VirtRegMap.cpp revision 8df6a594d2781777cd25fe2d00818419a8b10e5c
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/STLExtras.h"
31using namespace llvm;
32
33namespace {
34  Statistic<> NumSpills("spiller", "Number of register spills");
35  Statistic<> NumStores("spiller", "Number of stores added");
36  Statistic<> NumLoads ("spiller", "Number of loads added");
37  Statistic<> NumReused("spiller", "Number of values reused");
38  Statistic<> NumDSE   ("spiller", "Number of dead stores elided");
39
40  enum SpillerName { simple, local };
41
42  cl::opt<SpillerName>
43  SpillerOpt("spiller",
44             cl::desc("Spiller to use: (default: local)"),
45             cl::Prefix,
46             cl::values(clEnumVal(simple, "  simple spiller"),
47                        clEnumVal(local,  "  local spiller"),
48                        clEnumValEnd),
49             cl::init(local));
50}
51
52//===----------------------------------------------------------------------===//
53//  VirtRegMap implementation
54//===----------------------------------------------------------------------===//
55
56void VirtRegMap::grow() {
57  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
58  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
59}
60
61int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
62  assert(MRegisterInfo::isVirtualRegister(virtReg));
63  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
64         "attempt to assign stack slot to already spilled register");
65  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
66  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
67                                                        RC->getAlignment());
68  Virt2StackSlotMap[virtReg] = frameIndex;
69  ++NumSpills;
70  return frameIndex;
71}
72
73void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
74  assert(MRegisterInfo::isVirtualRegister(virtReg));
75  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
76         "attempt to assign stack slot to already spilled register");
77  Virt2StackSlotMap[virtReg] = frameIndex;
78}
79
80void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
81                            unsigned OpNo, MachineInstr *NewMI) {
82  // Move previous memory references folded to new instruction.
83  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
84  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
85         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
86    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
87    MI2VirtMap.erase(I++);
88  }
89
90  ModRef MRInfo;
91  if (!OldMI->getOperand(OpNo).isDef()) {
92    assert(OldMI->getOperand(OpNo).isUse() && "Operand is not use or def?");
93    MRInfo = isRef;
94  } else {
95    MRInfo = OldMI->getOperand(OpNo).isUse() ? isModRef : isMod;
96  }
97
98  // add new memory reference
99  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
100}
101
102void VirtRegMap::print(std::ostream &OS) const {
103  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
104
105  OS << "********** REGISTER MAP **********\n";
106  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
107         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
108    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
109      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
110
111  }
112
113  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
114         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
115    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
116      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
117  OS << '\n';
118}
119
120void VirtRegMap::dump() const { print(std::cerr); }
121
122
123//===----------------------------------------------------------------------===//
124// Simple Spiller Implementation
125//===----------------------------------------------------------------------===//
126
127Spiller::~Spiller() {}
128
129namespace {
130  struct SimpleSpiller : public Spiller {
131    bool runOnMachineFunction(MachineFunction& mf, const VirtRegMap &VRM);
132  };
133}
134
135bool SimpleSpiller::runOnMachineFunction(MachineFunction& MF,
136                                         const VirtRegMap& VRM) {
137  DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
138  DEBUG(std::cerr << "********** Function: "
139                  << MF.getFunction()->getName() << '\n');
140  const TargetMachine& TM = MF.getTarget();
141  const MRegisterInfo& MRI = *TM.getRegisterInfo();
142
143  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
144  // each vreg once (in the case where a spilled vreg is used by multiple
145  // operands).  This is always smaller than the number of operands to the
146  // current machine instr, so it should be small.
147  std::vector<unsigned> LoadedRegs;
148
149  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
150       MBBI != E; ++MBBI) {
151    DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
152    MachineBasicBlock &MBB = *MBBI;
153    for (MachineBasicBlock::iterator MII = MBB.begin(),
154           E = MBB.end(); MII != E; ++MII) {
155      MachineInstr &MI = *MII;
156      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
157        MachineOperand &MO = MI.getOperand(i);
158        if (MO.isRegister() && MO.getReg() &&
159            MRegisterInfo::isVirtualRegister(MO.getReg())) {
160          unsigned VirtReg = MO.getReg();
161          unsigned PhysReg = VRM.getPhys(VirtReg);
162          if (VRM.hasStackSlot(VirtReg)) {
163            int StackSlot = VRM.getStackSlot(VirtReg);
164
165            if (MO.isUse() &&
166                std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
167                           == LoadedRegs.end()) {
168              MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot);
169              LoadedRegs.push_back(VirtReg);
170              ++NumLoads;
171              DEBUG(std::cerr << '\t' << *prior(MII));
172            }
173
174            if (MO.isDef()) {
175              MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot);
176              ++NumStores;
177            }
178          }
179          MI.SetMachineOperandReg(i, PhysReg);
180        }
181      }
182      DEBUG(std::cerr << '\t' << MI);
183      LoadedRegs.clear();
184    }
185  }
186  return true;
187}
188
189//===----------------------------------------------------------------------===//
190//  Local Spiller Implementation
191//===----------------------------------------------------------------------===//
192
193namespace {
194  /// LocalSpiller - This spiller does a simple pass over the machine basic
195  /// block to attempt to keep spills in registers as much as possible for
196  /// blocks that have low register pressure (the vreg may be spilled due to
197  /// register pressure in other blocks).
198  class LocalSpiller : public Spiller {
199    const MRegisterInfo *MRI;
200    const TargetInstrInfo *TII;
201  public:
202    bool runOnMachineFunction(MachineFunction &MF, const VirtRegMap &VRM) {
203      MRI = MF.getTarget().getRegisterInfo();
204      TII = MF.getTarget().getInstrInfo();
205      DEBUG(std::cerr << "\n**** Local spiller rewriting function '"
206                      << MF.getFunction()->getName() << "':\n");
207
208      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
209           MBB != E; ++MBB)
210        RewriteMBB(*MBB, VRM);
211      return true;
212    }
213  private:
214    void RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM);
215    void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
216                        std::map<unsigned, int> &PhysRegs);
217    void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
218                            std::map<unsigned, int> &PhysRegs);
219  };
220}
221
222void LocalSpiller::ClobberPhysRegOnly(unsigned PhysReg,
223                                      std::map<int, unsigned> &SpillSlots,
224                                      std::map<unsigned, int> &PhysRegs) {
225  std::map<unsigned, int>::iterator I = PhysRegs.find(PhysReg);
226  if (I != PhysRegs.end()) {
227    int Slot = I->second;
228    PhysRegs.erase(I);
229    assert(SpillSlots[Slot] == PhysReg && "Bidirectional map mismatch!");
230    SpillSlots.erase(Slot);
231    DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg)
232          << " clobbered, invalidating SS#" << Slot << "\n");
233
234  }
235}
236
237void LocalSpiller::ClobberPhysReg(unsigned PhysReg,
238                                  std::map<int, unsigned> &SpillSlots,
239                                  std::map<unsigned, int> &PhysRegs) {
240  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
241    ClobberPhysRegOnly(*AS, SpillSlots, PhysRegs);
242  ClobberPhysRegOnly(PhysReg, SpillSlots, PhysRegs);
243}
244
245
246// ReusedOp - For each reused operand, we keep track of a bit of information, in
247// case we need to rollback upon processing a new operand.  See comments below.
248namespace {
249  struct ReusedOp {
250    // The MachineInstr operand that reused an available value.
251    unsigned Operand;
252
253    // StackSlot - The spill slot of the value being reused.
254    unsigned StackSlot;
255
256    // PhysRegReused - The physical register the value was available in.
257    unsigned PhysRegReused;
258
259    // AssignedPhysReg - The physreg that was assigned for use by the reload.
260    unsigned AssignedPhysReg;
261
262    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr)
263      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr) {}
264  };
265}
266
267
268/// rewriteMBB - Keep track of which spills are available even after the
269/// register allocator is done with them.  If possible, avoid reloading vregs.
270void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM) {
271
272  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
273  // register values that are still available, due to being loaded to stored to,
274  // but not invalidated yet.
275  std::map<int, unsigned> SpillSlotsAvailable;
276
277  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
278  // which physregs are in use holding a stack slot value.
279  std::map<unsigned, int> PhysRegsAvailable;
280
281  DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n");
282
283  std::vector<ReusedOp> ReusedOperands;
284
285  // DefAndUseVReg - When we see a def&use operand that is spilled, keep track
286  // of it.  ".first" is the machine operand index (should always be 0 for now),
287  // and ".second" is the virtual register that is spilled.
288  std::vector<std::pair<unsigned, unsigned> > DefAndUseVReg;
289
290  // MaybeDeadStores - When we need to write a value back into a stack slot,
291  // keep track of the inserted store.  If the stack slot value is never read
292  // (because the value was used from some available register, for example), and
293  // subsequently stored to, the original store is dead.  This map keeps track
294  // of inserted stores that are not used.  If we see a subsequent store to the
295  // same stack slot, the original store is deleted.
296  std::map<int, MachineInstr*> MaybeDeadStores;
297
298  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
299       MII != E; ) {
300    MachineInstr &MI = *MII;
301    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
302
303    ReusedOperands.clear();
304    DefAndUseVReg.clear();
305
306    // Process all of the spilled uses and all non spilled reg references.
307    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
308      MachineOperand &MO = MI.getOperand(i);
309      if (MO.isRegister() && MO.getReg() &&
310          MRegisterInfo::isVirtualRegister(MO.getReg())) {
311        unsigned VirtReg = MO.getReg();
312
313        if (!VRM.hasStackSlot(VirtReg)) {
314          // This virtual register was assigned a physreg!
315          MI.SetMachineOperandReg(i, VRM.getPhys(VirtReg));
316        } else {
317          // Is this virtual register a spilled value?
318          if (MO.isUse()) {
319            int StackSlot = VRM.getStackSlot(VirtReg);
320            unsigned PhysReg;
321
322            // Check to see if this stack slot is available.
323            std::map<int, unsigned>::iterator SSI =
324              SpillSlotsAvailable.find(StackSlot);
325            if (SSI != SpillSlotsAvailable.end()) {
326              DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
327                              << MRI->getName(SSI->second) << " for vreg"
328                              << VirtReg <<" instead of reloading into physreg "
329                              << MRI->getName(VRM.getPhys(VirtReg)) << "\n");
330              // If this stack slot value is already available, reuse it!
331              PhysReg = SSI->second;
332              MI.SetMachineOperandReg(i, PhysReg);
333
334              // The only technical detail we have is that we don't know that
335              // PhysReg won't be clobbered by a reloaded stack slot that occurs
336              // later in the instruction.  In particular, consider 'op V1, V2'.
337              // If V1 is available in physreg R0, we would choose to reuse it
338              // here, instead of reloading it into the register the allocator
339              // indicated (say R1).  However, V2 might have to be reloaded
340              // later, and it might indicate that it needs to live in R0.  When
341              // this occurs, we need to have information available that
342              // indicates it is safe to use R1 for the reload instead of R0.
343              //
344              // To further complicate matters, we might conflict with an alias,
345              // or R0 and R1 might not be compatible with each other.  In this
346              // case, we actually insert a reload for V1 in R1, ensuring that
347              // we can get at R0 or its alias.
348              ReusedOperands.push_back(ReusedOp(i, StackSlot, PhysReg,
349                                                VRM.getPhys(VirtReg)));
350              ++NumReused;
351            } else {
352              // Otherwise, reload it and remember that we have it.
353              PhysReg = VRM.getPhys(VirtReg);
354
355              // Note that, if we reused a register for a previous operand, the
356              // register we want to reload into might not actually be
357              // available.  If this occurs, use the register indicated by the
358              // reuser.
359              if (!ReusedOperands.empty())   // This is most often empty.
360                for (unsigned ro = 0, e = ReusedOperands.size(); ro != e; ++ro)
361                  if (ReusedOperands[ro].PhysRegReused == PhysReg) {
362                    // Yup, use the reload register that we didn't use before.
363                    PhysReg = ReusedOperands[ro].AssignedPhysReg;
364                    break;
365                  } else {
366                    ReusedOp &Op = ReusedOperands[ro];
367                    unsigned PRRU = Op.PhysRegReused;
368                    for (const unsigned *AS = MRI->getAliasSet(PRRU); *AS; ++AS)
369                      if (*AS == PhysReg) {
370                        // Okay, we found out that an alias of a reused register
371                        // was used.  This isn't good because it means we have
372                        // to undo a previous reuse.
373                        MRI->loadRegFromStackSlot(MBB, &MI, Op.AssignedPhysReg,
374                                                  Op.StackSlot);
375                        ClobberPhysReg(Op.AssignedPhysReg, SpillSlotsAvailable,
376                                       PhysRegsAvailable);
377
378                        // Any stores to this stack slot are not dead anymore.
379                        MaybeDeadStores.erase(Op.StackSlot);
380
381                        MI.SetMachineOperandReg(Op.Operand, Op.AssignedPhysReg);
382                        PhysRegsAvailable[Op.AssignedPhysReg] = Op.StackSlot;
383                        SpillSlotsAvailable[Op.StackSlot] = Op.AssignedPhysReg;
384                        PhysRegsAvailable.erase(Op.PhysRegReused);
385                        DEBUG(std::cerr << "Remembering SS#" << Op.StackSlot
386                              << " in physreg "
387                              << MRI->getName(Op.AssignedPhysReg) << "\n");
388                        ++NumLoads;
389                        DEBUG(std::cerr << '\t' << *prior(MII));
390
391                        DEBUG(std::cerr << "Reuse undone!\n");
392                        ReusedOperands.erase(ReusedOperands.begin()+ro);
393                        --NumReused;
394                        goto ContinueReload;
395                      }
396                  }
397            ContinueReload:
398
399              MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot);
400              // This invalidates PhysReg.
401              ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
402
403              // Any stores to this stack slot are not dead anymore.
404              MaybeDeadStores.erase(StackSlot);
405
406              MI.SetMachineOperandReg(i, PhysReg);
407              PhysRegsAvailable[PhysReg] = StackSlot;
408              SpillSlotsAvailable[StackSlot] = PhysReg;
409              DEBUG(std::cerr << "Remembering SS#" << StackSlot <<" in physreg "
410                              << MRI->getName(PhysReg) << "\n");
411              ++NumLoads;
412              DEBUG(std::cerr << '\t' << *prior(MII));
413            }
414
415            // If this is both a def and a use, we need to emit a store to the
416            // stack slot after the instruction.  Keep track of D&U operands
417            // because we already changed it to a physreg here.
418            if (MO.isDef()) {
419              // Remember that this was a def-and-use operand, and that the
420              // stack slot is live after this instruction executes.
421              DefAndUseVReg.push_back(std::make_pair(i, VirtReg));
422            }
423          }
424        }
425      }
426    }
427
428    // Loop over all of the implicit defs, clearing them from our available
429    // sets.
430    const TargetInstrDescriptor &InstrDesc = TII->get(MI.getOpcode());
431    for (const unsigned* ImpDef = InstrDesc.ImplicitDefs; *ImpDef; ++ImpDef)
432      ClobberPhysReg(*ImpDef, SpillSlotsAvailable, PhysRegsAvailable);
433
434    DEBUG(std::cerr << '\t' << MI);
435
436    // If we have folded references to memory operands, make sure we clear all
437    // physical registers that may contain the value of the spilled virtual
438    // register
439    VirtRegMap::MI2VirtMapTy::const_iterator I, E;
440    for (tie(I, E) = VRM.getFoldedVirts(&MI); I != E; ++I) {
441      DEBUG(std::cerr << "Folded vreg: " << I->second.first << "  MR: "
442                      << I->second.second);
443      unsigned VirtReg = I->second.first;
444      VirtRegMap::ModRef MR = I->second.second;
445      if (VRM.hasStackSlot(VirtReg)) {
446        int SS = VRM.getStackSlot(VirtReg);
447        DEBUG(std::cerr << " - StackSlot: " << SS << "\n");
448
449        // If this reference is not a use, any previous store is now dead.
450        // Otherwise, the store to this stack slot is not dead anymore.
451        std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
452        if (MDSI != MaybeDeadStores.end()) {
453          if (MR & VirtRegMap::isRef)   // Previous store is not dead.
454            MaybeDeadStores.erase(MDSI);
455          else {
456            // If we get here, the store is dead, nuke it now.
457            assert(MR == VirtRegMap::isMod && "Can't be modref!");
458            MBB.erase(MDSI->second);
459            MaybeDeadStores.erase(MDSI);
460            ++NumDSE;
461          }
462        }
463
464        // If the spill slot value is available, and this is a new definition of
465        // the value, the value is not available anymore.
466        if (MR & VirtRegMap::isMod) {
467          std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(SS);
468          if (It != SpillSlotsAvailable.end()) {
469            PhysRegsAvailable.erase(It->second);
470            SpillSlotsAvailable.erase(It);
471          }
472        }
473      } else {
474        DEBUG(std::cerr << ": No stack slot!\n");
475      }
476    }
477
478    // Process all of the spilled defs.
479    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
480      MachineOperand &MO = MI.getOperand(i);
481      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
482        unsigned VirtReg = MO.getReg();
483
484        bool TakenCareOf = false;
485        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
486          // Check to see if this is a def-and-use vreg operand that we do need
487          // to insert a store for.
488          bool OpTakenCareOf = false;
489          if (MO.isUse() && !DefAndUseVReg.empty()) {
490            for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau)
491              if (DefAndUseVReg[dau].first == i) {
492                VirtReg = DefAndUseVReg[dau].second;
493                OpTakenCareOf = true;
494                break;
495              }
496          }
497
498          if (!OpTakenCareOf) {
499            ClobberPhysReg(VirtReg, SpillSlotsAvailable, PhysRegsAvailable);
500            TakenCareOf = true;
501          }
502        }
503
504        if (!TakenCareOf) {
505          // The only vregs left are stack slot definitions.
506          int StackSlot    = VRM.getStackSlot(VirtReg);
507          unsigned PhysReg;
508
509          // If this is a def&use operand, and we used a different physreg for
510          // it than the one assigned, make sure to execute the store from the
511          // correct physical register.
512          if (MO.getReg() == VirtReg)
513            PhysReg = VRM.getPhys(VirtReg);
514          else
515            PhysReg = MO.getReg();
516
517          MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot);
518          DEBUG(std::cerr << "Store:\t" << *next(MII));
519          MI.SetMachineOperandReg(i, PhysReg);
520
521          // If there is a dead store to this stack slot, nuke it now.
522          MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
523          if (LastStore) {
524            DEBUG(std::cerr << " Killed store:\t" << *LastStore);
525            ++NumDSE;
526            MBB.erase(LastStore);
527          }
528          LastStore = next(MII);
529
530          // If the stack slot value was previously available in some other
531          // register, change it now.  Otherwise, make the register available,
532          // in PhysReg.
533          std::map<int, unsigned>::iterator SSA =
534            SpillSlotsAvailable.find(StackSlot);
535          if (SSA != SpillSlotsAvailable.end()) {
536            // Remove the record for physreg.
537            PhysRegsAvailable.erase(SSA->second);
538            SpillSlotsAvailable.erase(SSA);
539          }
540          ClobberPhysReg(PhysReg, SpillSlotsAvailable, PhysRegsAvailable);
541
542          PhysRegsAvailable[PhysReg] = StackSlot;
543          SpillSlotsAvailable[StackSlot] = PhysReg;
544          DEBUG(std::cerr << "Updating SS#" << StackSlot <<" in physreg "
545                          << MRI->getName(PhysReg) << " for virtreg #"
546                          << VirtReg << "\n");
547
548          ++NumStores;
549          VirtReg = PhysReg;
550        }
551      }
552    }
553    MII = NextMII;
554  }
555}
556
557
558
559llvm::Spiller* llvm::createSpiller() {
560  switch (SpillerOpt) {
561  default: assert(0 && "Unreachable!");
562  case local:
563    return new LocalSpiller();
564  case simple:
565    return new SimpleSpiller();
566  }
567}
568