
1518        DOUT << '\t' << *prior(MII);
1519        ++NumReused;
1520        continue;
1521      } // if (PhysReg)
1522
1523      // Otherwise, reload it and remember that we have it.
1524      PhysReg = VRM.getPhys(VirtReg);
1525      assert(PhysReg && "Must map virtreg to physreg!");
1526
1527      // Note that, if we reused a register for a previous operand, the
1528      // register we want to reload into might not actually be
1529      // available.  If this occurs, use the register indicated by the
1530      // reuser.
1531      if (ReusedOperands.hasReuses())
1532        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1533                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1534
1535      RegInfo->setPhysRegUsed(PhysReg);
1536      ReusedOperands.markClobbered(PhysReg);
1537      if (DoReMat) {
1538        ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1539      } else {
1540        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1541        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1542        MachineInstr *LoadMI = prior(MII);
1543        VRM.addSpillSlotUse(SSorRMId, LoadMI);
1544        ++NumLoads;
1545      }
1546      // This invalidates PhysReg.
1547      Spills.ClobberPhysReg(PhysReg);
1548
1549      // Any stores to this stack slot are not dead anymore.
1550      if (!DoReMat)
1551        MaybeDeadStores[SSorRMId] = NULL;
1552      Spills.addAvailable(SSorRMId, &MI, PhysReg);
1553      // Assumes this is the last use. IsKill will be unset if reg is reused
1554      // unless it's a two-address operand.
1555      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
1556        MI.getOperand(i).setIsKill();
1557      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1558      MI.getOperand(i).setReg(RReg);
1559      UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1560      DOUT << '\t' << *prior(MII);
1561    }
1562
1563    DOUT << '\t' << MI;
1564
1565
1566    // If we have folded references to memory operands, make sure we clear all
1567    // physical registers that may contain the value of the spilled virtual
1568    // register
1569    SmallSet<int, 2> FoldedSS;
1570    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1571      unsigned VirtReg = I->second.first;
1572      VirtRegMap::ModRef MR = I->second.second;
1573      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1574
1575      // MI2VirtMap be can updated which invalidate the iterator.
1576      // Increment the iterator first.
1577      ++I;
1578      int SS = VRM.getStackSlot(VirtReg);
1579      if (SS == VirtRegMap::NO_STACK_SLOT)
1580        continue;
1581      FoldedSS.insert(SS);
1582      DOUT << " - StackSlot: " << SS << "\n";
1583
1584      // If this folded instruction is just a use, check to see if it's a
1585      // straight load from the virt reg slot.
1586      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1587        int FrameIdx;
1588        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1589        if (DestReg && FrameIdx == SS) {
1590          // If this spill slot is available, turn it into a copy (or nothing)
1591          // instead of leaving it as a load!
1592          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1593            DOUT << "Promoted Load To Copy: " << MI;
1594            if (DestReg != InReg) {
1595              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1596              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1597              MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1598              unsigned SubIdx = DefMO->getSubReg();
1599              // Revisit the copy so we make sure to notice the effects of the
1600              // operation on the destreg (either needing to RA it if it's
1601              // virtual or needing to clobber any values if it's physical).
1602              NextMII = &MI;
1603              --NextMII;  // backtrack to the copy.
1604              // Propagate the sub-register index over.
1605              if (SubIdx) {
1606                DefMO = NextMII->findRegisterDefOperand(DestReg);
1607                DefMO->setSubReg(SubIdx);
1608              }
1609              BackTracked = true;
1610            } else {
1611              DOUT << "Removing now-noop copy: " << MI;
1612              // Unset last kill since it's being reused.
1613              InvalidateKill(InReg, RegKills, KillOps);
1614            }
1615
1616            InvalidateKills(MI, RegKills, KillOps);
1617            VRM.RemoveMachineInstrFromMaps(&MI);
1618            MBB.erase(&MI);
1619            Erased = true;
1620            goto ProcessNextInst;
1621          }
1622        } else {
1623          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1624          SmallVector<MachineInstr*, 4> NewMIs;
1625          if (PhysReg &&
1626              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1627            MBB.insert(MII, NewMIs[0]);
1628            InvalidateKills(MI, RegKills, KillOps);
1629            VRM.RemoveMachineInstrFromMaps(&MI);
1630            MBB.erase(&MI);
1631            Erased = true;
1632            --NextMII;  // backtrack to the unfolded instruction.
1633            BackTracked = true;
1634            goto ProcessNextInst;
1635          }
1636        }
1637      }
1638
1639      // If this reference is not a use, any previous store is now dead.
1640      // Otherwise, the store to this stack slot is not dead anymore.
1641      MachineInstr* DeadStore = MaybeDeadStores[SS];
1642      if (DeadStore) {
1643        bool isDead = !(MR & VirtRegMap::isRef);
1644        MachineInstr *NewStore = NULL;
1645        if (MR & VirtRegMap::isModRef) {
1646          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1647          SmallVector<MachineInstr*, 4> NewMIs;
1648          // We can reuse this physreg as long as we are allowed to clobber
1649          // the value and there isn't an earlier def that has already clobbered
1650          // the physreg.
1651          if (PhysReg &&
1652              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1653            MachineOperand *KillOpnd =
1654              DeadStore->findRegisterUseOperand(PhysReg, true);
1655            // Note, if the store is storing a sub-register, it's possible the
1656            // super-register is needed below.
1657            if (KillOpnd && !KillOpnd->getSubReg() &&
1658                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1659             MBB.insert(MII, NewMIs[0]);
1660              NewStore = NewMIs[1];
1661              MBB.insert(MII, NewStore);
1662              VRM.addSpillSlotUse(SS, NewStore);
1663              InvalidateKills(MI, RegKills, KillOps);
1664              VRM.RemoveMachineInstrFromMaps(&MI);
1665              MBB.erase(&MI);
1666              Erased = true;
1667              --NextMII;
1668              --NextMII;  // backtrack to the unfolded instruction.
1669              BackTracked = true;
1670              isDead = true;
1671            }
1672          }
1673        }
1674
1675        if (isDead) {  // Previous store is dead.
1676          // If we get here, the store is dead, nuke it now.
1677          DOUT << "Removed dead store:\t" << *DeadStore;
1678          InvalidateKills(*DeadStore, RegKills, KillOps);
1679          VRM.RemoveMachineInstrFromMaps(DeadStore);
1680          MBB.erase(DeadStore);
1681          if (!NewStore)
1682            ++NumDSE;
1683        }
1684
1685        MaybeDeadStores[SS] = NULL;
1686        if (NewStore) {
1687          // Treat this store as a spill merged into a copy. That makes the
1688          // stack slot value available.
1689          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1690          goto ProcessNextInst;
1691        }
1692      }
1693
1694      // If the spill slot value is available, and this is a new definition of
1695      // the value, the value is not available anymore.
1696      if (MR & VirtRegMap::isMod) {
1697        // Notice that the value in this stack slot has been modified.
1698        Spills.ModifyStackSlotOrReMat(SS);
1699
1700        // If this is *just* a mod of the value, check to see if this is just a
1701        // store to the spill slot (i.e. the spill got merged into the copy). If
1702        // so, realize that the vreg is available now, and add the store to the
1703        // MaybeDeadStore info.
1704        int StackSlot;
1705        if (!(MR & VirtRegMap::isRef)) {
1706          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1707            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1708                   "Src hasn't been allocated yet?");
1709
1710            if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
1711                                    RegKills, KillOps, TRI, VRM)) {
1712              NextMII = next(MII);
1713              BackTracked = true;
1714              goto ProcessNextInst;
1715            }
1716
1717            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1718            // this as a potentially dead store in case there is a subsequent
1719            // store into the stack slot without a read from it.
1720            MaybeDeadStores[StackSlot] = &MI;
1721
1722            // If the stack slot value was previously available in some other
1723            // register, change it now.  Otherwise, make the register
1724            // available in PhysReg.
1725            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*!clobber*/);
1726          }
1727        }
1728      }
1729    }
1730
1731    // Process all of the spilled defs.
1732    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1733      MachineOperand &MO = MI.getOperand(i);
1734      if (!(MO.isReg() && MO.getReg() && MO.isDef()))
1735        continue;
1736
1737      unsigned VirtReg = MO.getReg();
1738      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1739        // Check to see if this is a noop copy.  If so, eliminate the
1740        // instruction before considering the dest reg to be changed.
1741        unsigned Src, Dst;
1742        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1743          ++NumDCE;
1744          DOUT << "Removing now-noop copy: " << MI;
1745          SmallVector<unsigned, 2> KillRegs;
1746          InvalidateKills(MI, RegKills, KillOps, &KillRegs);
1747          if (MO.isDead() && !KillRegs.empty()) {
1748            // Source register or an implicit super-register use is killed.
1749            assert(KillRegs[0] == Dst || TRI->isSubRegister(KillRegs[0], Dst));
1750            // Last def is now dead.
1751            TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
1752          }
1753          VRM.RemoveMachineInstrFromMaps(&MI);
1754          MBB.erase(&MI);
1755          Erased = true;
1756          Spills.disallowClobberPhysReg(VirtReg);
1757          goto ProcessNextInst;
1758        }
1759
1760        // If it's not a no-op copy, it clobbers the value in the destreg.
1761        Spills.ClobberPhysReg(VirtReg);
1762        ReusedOperands.markClobbered(VirtReg);
1763
1764        // Check to see if this instruction is a load from a stack slot into
1765        // a register.  If so, this provides the stack slot value in the reg.
1766        int FrameIdx;
1767        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1768          assert(DestReg == VirtReg && "Unknown load situation!");
1769
1770          // If it is a folded reference, then it's not safe to clobber.
1771          bool Folded = FoldedSS.count(FrameIdx);
1772          // Otherwise, if it wasn't available, remember that it is now!
1773          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1774          goto ProcessNextInst;
1775        }
1776
1777        continue;
1778      }
1779
1780      unsigned SubIdx = MO.getSubReg();
1781      bool DoReMat = VRM.isReMaterialized(VirtReg);
1782      if (DoReMat)
1783        ReMatDefs.insert(&MI);
1784
1785      // The only vregs left are stack slot definitions.
1786      int StackSlot = VRM.getStackSlot(VirtReg);
1787      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1788
1789      // If this def is part of a two-address operand, make sure to execute
1790      // the store from the correct physical register.
1791      unsigned PhysReg;
1792      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
1793      if (TiedOp != -1) {
1794        PhysReg = MI.getOperand(TiedOp).getReg();
1795        if (SubIdx) {
1796          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1797          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1798                 "Can't find corresponding super-register!");
1799          PhysReg = SuperReg;
1800        }
1801      } else {
1802        PhysReg = VRM.getPhys(VirtReg);
1803        if (ReusedOperands.isClobbered(PhysReg)) {
1804          // Another def has taken the assigned physreg. It must have been a
1805          // use&def which got it due to reuse. Undo the reuse!
1806          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1807                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1808        }
1809      }
1810
1811      assert(PhysReg && "VR not assigned a physical register?");
1812      RegInfo->setPhysRegUsed(PhysReg);
1813      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1814      ReusedOperands.markClobbered(RReg);
1815      MI.getOperand(i).setReg(RReg);
1816
1817      if (!MO.isDead()) {
1818        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1819        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1820                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1821        NextMII = next(MII);
1822
1823        // Check to see if this is a noop copy.  If so, eliminate the
1824        // instruction before considering the dest reg to be changed.
1825        {
1826          unsigned Src, Dst;
1827          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1828            ++NumDCE;
1829            DOUT << "Removing now-noop copy: " << MI;
1830            InvalidateKills(MI, RegKills, KillOps);
1831            VRM.RemoveMachineInstrFromMaps(&MI);
1832            MBB.erase(&MI);
1833            Erased = true;
1834            UpdateKills(*LastStore, RegKills, KillOps, TRI);
1835            goto ProcessNextInst;
1836          }
1837        }
1838      }
1839    }
1840  ProcessNextInst:
1841    DistanceMap.insert(std::make_pair(&MI, Dist++));
1842    if (!Erased && !BackTracked) {
1843      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
1844        UpdateKills(*II, RegKills, KillOps, TRI);
1845    }
1846    MII = NextMII;
1847  }
1848}
1849
1850llvm::Spiller* llvm::createSpiller() {
1851  switch (SpillerOpt) {
1852  default: assert(0 && "Unreachable!");
1853  case local:
1854    return new LocalSpiller();
1855  case simple:
1856    return new SimpleSpiller();
1857  }
1858}
1859