VirtRegMap.cpp revision 84e752a8129e7a02ee6e3c6d356a8fd68fbdf698
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <iostream>
33using namespace llvm;
34
35namespace {
36  Statistic<> NumSpills("spiller", "Number of register spills");
37  Statistic<> NumStores("spiller", "Number of stores added");
38  Statistic<> NumLoads ("spiller", "Number of loads added");
39  Statistic<> NumReused("spiller", "Number of values reused");
40  Statistic<> NumDSE   ("spiller", "Number of dead stores elided");
41  Statistic<> NumDCE   ("spiller", "Number of copies elided");
42
43  enum SpillerName { simple, local };
44
45  cl::opt<SpillerName>
46  SpillerOpt("spiller",
47             cl::desc("Spiller to use: (default: local)"),
48             cl::Prefix,
49             cl::values(clEnumVal(simple, "  simple spiller"),
50                        clEnumVal(local,  "  local spiller"),
51                        clEnumValEnd),
52             cl::init(local));
53}
54
55//===----------------------------------------------------------------------===//
56//  VirtRegMap implementation
57//===----------------------------------------------------------------------===//
58
59void VirtRegMap::grow() {
60  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
61  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
62}
63
64int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
65  assert(MRegisterInfo::isVirtualRegister(virtReg));
66  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
67         "attempt to assign stack slot to already spilled register");
68  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
69  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
70                                                        RC->getAlignment());
71  Virt2StackSlotMap[virtReg] = frameIndex;
72  ++NumSpills;
73  return frameIndex;
74}
75
76void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
77  assert(MRegisterInfo::isVirtualRegister(virtReg));
78  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
79         "attempt to assign stack slot to already spilled register");
80  Virt2StackSlotMap[virtReg] = frameIndex;
81}
82
83void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
84                            unsigned OpNo, MachineInstr *NewMI) {
85  // Move previous memory references folded to new instruction.
86  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
87  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
88         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
89    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
90    MI2VirtMap.erase(I++);
91  }
92
93  ModRef MRInfo;
94  if (!OldMI->getOperand(OpNo).isDef()) {
95    assert(OldMI->getOperand(OpNo).isUse() && "Operand is not use or def?");
96    MRInfo = isRef;
97  } else {
98    MRInfo = OldMI->getOperand(OpNo).isUse() ? isModRef : isMod;
99  }
100
101  // add new memory reference
102  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
103}
104
105void VirtRegMap::print(std::ostream &OS) const {
106  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
107
108  OS << "********** REGISTER MAP **********\n";
109  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
110         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
111    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
112      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
113
114  }
115
116  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
117         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
118    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
119      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
120  OS << '\n';
121}
122
123void VirtRegMap::dump() const { print(std::cerr); }
124
125
126//===----------------------------------------------------------------------===//
127// Simple Spiller Implementation
128//===----------------------------------------------------------------------===//
129
130Spiller::~Spiller() {}
131
132namespace {
133  struct SimpleSpiller : public Spiller {
134    bool runOnMachineFunction(MachineFunction& mf, const VirtRegMap &VRM);
135  };
136}
137
138bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF,
139                                         const VirtRegMap &VRM) {
140  DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
141  DEBUG(std::cerr << "********** Function: "
142                  << MF.getFunction()->getName() << '\n');
143  const TargetMachine &TM = MF.getTarget();
144  const MRegisterInfo &MRI = *TM.getRegisterInfo();
145  bool *PhysRegsUsed = MF.getUsedPhysregs();
146
147  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
148  // each vreg once (in the case where a spilled vreg is used by multiple
149  // operands).  This is always smaller than the number of operands to the
150  // current machine instr, so it should be small.
151  std::vector<unsigned> LoadedRegs;
152
153  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
154       MBBI != E; ++MBBI) {
155    DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
156    MachineBasicBlock &MBB = *MBBI;
157    for (MachineBasicBlock::iterator MII = MBB.begin(),
158           E = MBB.end(); MII != E; ++MII) {
159      MachineInstr &MI = *MII;
160      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
161        MachineOperand &MO = MI.getOperand(i);
162        if (MO.isRegister() && MO.getReg())
163          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
164            unsigned VirtReg = MO.getReg();
165            unsigned PhysReg = VRM.getPhys(VirtReg);
166            if (VRM.hasStackSlot(VirtReg)) {
167              int StackSlot = VRM.getStackSlot(VirtReg);
168              const TargetRegisterClass* RC =
169                MF.getSSARegMap()->getRegClass(VirtReg);
170
171              if (MO.isUse() &&
172                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
173                  == LoadedRegs.end()) {
174                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
175                LoadedRegs.push_back(VirtReg);
176                ++NumLoads;
177                DEBUG(std::cerr << '\t' << *prior(MII));
178              }
179
180              if (MO.isDef()) {
181                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
182                ++NumStores;
183              }
184            }
185            PhysRegsUsed[PhysReg] = true;
186            MI.SetMachineOperandReg(i, PhysReg);
187          } else {
188            PhysRegsUsed[MO.getReg()] = true;
189          }
190      }
191
192      DEBUG(std::cerr << '\t' << MI);
193      LoadedRegs.clear();
194    }
195  }
196  return true;
197}
198
199//===----------------------------------------------------------------------===//
200//  Local Spiller Implementation
201//===----------------------------------------------------------------------===//
202
203namespace {
204  /// LocalSpiller - This spiller does a simple pass over the machine basic
205  /// block to attempt to keep spills in registers as much as possible for
206  /// blocks that have low register pressure (the vreg may be spilled due to
207  /// register pressure in other blocks).
208  class LocalSpiller : public Spiller {
209    const MRegisterInfo *MRI;
210    const TargetInstrInfo *TII;
211  public:
212    bool runOnMachineFunction(MachineFunction &MF, const VirtRegMap &VRM) {
213      MRI = MF.getTarget().getRegisterInfo();
214      TII = MF.getTarget().getInstrInfo();
215      DEBUG(std::cerr << "\n**** Local spiller rewriting function '"
216                      << MF.getFunction()->getName() << "':\n");
217
218      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
219           MBB != E; ++MBB)
220        RewriteMBB(*MBB, VRM);
221      return true;
222    }
223  private:
224    void RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM);
225    void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
226                        std::multimap<unsigned, int> &PhysRegs);
227    void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
228                            std::multimap<unsigned, int> &PhysRegs);
229    void ModifyStackSlot(int Slot, std::map<int, unsigned> &SpillSlots,
230                         std::multimap<unsigned, int> &PhysRegs);
231  };
232}
233
234void LocalSpiller::ClobberPhysRegOnly(unsigned PhysReg,
235                                      std::map<int, unsigned> &SpillSlots,
236                              std::multimap<unsigned, int> &PhysRegsAvailable) {
237  std::map<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(PhysReg);
238  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
239    int Slot = I->second;
240    PhysRegsAvailable.erase(I++);
241    assert(SpillSlots[Slot] == PhysReg && "Bidirectional map mismatch!");
242    SpillSlots.erase(Slot);
243    DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg)
244                    << " clobbered, invalidating SS#" << Slot << "\n");
245
246  }
247}
248
249void LocalSpiller::ClobberPhysReg(unsigned PhysReg,
250                                  std::map<int, unsigned> &SpillSlots,
251                              std::multimap<unsigned, int> &PhysRegsAvailable) {
252  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
253    ClobberPhysRegOnly(*AS, SpillSlots, PhysRegsAvailable);
254  ClobberPhysRegOnly(PhysReg, SpillSlots, PhysRegsAvailable);
255}
256
257/// ModifyStackSlot - This method is called when the value in a stack slot
258/// changes.  This removes information about which register the previous value
259/// for this slot lives in (as the previous value is dead now).
260void LocalSpiller::ModifyStackSlot(int Slot, std::map<int,unsigned> &SpillSlots,
261                              std::multimap<unsigned, int> &PhysRegsAvailable) {
262  std::map<int, unsigned>::iterator It = SpillSlots.find(Slot);
263  if (It == SpillSlots.end()) return;
264  unsigned Reg = It->second;
265  SpillSlots.erase(It);
266
267  // This register may hold the value of multiple stack slots, only remove this
268  // stack slot from the set of values the register contains.
269  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
270  for (; ; ++I) {
271    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
272           "Map inverse broken!");
273    if (I->second == Slot) break;
274  }
275  PhysRegsAvailable.erase(I);
276}
277
278
279
280// ReusedOp - For each reused operand, we keep track of a bit of information, in
281// case we need to rollback upon processing a new operand.  See comments below.
282namespace {
283  struct ReusedOp {
284    // The MachineInstr operand that reused an available value.
285    unsigned Operand;
286
287    // StackSlot - The spill slot of the value being reused.
288    unsigned StackSlot;
289
290    // PhysRegReused - The physical register the value was available in.
291    unsigned PhysRegReused;
292
293    // AssignedPhysReg - The physreg that was assigned for use by the reload.
294    unsigned AssignedPhysReg;
295
296    // VirtReg - The virtual register itself.
297    unsigned VirtReg;
298
299    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
300             unsigned vreg)
301      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
302      VirtReg(vreg) {}
303  };
304}
305
306
307/// rewriteMBB - Keep track of which spills are available even after the
308/// register allocator is done with them.  If possible, avoid reloading vregs.
309void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM) {
310
311  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
312  // register values that are still available, due to being loaded or stored to,
313  // but not invalidated yet.
314  std::map<int, unsigned> SpillSlotsAvailable;
315
316  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
317  // which stack slot values are currently held by a physreg.  This is used to
318  // invalidate entries in SpillSlotsAvailable when a physreg is modified.
319  std::multimap<unsigned, int> PhysRegsAvailable;
320
321  DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n");
322
323  std::vector<ReusedOp> ReusedOperands;
324
325  // DefAndUseVReg - When we see a def&use operand that is spilled, keep track
326  // of it.  ".first" is the machine operand index (should always be 0 for now),
327  // and ".second" is the virtual register that is spilled.
328  std::vector<std::pair<unsigned, unsigned> > DefAndUseVReg;
329
330  // MaybeDeadStores - When we need to write a value back into a stack slot,
331  // keep track of the inserted store.  If the stack slot value is never read
332  // (because the value was used from some available register, for example), and
333  // subsequently stored to, the original store is dead.  This map keeps track
334  // of inserted stores that are not used.  If we see a subsequent store to the
335  // same stack slot, the original store is deleted.
336  std::map<int, MachineInstr*> MaybeDeadStores;
337
338  bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();
339
340  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
341       MII != E; ) {
342    MachineInstr &MI = *MII;
343    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
344
345    ReusedOperands.clear();
346    DefAndUseVReg.clear();
347
348    // Process all of the spilled uses and all non spilled reg references.
349    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
350      MachineOperand &MO = MI.getOperand(i);
351      if (!MO.isRegister() || MO.getReg() == 0)
352        continue;   // Ignore non-register operands.
353
354      if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
355        // Ignore physregs for spilling, but remember that it is used by this
356        // function.
357        PhysRegsUsed[MO.getReg()] = true;
358        continue;
359      }
360
361      assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
362             "Not a virtual or a physical register?");
363
364      unsigned VirtReg = MO.getReg();
365      if (!VRM.hasStackSlot(VirtReg)) {
366        // This virtual register was assigned a physreg!
367        unsigned Phys = VRM.getPhys(VirtReg);
368        PhysRegsUsed[Phys] = true;
369        MI.SetMachineOperandReg(i, Phys);
370        continue;
371      }
372
373      // This virtual register is now known to be a spilled value.
374      if (!MO.isUse())
375        continue;  // Handle defs in the loop below (handle use&def here though)
376
377      // If this is both a def and a use, we need to emit a store to the
378      // stack slot after the instruction.  Keep track of D&U operands
379      // because we are about to change it to a physreg here.
380      if (MO.isDef()) {
381        // Remember that this was a def-and-use operand, and that the
382        // stack slot is live after this instruction executes.
383        DefAndUseVReg.push_back(std::make_pair(i, VirtReg));
384      }
385
386      int StackSlot = VRM.getStackSlot(VirtReg);
387      unsigned PhysReg;
388
389      // Check to see if this stack slot is available.
390      std::map<int, unsigned>::iterator SSI =
391        SpillSlotsAvailable.find(StackSlot);
392      if (SSI != SpillSlotsAvailable.end()) {
393        DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
394                        << MRI->getName(SSI->second) << " for vreg"
395                        << VirtReg <<" instead of reloading into physreg "
396                        << MRI->getName(VRM.getPhys(VirtReg)) << "\n");
397        // If this stack slot value is already available, reuse it!
398        PhysReg = SSI->second;
399        MI.SetMachineOperandReg(i, PhysReg);
400
401        // The only technical detail we have is that we don't know that
402        // PhysReg won't be clobbered by a reloaded stack slot that occurs
403        // later in the instruction.  In particular, consider 'op V1, V2'.
404        // If V1 is available in physreg R0, we would choose to reuse it
405        // here, instead of reloading it into the register the allocator
406        // indicated (say R1).  However, V2 might have to be reloaded
407        // later, and it might indicate that it needs to live in R0.  When
408        // this occurs, we need to have information available that
409        // indicates it is safe to use R1 for the reload instead of R0.
410        //
411        // To further complicate matters, we might conflict with an alias,
412        // or R0 and R1 might not be compatible with each other.  In this
413        // case, we actually insert a reload for V1 in R1, ensuring that
414        // we can get at R0 or its alias.
415        ReusedOperands.push_back(ReusedOp(i, StackSlot, PhysReg,
416                                          VRM.getPhys(VirtReg), VirtReg));
417        ++NumReused;
418        continue;
419      }
420
421      // Otherwise, reload it and remember that we have it.
422      PhysReg = VRM.getPhys(VirtReg);
423      assert(PhysReg && "Must map virtreg to physreg!");
424      const TargetRegisterClass* RC =
425        MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
426
427    RecheckRegister:
428      // Note that, if we reused a register for a previous operand, the
429      // register we want to reload into might not actually be
430      // available.  If this occurs, use the register indicated by the
431      // reuser.
432      if (!ReusedOperands.empty())   // This is most often empty.
433        for (unsigned ro = 0, e = ReusedOperands.size(); ro != e; ++ro)
434          if (ReusedOperands[ro].PhysRegReused == PhysReg) {
435            // Yup, use the reload register that we didn't use before.
436            PhysReg = ReusedOperands[ro].AssignedPhysReg;
437            goto RecheckRegister;
438          } else {
439            ReusedOp &Op = ReusedOperands[ro];
440            unsigned PRRU = Op.PhysRegReused;
441            if (MRI->areAliases(PRRU, PhysReg)) {
442              // Okay, we found out that an alias of a reused register
443              // was used.  This isn't good because it means we have
444              // to undo a previous reuse.
445              const TargetRegisterClass *AliasRC =
446                MBB.getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
447              MRI->loadRegFromStackSlot(MBB, &MI, Op.AssignedPhysReg,
448                                        Op.StackSlot, AliasRC);
449              ClobberPhysReg(Op.AssignedPhysReg, SpillSlotsAvailable,
450                             PhysRegsAvailable);
451
452              // Any stores to this stack slot are not dead anymore.
453              MaybeDeadStores.erase(Op.StackSlot);
454
455              MI.SetMachineOperandReg(Op.Operand, Op.AssignedPhysReg);
456              PhysRegsAvailable.insert(std::make_pair(Op.AssignedPhysReg,
457                                                      Op.StackSlot));
458              SpillSlotsAvailable[Op.StackSlot] = Op.AssignedPhysReg;
459              PhysRegsAvailable.erase(Op.PhysRegReused);
460              DEBUG(std::cerr << "Remembering SS#" << Op.StackSlot
461                              << " in physreg "
462                              << MRI->getName(Op.AssignedPhysReg) << "\n");
463              ++NumLoads;
464              DEBUG(std::cerr << '\t' << *prior(MII));
465
466              DEBUG(std::cerr << "Reuse undone!\n");
467              ReusedOperands.erase(ReusedOperands.begin()+ro);
468              --NumReused;
469              goto ContinueReload;
470            }
471          }
472    ContinueReload:
473      PhysRegsUsed[PhysReg] = true;
474      MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
475      // This invalidates PhysReg.
476      ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
477
478      // Any stores to this stack slot are not dead anymore.
479      MaybeDeadStores.erase(StackSlot);
480
481      MI.SetMachineOperandReg(i, PhysReg);
482      PhysRegsAvailable.insert(std::make_pair(PhysReg, StackSlot));
483      SpillSlotsAvailable[StackSlot] = PhysReg;
484      DEBUG(std::cerr << "Remembering SS#" << StackSlot <<" in physreg "
485                      << MRI->getName(PhysReg) << "\n");
486      ++NumLoads;
487      DEBUG(std::cerr << '\t' << *prior(MII));
488    }
489
490    // Loop over all of the implicit defs, clearing them from our available
491    // sets.
492    for (const unsigned *ImpDef = TII->getImplicitDefs(MI.getOpcode());
493         *ImpDef; ++ImpDef) {
494      PhysRegsUsed[*ImpDef] = true;
495      ClobberPhysReg(*ImpDef, SpillSlotsAvailable, PhysRegsAvailable);
496    }
497
498    DEBUG(std::cerr << '\t' << MI);
499
500    // If we have folded references to memory operands, make sure we clear all
501    // physical registers that may contain the value of the spilled virtual
502    // register
503    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
504    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
505      DEBUG(std::cerr << "Folded vreg: " << I->second.first << "  MR: "
506                      << I->second.second);
507      unsigned VirtReg = I->second.first;
508      VirtRegMap::ModRef MR = I->second.second;
509      if (!VRM.hasStackSlot(VirtReg)) {
510        DEBUG(std::cerr << ": No stack slot!\n");
511        continue;
512      }
513      int SS = VRM.getStackSlot(VirtReg);
514      DEBUG(std::cerr << " - StackSlot: " << SS << "\n");
515
516      // If this folded instruction is just a use, check to see if it's a
517      // straight load from the virt reg slot.
518      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
519        int FrameIdx;
520        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
521          // If this spill slot is available, turn it into a copy (or nothing)
522          // instead of leaving it as a load!
523          std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(SS);
524          if (FrameIdx == SS && It != SpillSlotsAvailable.end()) {
525            DEBUG(std::cerr << "Promoted Load To Copy: " << MI);
526            MachineFunction &MF = *MBB.getParent();
527            if (DestReg != It->second) {
528              MRI->copyRegToReg(MBB, &MI, DestReg, It->second,
529                                MF.getSSARegMap()->getRegClass(VirtReg));
530              // Revisit the copy so we make sure to notice the effects of the
531              // operation on the destreg (either needing to RA it if it's
532              // virtual or needing to clobber any values if it's physical).
533              NextMII = &MI;
534              --NextMII;  // backtrack to the copy.
535            }
536            MBB.erase(&MI);
537            goto ProcessNextInst;
538          }
539        }
540      }
541
542      // If this reference is not a use, any previous store is now dead.
543      // Otherwise, the store to this stack slot is not dead anymore.
544      std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
545      if (MDSI != MaybeDeadStores.end()) {
546        if (MR & VirtRegMap::isRef)   // Previous store is not dead.
547          MaybeDeadStores.erase(MDSI);
548        else {
549          // If we get here, the store is dead, nuke it now.
550          assert(MR == VirtRegMap::isMod && "Can't be modref!");
551          MBB.erase(MDSI->second);
552          MaybeDeadStores.erase(MDSI);
553          ++NumDSE;
554        }
555      }
556
557      // If the spill slot value is available, and this is a new definition of
558      // the value, the value is not available anymore.
559      if (MR & VirtRegMap::isMod) {
560        // Notice that the value in this stack slot has been modified.
561        ModifyStackSlot(SS, SpillSlotsAvailable, PhysRegsAvailable);
562
563        // If this is *just* a mod of the value, check to see if this is just a
564        // store to the spill slot (i.e. the spill got merged into the copy). If
565        // so, realize that the vreg is available now, and add the store to the
566        // MaybeDeadStore info.
567        int StackSlot;
568        if (!(MR & VirtRegMap::isRef)) {
569          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
570            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
571                   "Src hasn't been allocated yet?");
572            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
573            // this as a potentially dead store in case there is a subsequent
574            // store into the stack slot without a read from it.
575            MaybeDeadStores[StackSlot] = &MI;
576
577            // If the stack slot value was previously available in some other
578            // register, change it now.  Otherwise, make the register available,
579            // in PhysReg.
580            SpillSlotsAvailable[StackSlot] = SrcReg;
581            PhysRegsAvailable.insert(std::make_pair(SrcReg, StackSlot));
582            DEBUG(std::cerr << "Updating SS#" << StackSlot << " in physreg "
583                            << MRI->getName(SrcReg) << " for virtreg #"
584                            << VirtReg << "\n" << MI);
585          }
586        }
587      }
588    }
589
590    // Process all of the spilled defs.
591    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
592      MachineOperand &MO = MI.getOperand(i);
593      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
594        unsigned VirtReg = MO.getReg();
595
596        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
597          // Check to see if this is a def-and-use vreg operand that we do need
598          // to insert a store for.
599          bool OpTakenCareOf = false;
600          if (MO.isUse() && !DefAndUseVReg.empty()) {
601            for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau)
602              if (DefAndUseVReg[dau].first == i) {
603                VirtReg = DefAndUseVReg[dau].second;
604                OpTakenCareOf = true;
605                break;
606              }
607          }
608
609          if (!OpTakenCareOf) {
610            ClobberPhysReg(VirtReg, SpillSlotsAvailable, PhysRegsAvailable);
611            continue;
612          }
613        }
614
615        // The only vregs left are stack slot definitions.
616        int StackSlot = VRM.getStackSlot(VirtReg);
617        const TargetRegisterClass *RC =
618          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
619        unsigned PhysReg;
620
621        // If this is a def&use operand, and we used a different physreg for
622        // it than the one assigned, make sure to execute the store from the
623        // correct physical register.
624        if (MO.getReg() == VirtReg)
625          PhysReg = VRM.getPhys(VirtReg);
626        else
627          PhysReg = MO.getReg();
628
629        PhysRegsUsed[PhysReg] = true;
630        MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
631        DEBUG(std::cerr << "Store:\t" << *next(MII));
632        MI.SetMachineOperandReg(i, PhysReg);
633
634        // If there is a dead store to this stack slot, nuke it now.
635        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
636        if (LastStore) {
637          DEBUG(std::cerr << " Killed store:\t" << *LastStore);
638          ++NumDSE;
639          MBB.erase(LastStore);
640        }
641        LastStore = next(MII);
642
643        // If the stack slot value was previously available in some other
644        // register, change it now.  Otherwise, make the register available,
645        // in PhysReg.
646        ModifyStackSlot(StackSlot, SpillSlotsAvailable, PhysRegsAvailable);
647        ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
648
649        PhysRegsAvailable.insert(std::make_pair(PhysReg, StackSlot));
650        SpillSlotsAvailable[StackSlot] = PhysReg;
651        DEBUG(std::cerr << "Updating SS#" << StackSlot <<" in physreg "
652                        << MRI->getName(PhysReg) << " for virtreg #"
653                        << VirtReg << "\n");
654        ++NumStores;
655      }
656    }
657
658    // Okay, the instruction has been completely processed, input and output
659    // registers have been added.  As a final sanity check, make sure this is
660    // not a noop-copy.  If it is, nuke it.
661    {
662      unsigned Src, Dst;
663      if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
664        ++NumDCE;
665        DEBUG(std::cerr << "Removing now-noop copy: " << MI);
666        MBB.erase(&MI);
667      }
668    }
669  ProcessNextInst:
670    MII = NextMII;
671  }
672}
673
674
675
676llvm::Spiller* llvm::createSpiller() {
677  switch (SpillerOpt) {
678  default: assert(0 && "Unreachable!");
679  case local:
680    return new LocalSpiller();
681  case simple:
682    return new SimpleSpiller();
683  }
684}
685