VirtRegMap.cpp revision 96c61315a0a7a66a7e4c55a507251d6da24af46c
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallSet.h"
34#include <algorithm>
35using namespace llvm;
36
37STATISTIC(NumSpills, "Number of register spills");
38STATISTIC(NumReMats, "Number of re-materialization");
39STATISTIC(NumDRM   , "Number of re-materializable defs elided");
40STATISTIC(NumStores, "Number of stores added");
41STATISTIC(NumLoads , "Number of loads added");
42STATISTIC(NumReused, "Number of values reused");
43STATISTIC(NumDSE   , "Number of dead stores elided");
44STATISTIC(NumDCE   , "Number of copies elided");
45
46namespace {
47  enum SpillerName { simple, local };
48
49  static cl::opt<SpillerName>
50  SpillerOpt("spiller",
51             cl::desc("Spiller to use: (default: local)"),
52             cl::Prefix,
53             cl::values(clEnumVal(simple, "  simple spiller"),
54                        clEnumVal(local,  "  local spiller"),
55                        clEnumValEnd),
56             cl::init(local));
57}
58
59//===----------------------------------------------------------------------===//
60//  VirtRegMap implementation
61//===----------------------------------------------------------------------===//
62
63VirtRegMap::VirtRegMap(MachineFunction &mf)
64  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
65    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
66    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
67    ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1) {
68  grow();
69}
70
71void VirtRegMap::grow() {
72  unsigned LastVirtReg = MF.getSSARegMap()->getLastVirtReg();
73  Virt2PhysMap.grow(LastVirtReg);
74  Virt2StackSlotMap.grow(LastVirtReg);
75  Virt2ReMatIdMap.grow(LastVirtReg);
76  Virt2SplitMap.grow(LastVirtReg);
77  ReMatMap.grow(LastVirtReg);
78}
79
80int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
81  assert(MRegisterInfo::isVirtualRegister(virtReg));
82  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
83         "attempt to assign stack slot to already spilled register");
84  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
85  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
86                                                        RC->getAlignment());
87  Virt2StackSlotMap[virtReg] = frameIndex;
88  ++NumSpills;
89  return frameIndex;
90}
91
92void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
93  assert(MRegisterInfo::isVirtualRegister(virtReg));
94  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
95         "attempt to assign stack slot to already spilled register");
96  assert((frameIndex >= 0 ||
97          (frameIndex >= MF.getFrameInfo()->getObjectIndexBegin())) &&
98         "illegal fixed frame index");
99  Virt2StackSlotMap[virtReg] = frameIndex;
100}
101
102int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
103  assert(MRegisterInfo::isVirtualRegister(virtReg));
104  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
105         "attempt to assign re-mat id to already spilled register");
106  Virt2ReMatIdMap[virtReg] = ReMatId;
107  return ReMatId++;
108}
109
110void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
111  assert(MRegisterInfo::isVirtualRegister(virtReg));
112  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
113         "attempt to assign re-mat id to already spilled register");
114  Virt2ReMatIdMap[virtReg] = id;
115}
116
117void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
118                            unsigned OpNo, MachineInstr *NewMI) {
119  // Move previous memory references folded to new instruction.
120  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
121  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
122         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
123    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
124    MI2VirtMap.erase(I++);
125  }
126
127  ModRef MRInfo;
128  const TargetInstrDescriptor *TID = OldMI->getInstrDescriptor();
129  if (TID->getOperandConstraint(OpNo, TOI::TIED_TO) != -1 ||
130      TID->findTiedToSrcOperand(OpNo) != -1) {
131    // Folded a two-address operand.
132    MRInfo = isModRef;
133  } else if (OldMI->getOperand(OpNo).isDef()) {
134    MRInfo = isMod;
135  } else {
136    MRInfo = isRef;
137  }
138
139  // add new memory reference
140  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
141}
142
143void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
144  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
145  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
146}
147
148void VirtRegMap::print(std::ostream &OS) const {
149  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
150
151  OS << "********** REGISTER MAP **********\n";
152  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
153         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
154    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
155      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
156
157  }
158
159  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
160         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
161    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
162      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
163  OS << '\n';
164}
165
166void VirtRegMap::dump() const {
167  print(DOUT);
168}
169
170
171//===----------------------------------------------------------------------===//
172// Simple Spiller Implementation
173//===----------------------------------------------------------------------===//
174
175Spiller::~Spiller() {}
176
177namespace {
178  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
179    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
180  };
181}
182
183bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
184  DOUT << "********** REWRITE MACHINE CODE **********\n";
185  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
186  const TargetMachine &TM = MF.getTarget();
187  const MRegisterInfo &MRI = *TM.getRegisterInfo();
188
189  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
190  // each vreg once (in the case where a spilled vreg is used by multiple
191  // operands).  This is always smaller than the number of operands to the
192  // current machine instr, so it should be small.
193  std::vector<unsigned> LoadedRegs;
194
195  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
196       MBBI != E; ++MBBI) {
197    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
198    MachineBasicBlock &MBB = *MBBI;
199    for (MachineBasicBlock::iterator MII = MBB.begin(),
200           E = MBB.end(); MII != E; ++MII) {
201      MachineInstr &MI = *MII;
202      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
203        MachineOperand &MO = MI.getOperand(i);
204        if (MO.isRegister() && MO.getReg())
205          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
206            unsigned VirtReg = MO.getReg();
207            unsigned PhysReg = VRM.getPhys(VirtReg);
208            if (!VRM.isAssignedReg(VirtReg)) {
209              int StackSlot = VRM.getStackSlot(VirtReg);
210              const TargetRegisterClass* RC =
211                MF.getSSARegMap()->getRegClass(VirtReg);
212
213              if (MO.isUse() &&
214                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
215                  == LoadedRegs.end()) {
216                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
217                LoadedRegs.push_back(VirtReg);
218                ++NumLoads;
219                DOUT << '\t' << *prior(MII);
220              }
221
222              if (MO.isDef()) {
223                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
224                ++NumStores;
225              }
226            }
227            MF.setPhysRegUsed(PhysReg);
228            MI.getOperand(i).setReg(PhysReg);
229          } else {
230            MF.setPhysRegUsed(MO.getReg());
231          }
232      }
233
234      DOUT << '\t' << MI;
235      LoadedRegs.clear();
236    }
237  }
238  return true;
239}
240
241//===----------------------------------------------------------------------===//
242//  Local Spiller Implementation
243//===----------------------------------------------------------------------===//
244
245namespace {
246  class AvailableSpills;
247
248  /// LocalSpiller - This spiller does a simple pass over the machine basic
249  /// block to attempt to keep spills in registers as much as possible for
250  /// blocks that have low register pressure (the vreg may be spilled due to
251  /// register pressure in other blocks).
252  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
253    SSARegMap *RegMap;
254    const MRegisterInfo *MRI;
255    const TargetInstrInfo *TII;
256  public:
257    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
258      RegMap = MF.getSSARegMap();
259      MRI = MF.getTarget().getRegisterInfo();
260      TII = MF.getTarget().getInstrInfo();
261      DOUT << "\n**** Local spiller rewriting function '"
262           << MF.getFunction()->getName() << "':\n";
263      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!) ****\n";
264      DEBUG(MF.dump());
265
266      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
267           MBB != E; ++MBB)
268        RewriteMBB(*MBB, VRM);
269
270      DOUT << "**** Post Machine Instrs ****\n";
271      DEBUG(MF.dump());
272
273      return true;
274    }
275  private:
276    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
277                           MachineBasicBlock::iterator &MII,
278                           std::vector<MachineInstr*> &MaybeDeadStores,
279                           AvailableSpills &Spills, BitVector &RegKills,
280                           std::vector<MachineOperand*> &KillOps,
281                           VirtRegMap &VRM);
282    void SpillRegToStackSlot(MachineBasicBlock &MBB,
283                             MachineBasicBlock::iterator &MII,
284                             int Idx, unsigned PhysReg, int StackSlot,
285                             const TargetRegisterClass *RC,
286                             MachineInstr *&LastStore,
287                             AvailableSpills &Spills,
288                             SmallSet<MachineInstr*, 4> &ReMatDefs,
289                             BitVector &RegKills,
290                             std::vector<MachineOperand*> &KillOps,
291                             VirtRegMap &VRM);
292    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
293  };
294}
295
296/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
297/// top down, keep track of which spills slots or remat are available in each
298/// register.
299///
300/// Note that not all physregs are created equal here.  In particular, some
301/// physregs are reloads that we are allowed to clobber or ignore at any time.
302/// Other physregs are values that the register allocated program is using that
303/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
304/// per-stack-slot / remat id basis as the low bit in the value of the
305/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
306/// this bit and addAvailable sets it if.
307namespace {
308class VISIBILITY_HIDDEN AvailableSpills {
309  const MRegisterInfo *MRI;
310  const TargetInstrInfo *TII;
311
312  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
313  // or remat'ed virtual register values that are still available, due to being
314  // loaded or stored to, but not invalidated yet.
315  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
316
317  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
318  // indicating which stack slot values are currently held by a physreg.  This
319  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
320  // physreg is modified.
321  std::multimap<unsigned, int> PhysRegsAvailable;
322
323  void disallowClobberPhysRegOnly(unsigned PhysReg);
324
325  void ClobberPhysRegOnly(unsigned PhysReg);
326public:
327  AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
328    : MRI(mri), TII(tii) {
329  }
330
331  const MRegisterInfo *getRegInfo() const { return MRI; }
332
333  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
334  /// available in a  physical register, return that PhysReg, otherwise
335  /// return 0.
336  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
337    std::map<int, unsigned>::const_iterator I =
338      SpillSlotsOrReMatsAvailable.find(Slot);
339    if (I != SpillSlotsOrReMatsAvailable.end()) {
340      return I->second >> 1;  // Remove the CanClobber bit.
341    }
342    return 0;
343  }
344
345  /// addAvailable - Mark that the specified stack slot / remat is available in
346  /// the specified physreg.  If CanClobber is true, the physreg can be modified
347  /// at any time without changing the semantics of the program.
348  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
349                    bool CanClobber = true) {
350    // If this stack slot is thought to be available in some other physreg,
351    // remove its record.
352    ModifyStackSlotOrReMat(SlotOrReMat);
353
354    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
355    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
356
357    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
358      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
359    else
360      DOUT << "Remembering SS#" << SlotOrReMat;
361    DOUT << " in physreg " << MRI->getName(Reg) << "\n";
362  }
363
364  /// canClobberPhysReg - Return true if the spiller is allowed to change the
365  /// value of the specified stackslot register if it desires.  The specified
366  /// stack slot must be available in a physreg for this query to make sense.
367  bool canClobberPhysReg(int SlotOrReMat) const {
368    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
369           "Value not available!");
370    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
371  }
372
373  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
374  /// stackslot register. The register is still available but is no longer
375  /// allowed to be modifed.
376  void disallowClobberPhysReg(unsigned PhysReg);
377
378  /// ClobberPhysReg - This is called when the specified physreg changes
379  /// value.  We use this to invalidate any info about stuff that lives in
380  /// it and any of its aliases.
381  void ClobberPhysReg(unsigned PhysReg);
382
383  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
384  /// slot changes.  This removes information about which register the previous
385  /// value for this slot lives in (as the previous value is dead now).
386  void ModifyStackSlotOrReMat(int SlotOrReMat);
387};
388}
389
390/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
391/// stackslot register. The register is still available but is no longer
392/// allowed to be modifed.
393void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
394  std::multimap<unsigned, int>::iterator I =
395    PhysRegsAvailable.lower_bound(PhysReg);
396  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
397    int SlotOrReMat = I->second;
398    I++;
399    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
400           "Bidirectional map mismatch!");
401    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
402    DOUT << "PhysReg " << MRI->getName(PhysReg)
403         << " copied, it is available for use but can no longer be modified\n";
404  }
405}
406
407/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
408/// stackslot register and its aliases. The register and its aliases may
409/// still available but is no longer allowed to be modifed.
410void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
411  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
412    disallowClobberPhysRegOnly(*AS);
413  disallowClobberPhysRegOnly(PhysReg);
414}
415
416/// ClobberPhysRegOnly - This is called when the specified physreg changes
417/// value.  We use this to invalidate any info about stuff we thing lives in it.
418void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
419  std::multimap<unsigned, int>::iterator I =
420    PhysRegsAvailable.lower_bound(PhysReg);
421  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
422    int SlotOrReMat = I->second;
423    PhysRegsAvailable.erase(I++);
424    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
425           "Bidirectional map mismatch!");
426    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
427    DOUT << "PhysReg " << MRI->getName(PhysReg)
428         << " clobbered, invalidating ";
429    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
430      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
431    else
432      DOUT << "SS#" << SlotOrReMat << "\n";
433  }
434}
435
436/// ClobberPhysReg - This is called when the specified physreg changes
437/// value.  We use this to invalidate any info about stuff we thing lives in
438/// it and any of its aliases.
439void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
440  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
441    ClobberPhysRegOnly(*AS);
442  ClobberPhysRegOnly(PhysReg);
443}
444
445/// ModifyStackSlotOrReMat - This method is called when the value in a stack
446/// slot changes.  This removes information about which register the previous
447/// value for this slot lives in (as the previous value is dead now).
448void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
449  std::map<int, unsigned>::iterator It =
450    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
451  if (It == SpillSlotsOrReMatsAvailable.end()) return;
452  unsigned Reg = It->second >> 1;
453  SpillSlotsOrReMatsAvailable.erase(It);
454
455  // This register may hold the value of multiple stack slots, only remove this
456  // stack slot from the set of values the register contains.
457  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
458  for (; ; ++I) {
459    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
460           "Map inverse broken!");
461    if (I->second == SlotOrReMat) break;
462  }
463  PhysRegsAvailable.erase(I);
464}
465
466
467
468/// InvalidateKills - MI is going to be deleted. If any of its operands are
469/// marked kill, then invalidate the information.
470static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
471                            std::vector<MachineOperand*> &KillOps,
472                            SmallVector<unsigned, 2> *KillRegs = NULL) {
473  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
474    MachineOperand &MO = MI.getOperand(i);
475    if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
476      continue;
477    unsigned Reg = MO.getReg();
478    if (KillRegs)
479      KillRegs->push_back(Reg);
480    if (KillOps[Reg] == &MO) {
481      RegKills.reset(Reg);
482      KillOps[Reg] = NULL;
483    }
484  }
485}
486
487/// InvalidateRegDef - If the def operand of the specified def MI is now dead
488/// (since it's spill instruction is removed), mark it isDead. Also checks if
489/// the def MI has other definition operands that are not dead. Returns it by
490/// reference.
491static bool InvalidateRegDef(MachineBasicBlock::iterator I,
492                             MachineInstr &NewDef, unsigned Reg,
493                             bool &HasLiveDef) {
494  // Due to remat, it's possible this reg isn't being reused. That is,
495  // the def of this reg (by prev MI) is now dead.
496  MachineInstr *DefMI = I;
497  MachineOperand *DefOp = NULL;
498  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
499    MachineOperand &MO = DefMI->getOperand(i);
500    if (MO.isRegister() && MO.isDef()) {
501      if (MO.getReg() == Reg)
502        DefOp = &MO;
503      else if (!MO.isDead())
504        HasLiveDef = true;
505    }
506  }
507  if (!DefOp)
508    return false;
509
510  bool FoundUse = false, Done = false;
511  MachineBasicBlock::iterator E = NewDef;
512  ++I; ++E;
513  for (; !Done && I != E; ++I) {
514    MachineInstr *NMI = I;
515    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
516      MachineOperand &MO = NMI->getOperand(j);
517      if (!MO.isRegister() || MO.getReg() != Reg)
518        continue;
519      if (MO.isUse())
520        FoundUse = true;
521      Done = true; // Stop after scanning all the operands of this MI.
522    }
523  }
524  if (!FoundUse) {
525    // Def is dead!
526    DefOp->setIsDead();
527    return true;
528  }
529  return false;
530}
531
532/// UpdateKills - Track and update kill info. If a MI reads a register that is
533/// marked kill, then it must be due to register reuse. Transfer the kill info
534/// over.
535static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
536                        std::vector<MachineOperand*> &KillOps) {
537  const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
538  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
539    MachineOperand &MO = MI.getOperand(i);
540    if (!MO.isRegister() || !MO.isUse())
541      continue;
542    unsigned Reg = MO.getReg();
543    if (Reg == 0)
544      continue;
545
546    if (RegKills[Reg]) {
547      // That can't be right. Register is killed but not re-defined and it's
548      // being reused. Let's fix that.
549      KillOps[Reg]->unsetIsKill();
550      if (i < TID->numOperands &&
551          TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
552        // Unless it's a two-address operand, this is the new kill.
553        MO.setIsKill();
554    }
555
556    if (MO.isKill()) {
557      RegKills.set(Reg);
558      KillOps[Reg] = &MO;
559    }
560  }
561
562  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
563    const MachineOperand &MO = MI.getOperand(i);
564    if (!MO.isRegister() || !MO.isDef())
565      continue;
566    unsigned Reg = MO.getReg();
567    RegKills.reset(Reg);
568    KillOps[Reg] = NULL;
569  }
570}
571
572
573// ReusedOp - For each reused operand, we keep track of a bit of information, in
574// case we need to rollback upon processing a new operand.  See comments below.
575namespace {
576  struct ReusedOp {
577    // The MachineInstr operand that reused an available value.
578    unsigned Operand;
579
580    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
581    unsigned StackSlotOrReMat;
582
583    // PhysRegReused - The physical register the value was available in.
584    unsigned PhysRegReused;
585
586    // AssignedPhysReg - The physreg that was assigned for use by the reload.
587    unsigned AssignedPhysReg;
588
589    // VirtReg - The virtual register itself.
590    unsigned VirtReg;
591
592    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
593             unsigned vreg)
594      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
595        AssignedPhysReg(apr), VirtReg(vreg) {}
596  };
597
598  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
599  /// is reused instead of reloaded.
600  class VISIBILITY_HIDDEN ReuseInfo {
601    MachineInstr &MI;
602    std::vector<ReusedOp> Reuses;
603    BitVector PhysRegsClobbered;
604  public:
605    ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
606      PhysRegsClobbered.resize(mri->getNumRegs());
607    }
608
609    bool hasReuses() const {
610      return !Reuses.empty();
611    }
612
613    /// addReuse - If we choose to reuse a virtual register that is already
614    /// available instead of reloading it, remember that we did so.
615    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
616                  unsigned PhysRegReused, unsigned AssignedPhysReg,
617                  unsigned VirtReg) {
618      // If the reload is to the assigned register anyway, no undo will be
619      // required.
620      if (PhysRegReused == AssignedPhysReg) return;
621
622      // Otherwise, remember this.
623      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
624                                AssignedPhysReg, VirtReg));
625    }
626
627    void markClobbered(unsigned PhysReg) {
628      PhysRegsClobbered.set(PhysReg);
629    }
630
631    bool isClobbered(unsigned PhysReg) const {
632      return PhysRegsClobbered.test(PhysReg);
633    }
634
635    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
636    /// is some other operand that is using the specified register, either pick
637    /// a new register to use, or evict the previous reload and use this reg.
638    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
639                             AvailableSpills &Spills,
640                             std::vector<MachineInstr*> &MaybeDeadStores,
641                             SmallSet<unsigned, 8> &Rejected,
642                             BitVector &RegKills,
643                             std::vector<MachineOperand*> &KillOps,
644                             VirtRegMap &VRM) {
645      if (Reuses.empty()) return PhysReg;  // This is most often empty.
646
647      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
648        ReusedOp &Op = Reuses[ro];
649        // If we find some other reuse that was supposed to use this register
650        // exactly for its reload, we can change this reload to use ITS reload
651        // register. That is, unless its reload register has already been
652        // considered and subsequently rejected because it has also been reused
653        // by another operand.
654        if (Op.PhysRegReused == PhysReg &&
655            Rejected.count(Op.AssignedPhysReg) == 0) {
656          // Yup, use the reload register that we didn't use before.
657          unsigned NewReg = Op.AssignedPhysReg;
658          Rejected.insert(PhysReg);
659          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
660                                 RegKills, KillOps, VRM);
661        } else {
662          // Otherwise, we might also have a problem if a previously reused
663          // value aliases the new register.  If so, codegen the previous reload
664          // and use this one.
665          unsigned PRRU = Op.PhysRegReused;
666          const MRegisterInfo *MRI = Spills.getRegInfo();
667          if (MRI->areAliases(PRRU, PhysReg)) {
668            // Okay, we found out that an alias of a reused register
669            // was used.  This isn't good because it means we have
670            // to undo a previous reuse.
671            MachineBasicBlock *MBB = MI->getParent();
672            const TargetRegisterClass *AliasRC =
673              MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
674
675            // Copy Op out of the vector and remove it, we're going to insert an
676            // explicit load for it.
677            ReusedOp NewOp = Op;
678            Reuses.erase(Reuses.begin()+ro);
679
680            // Ok, we're going to try to reload the assigned physreg into the
681            // slot that we were supposed to in the first place.  However, that
682            // register could hold a reuse.  Check to see if it conflicts or
683            // would prefer us to use a different register.
684            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
685                                                  MI, Spills, MaybeDeadStores,
686                                              Rejected, RegKills, KillOps, VRM);
687
688            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
689              MRI->reMaterialize(*MBB, MI, NewPhysReg,
690                                 VRM.getReMaterializedMI(NewOp.VirtReg));
691              ++NumReMats;
692            } else {
693              MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
694                                        NewOp.StackSlotOrReMat, AliasRC);
695              // Any stores to this stack slot are not dead anymore.
696              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
697              ++NumLoads;
698            }
699            Spills.ClobberPhysReg(NewPhysReg);
700            Spills.ClobberPhysReg(NewOp.PhysRegReused);
701
702            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
703
704            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
705            MachineBasicBlock::iterator MII = MI;
706            --MII;
707            UpdateKills(*MII, RegKills, KillOps);
708            DOUT << '\t' << *MII;
709
710            DOUT << "Reuse undone!\n";
711            --NumReused;
712
713            // Finally, PhysReg is now available, go ahead and use it.
714            return PhysReg;
715          }
716        }
717      }
718      return PhysReg;
719    }
720
721    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
722    /// 'Rejected' set to remember which registers have been considered and
723    /// rejected for the reload. This avoids infinite looping in case like
724    /// this:
725    /// t1 := op t2, t3
726    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
727    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
728    /// t1 <- desires r1
729    ///       sees r1 is taken by t2, tries t2's reload register r0
730    ///       sees r0 is taken by t3, tries t3's reload register r1
731    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
732    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
733                             AvailableSpills &Spills,
734                             std::vector<MachineInstr*> &MaybeDeadStores,
735                             BitVector &RegKills,
736                             std::vector<MachineOperand*> &KillOps,
737                             VirtRegMap &VRM) {
738      SmallSet<unsigned, 8> Rejected;
739      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
740                             RegKills, KillOps, VRM);
741    }
742  };
743}
744
745/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
746/// instruction. e.g.
747///     xorl  %edi, %eax
748///     movl  %eax, -32(%ebp)
749///     movl  -36(%ebp), %eax
750///	orl   %eax, -32(%ebp)
751/// ==>
752///     xorl  %edi, %eax
753///     orl   -36(%ebp), %eax
754///     mov   %eax, -32(%ebp)
755/// This enables unfolding optimization for a subsequent instruction which will
756/// also eliminate the newly introduced store instruction.
757bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
758                                     MachineBasicBlock::iterator &MII,
759                                    std::vector<MachineInstr*> &MaybeDeadStores,
760                                     AvailableSpills &Spills,
761                                     BitVector &RegKills,
762                                     std::vector<MachineOperand*> &KillOps,
763                                     VirtRegMap &VRM) {
764  MachineFunction &MF = *MBB.getParent();
765  MachineInstr &MI = *MII;
766  unsigned UnfoldedOpc = 0;
767  unsigned UnfoldPR = 0;
768  unsigned UnfoldVR = 0;
769  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
770  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
771  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
772    // Only transform a MI that folds a single register.
773    if (UnfoldedOpc)
774      return false;
775    UnfoldVR = I->second.first;
776    VirtRegMap::ModRef MR = I->second.second;
777    if (VRM.isAssignedReg(UnfoldVR))
778      continue;
779    // If this reference is not a use, any previous store is now dead.
780    // Otherwise, the store to this stack slot is not dead anymore.
781    FoldedSS = VRM.getStackSlot(UnfoldVR);
782    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
783    if (DeadStore && (MR & VirtRegMap::isModRef)) {
784      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
785      if (!PhysReg ||
786          DeadStore->findRegisterUseOperandIdx(PhysReg, true) == -1)
787        continue;
788      UnfoldPR = PhysReg;
789      UnfoldedOpc = MRI->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
790                                                    false, true);
791    }
792  }
793
794  if (!UnfoldedOpc)
795    return false;
796
797  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
798    MachineOperand &MO = MI.getOperand(i);
799    if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
800      continue;
801    unsigned VirtReg = MO.getReg();
802    if (MRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
803      continue;
804    if (VRM.isAssignedReg(VirtReg)) {
805      unsigned PhysReg = VRM.getPhys(VirtReg);
806      if (PhysReg && MRI->regsOverlap(PhysReg, UnfoldPR))
807        return false;
808    } else if (VRM.isReMaterialized(VirtReg))
809      continue;
810    int SS = VRM.getStackSlot(VirtReg);
811    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
812    if (PhysReg) {
813      if (MRI->regsOverlap(PhysReg, UnfoldPR))
814        return false;
815      continue;
816    }
817    PhysReg = VRM.getPhys(VirtReg);
818    if (!MRI->regsOverlap(PhysReg, UnfoldPR))
819      continue;
820
821    // Ok, we'll need to reload the value into a register which makes
822    // it impossible to perform the store unfolding optimization later.
823    // Let's see if it is possible to fold the load if the store is
824    // unfolded. This allows us to perform the store unfolding
825    // optimization.
826    SmallVector<MachineInstr*, 4> NewMIs;
827    if (MRI->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
828      assert(NewMIs.size() == 1);
829      MachineInstr *NewMI = NewMIs.back();
830      NewMIs.clear();
831      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg);
832      assert(Idx != -1);
833      MachineInstr *FoldedMI = MRI->foldMemoryOperand(NewMI, Idx, SS);
834      if (FoldedMI) {
835        if (!VRM.hasPhys(UnfoldVR))
836          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
837        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
838        MII = MBB.insert(MII, FoldedMI);
839        VRM.RemoveMachineInstrFromMaps(&MI);
840        MBB.erase(&MI);
841        return true;
842      }
843      delete NewMI;
844    }
845  }
846  return false;
847}
848
849/// findSuperReg - Find the SubReg's super-register of given register class
850/// where its SubIdx sub-register is SubReg.
851static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
852                             unsigned SubIdx, const MRegisterInfo *MRI) {
853  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
854       I != E; ++I) {
855    unsigned Reg = *I;
856    if (MRI->getSubReg(Reg, SubIdx) == SubReg)
857      return Reg;
858  }
859  return 0;
860}
861
862/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
863/// the last store to the same slot is now dead. If so, remove the last store.
864void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
865                                  MachineBasicBlock::iterator &MII,
866                                  int Idx, unsigned PhysReg, int StackSlot,
867                                  const TargetRegisterClass *RC,
868                                  MachineInstr *&LastStore,
869                                  AvailableSpills &Spills,
870                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
871                                  BitVector &RegKills,
872                                  std::vector<MachineOperand*> &KillOps,
873                                  VirtRegMap &VRM) {
874  MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
875  DOUT << "Store:\t" << *next(MII);
876
877  // If there is a dead store to this stack slot, nuke it now.
878  if (LastStore) {
879    DOUT << "Removed dead store:\t" << *LastStore;
880    ++NumDSE;
881    SmallVector<unsigned, 2> KillRegs;
882    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
883    MachineBasicBlock::iterator PrevMII = LastStore;
884    bool CheckDef = PrevMII != MBB.begin();
885    if (CheckDef)
886      --PrevMII;
887    MBB.erase(LastStore);
888    VRM.RemoveMachineInstrFromMaps(LastStore);
889    if (CheckDef) {
890      // Look at defs of killed registers on the store. Mark the defs
891      // as dead since the store has been deleted and they aren't
892      // being reused.
893      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
894        bool HasOtherDef = false;
895        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
896          MachineInstr *DeadDef = PrevMII;
897          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
898            // FIXME: This assumes a remat def does not have side
899            // effects.
900            MBB.erase(DeadDef);
901            VRM.RemoveMachineInstrFromMaps(DeadDef);
902            ++NumDRM;
903          }
904        }
905      }
906    }
907  }
908
909  LastStore = next(MII);
910
911  // If the stack slot value was previously available in some other
912  // register, change it now.  Otherwise, make the register available,
913  // in PhysReg.
914  Spills.ModifyStackSlotOrReMat(StackSlot);
915  Spills.ClobberPhysReg(PhysReg);
916  Spills.addAvailable(StackSlot, LastStore, PhysReg);
917  ++NumStores;
918}
919
920/// rewriteMBB - Keep track of which spills are available even after the
921/// register allocator is done with them.  If possible, avid reloading vregs.
922void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
923  DOUT << MBB.getBasicBlock()->getName() << ":\n";
924
925  MachineFunction &MF = *MBB.getParent();
926
927  // Spills - Keep track of which spilled values are available in physregs so
928  // that we can choose to reuse the physregs instead of emitting reloads.
929  AvailableSpills Spills(MRI, TII);
930
931  // MaybeDeadStores - When we need to write a value back into a stack slot,
932  // keep track of the inserted store.  If the stack slot value is never read
933  // (because the value was used from some available register, for example), and
934  // subsequently stored to, the original store is dead.  This map keeps track
935  // of inserted stores that are not used.  If we see a subsequent store to the
936  // same stack slot, the original store is deleted.
937  std::vector<MachineInstr*> MaybeDeadStores;
938  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
939
940  // ReMatDefs - These are rematerializable def MIs which are not deleted.
941  SmallSet<MachineInstr*, 4> ReMatDefs;
942
943  // Keep track of kill information.
944  BitVector RegKills(MRI->getNumRegs());
945  std::vector<MachineOperand*>  KillOps;
946  KillOps.resize(MRI->getNumRegs(), NULL);
947
948  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
949       MII != E; ) {
950    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
951
952    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
953    bool Erased = false;
954    bool BackTracked = false;
955    if (PrepForUnfoldOpti(MBB, MII,
956                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
957      NextMII = next(MII);
958
959    MachineInstr &MI = *MII;
960    const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
961
962    // Insert restores here if asked to.
963    if (VRM.isRestorePt(&MI)) {
964      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
965      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
966        unsigned VirtReg = RestoreRegs[i];
967        if (!VRM.getPreSplitReg(VirtReg))
968          continue; // Split interval spilled again.
969        unsigned Phys = VRM.getPhys(VirtReg);
970        MF.setPhysRegUsed(Phys);
971        if (VRM.isReMaterialized(VirtReg)) {
972          MRI->reMaterialize(MBB, &MI, Phys,
973                             VRM.getReMaterializedMI(VirtReg));
974          ++NumReMats;
975        } else {
976          const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
977          MRI->loadRegFromStackSlot(MBB, &MI, Phys, VRM.getStackSlot(VirtReg), RC);
978          ++NumLoads;
979        }
980        // This invalidates Phys.
981        Spills.ClobberPhysReg(Phys);
982        UpdateKills(*prior(MII), RegKills, KillOps);
983        DOUT << '\t' << *prior(MII);
984      }
985    }
986
987    // Insert spills here if asked to.
988    if (VRM.isSpillPt(&MI)) {
989      std::vector<unsigned> &SpillRegs = VRM.getSpillPtSpills(&MI);
990      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
991        unsigned VirtReg = SpillRegs[i];
992        if (!VRM.getPreSplitReg(VirtReg))
993          continue; // Split interval spilled again.
994        const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
995        unsigned Phys = VRM.getPhys(VirtReg);
996        int StackSlot = VRM.getStackSlot(VirtReg);
997        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
998        SpillRegToStackSlot(MBB, MII, i, Phys, StackSlot, RC,
999                            LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1000      }
1001    }
1002
1003    /// ReusedOperands - Keep track of operand reuse in case we need to undo
1004    /// reuse.
1005    ReuseInfo ReusedOperands(MI, MRI);
1006    // Process all of the spilled uses and all non spilled reg references.
1007    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1008      MachineOperand &MO = MI.getOperand(i);
1009      if (!MO.isRegister() || MO.getReg() == 0)
1010        continue;   // Ignore non-register operands.
1011
1012      unsigned VirtReg = MO.getReg();
1013      if (MRegisterInfo::isPhysicalRegister(VirtReg)) {
1014        // Ignore physregs for spilling, but remember that it is used by this
1015        // function.
1016        MF.setPhysRegUsed(VirtReg);
1017        continue;
1018      }
1019
1020      assert(MRegisterInfo::isVirtualRegister(VirtReg) &&
1021             "Not a virtual or a physical register?");
1022
1023      unsigned SubIdx = MO.getSubReg();
1024      if (VRM.isAssignedReg(VirtReg)) {
1025        // This virtual register was assigned a physreg!
1026        unsigned Phys = VRM.getPhys(VirtReg);
1027        MF.setPhysRegUsed(Phys);
1028        if (MO.isDef())
1029          ReusedOperands.markClobbered(Phys);
1030        unsigned RReg = SubIdx ? MRI->getSubReg(Phys, SubIdx) : Phys;
1031        MI.getOperand(i).setReg(RReg);
1032        continue;
1033      }
1034
1035      // This virtual register is now known to be a spilled value.
1036      if (!MO.isUse())
1037        continue;  // Handle defs in the loop below (handle use&def here though)
1038
1039      bool DoReMat = VRM.isReMaterialized(VirtReg);
1040      int SSorRMId = DoReMat
1041        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1042      int ReuseSlot = SSorRMId;
1043
1044      // Check to see if this stack slot is available.
1045      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1046      if (!PhysReg && DoReMat) {
1047        // This use is rematerializable. But perhaps the value is available in
1048        // a register if the definition is not deleted. If so, check if we can
1049        // reuse the value.
1050        ReuseSlot = VRM.getStackSlot(VirtReg);
1051        if (ReuseSlot != VirtRegMap::NO_STACK_SLOT)
1052          PhysReg = Spills.getSpillSlotOrReMatPhysReg(ReuseSlot);
1053      }
1054
1055      // If this is a sub-register use, make sure the reuse register is in the
1056      // right register class. For example, for x86 not all of the 32-bit
1057      // registers have accessible sub-registers.
1058      // Similarly so for EXTRACT_SUBREG. Consider this:
1059      // EDI = op
1060      // MOV32_mr fi#1, EDI
1061      // ...
1062      //       = EXTRACT_SUBREG fi#1
1063      // fi#1 is available in EDI, but it cannot be reused because it's not in
1064      // the right register file.
1065      if (PhysReg &&
1066          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1067        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
1068        if (!RC->contains(PhysReg))
1069          PhysReg = 0;
1070      }
1071
1072      if (PhysReg) {
1073        // This spilled operand might be part of a two-address operand.  If this
1074        // is the case, then changing it will necessarily require changing the
1075        // def part of the instruction as well.  However, in some cases, we
1076        // aren't allowed to modify the reused register.  If none of these cases
1077        // apply, reuse it.
1078        bool CanReuse = true;
1079        int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
1080        if (ti != -1 &&
1081            MI.getOperand(ti).isRegister() &&
1082            MI.getOperand(ti).getReg() == VirtReg) {
1083          // Okay, we have a two address operand.  We can reuse this physreg as
1084          // long as we are allowed to clobber the value and there isn't an
1085          // earlier def that has already clobbered the physreg.
1086          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1087            !ReusedOperands.isClobbered(PhysReg);
1088        }
1089
1090        if (CanReuse) {
1091          // If this stack slot value is already available, reuse it!
1092          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1093            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1094          else
1095            DOUT << "Reusing SS#" << ReuseSlot;
1096          DOUT << " from physreg "
1097               << MRI->getName(PhysReg) << " for vreg"
1098               << VirtReg <<" instead of reloading into physreg "
1099               << MRI->getName(VRM.getPhys(VirtReg)) << "\n";
1100          unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1101          MI.getOperand(i).setReg(RReg);
1102
1103          // The only technical detail we have is that we don't know that
1104          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1105          // later in the instruction.  In particular, consider 'op V1, V2'.
1106          // If V1 is available in physreg R0, we would choose to reuse it
1107          // here, instead of reloading it into the register the allocator
1108          // indicated (say R1).  However, V2 might have to be reloaded
1109          // later, and it might indicate that it needs to live in R0.  When
1110          // this occurs, we need to have information available that
1111          // indicates it is safe to use R1 for the reload instead of R0.
1112          //
1113          // To further complicate matters, we might conflict with an alias,
1114          // or R0 and R1 might not be compatible with each other.  In this
1115          // case, we actually insert a reload for V1 in R1, ensuring that
1116          // we can get at R0 or its alias.
1117          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1118                                  VRM.getPhys(VirtReg), VirtReg);
1119          if (ti != -1)
1120            // Only mark it clobbered if this is a use&def operand.
1121            ReusedOperands.markClobbered(PhysReg);
1122          ++NumReused;
1123
1124          if (MI.getOperand(i).isKill() &&
1125              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1126            // This was the last use and the spilled value is still available
1127            // for reuse. That means the spill was unnecessary!
1128            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1129            if (DeadStore) {
1130              DOUT << "Removed dead store:\t" << *DeadStore;
1131              InvalidateKills(*DeadStore, RegKills, KillOps);
1132              VRM.RemoveMachineInstrFromMaps(DeadStore);
1133              MBB.erase(DeadStore);
1134              MaybeDeadStores[ReuseSlot] = NULL;
1135              ++NumDSE;
1136            }
1137          }
1138          continue;
1139        }  // CanReuse
1140
1141        // Otherwise we have a situation where we have a two-address instruction
1142        // whose mod/ref operand needs to be reloaded.  This reload is already
1143        // available in some register "PhysReg", but if we used PhysReg as the
1144        // operand to our 2-addr instruction, the instruction would modify
1145        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1146        // to get its initial value.
1147        //
1148        // To avoid this problem, and to avoid doing a load right after a store,
1149        // we emit a copy from PhysReg into the designated register for this
1150        // operand.
1151        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1152        assert(DesignatedReg && "Must map virtreg to physreg!");
1153
1154        // Note that, if we reused a register for a previous operand, the
1155        // register we want to reload into might not actually be
1156        // available.  If this occurs, use the register indicated by the
1157        // reuser.
1158        if (ReusedOperands.hasReuses())
1159          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1160                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1161
1162        // If the mapped designated register is actually the physreg we have
1163        // incoming, we don't need to inserted a dead copy.
1164        if (DesignatedReg == PhysReg) {
1165          // If this stack slot value is already available, reuse it!
1166          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1167            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1168          else
1169            DOUT << "Reusing SS#" << ReuseSlot;
1170          DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
1171               << VirtReg
1172               << " instead of reloading into same physreg.\n";
1173          unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1174          MI.getOperand(i).setReg(RReg);
1175          ReusedOperands.markClobbered(RReg);
1176          ++NumReused;
1177          continue;
1178        }
1179
1180        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
1181        MF.setPhysRegUsed(DesignatedReg);
1182        ReusedOperands.markClobbered(DesignatedReg);
1183        MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1184
1185        MachineInstr *CopyMI = prior(MII);
1186        UpdateKills(*CopyMI, RegKills, KillOps);
1187
1188        // This invalidates DesignatedReg.
1189        Spills.ClobberPhysReg(DesignatedReg);
1190
1191        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1192        unsigned RReg =
1193          SubIdx ? MRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1194        MI.getOperand(i).setReg(RReg);
1195        DOUT << '\t' << *prior(MII);
1196        ++NumReused;
1197        continue;
1198      } // if (PhysReg)
1199
1200      // Otherwise, reload it and remember that we have it.
1201      PhysReg = VRM.getPhys(VirtReg);
1202      assert(PhysReg && "Must map virtreg to physreg!");
1203
1204      // Note that, if we reused a register for a previous operand, the
1205      // register we want to reload into might not actually be
1206      // available.  If this occurs, use the register indicated by the
1207      // reuser.
1208      if (ReusedOperands.hasReuses())
1209        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1210                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1211
1212      MF.setPhysRegUsed(PhysReg);
1213      ReusedOperands.markClobbered(PhysReg);
1214      if (DoReMat) {
1215        MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
1216        ++NumReMats;
1217      } else {
1218        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
1219        MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1220        ++NumLoads;
1221      }
1222      // This invalidates PhysReg.
1223      Spills.ClobberPhysReg(PhysReg);
1224
1225      // Any stores to this stack slot are not dead anymore.
1226      if (!DoReMat)
1227        MaybeDeadStores[SSorRMId] = NULL;
1228      Spills.addAvailable(SSorRMId, &MI, PhysReg);
1229      // Assumes this is the last use. IsKill will be unset if reg is reused
1230      // unless it's a two-address operand.
1231      if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
1232        MI.getOperand(i).setIsKill();
1233      unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1234      MI.getOperand(i).setReg(RReg);
1235      UpdateKills(*prior(MII), RegKills, KillOps);
1236      DOUT << '\t' << *prior(MII);
1237    }
1238
1239    DOUT << '\t' << MI;
1240
1241
1242    // If we have folded references to memory operands, make sure we clear all
1243    // physical registers that may contain the value of the spilled virtual
1244    // register
1245    SmallSet<int, 2> FoldedSS;
1246    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
1247      unsigned VirtReg = I->second.first;
1248      VirtRegMap::ModRef MR = I->second.second;
1249      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1250
1251      int SS = VRM.getStackSlot(VirtReg);
1252      if (SS == VirtRegMap::NO_STACK_SLOT)
1253        continue;
1254      FoldedSS.insert(SS);
1255      DOUT << " - StackSlot: " << SS << "\n";
1256
1257      // If this folded instruction is just a use, check to see if it's a
1258      // straight load from the virt reg slot.
1259      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1260        int FrameIdx;
1261        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1262        if (DestReg && FrameIdx == SS) {
1263          // If this spill slot is available, turn it into a copy (or nothing)
1264          // instead of leaving it as a load!
1265          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1266            DOUT << "Promoted Load To Copy: " << MI;
1267            if (DestReg != InReg) {
1268              const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
1269              MRI->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1270              // Revisit the copy so we make sure to notice the effects of the
1271              // operation on the destreg (either needing to RA it if it's
1272              // virtual or needing to clobber any values if it's physical).
1273              NextMII = &MI;
1274              --NextMII;  // backtrack to the copy.
1275              BackTracked = true;
1276            } else
1277              DOUT << "Removing now-noop copy: " << MI;
1278
1279            VRM.RemoveMachineInstrFromMaps(&MI);
1280            MBB.erase(&MI);
1281            Erased = true;
1282            goto ProcessNextInst;
1283          }
1284        } else {
1285          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1286          SmallVector<MachineInstr*, 4> NewMIs;
1287          if (PhysReg &&
1288              MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1289            MBB.insert(MII, NewMIs[0]);
1290            VRM.RemoveMachineInstrFromMaps(&MI);
1291            MBB.erase(&MI);
1292            Erased = true;
1293            --NextMII;  // backtrack to the unfolded instruction.
1294            BackTracked = true;
1295            goto ProcessNextInst;
1296          }
1297        }
1298      }
1299
1300      // If this reference is not a use, any previous store is now dead.
1301      // Otherwise, the store to this stack slot is not dead anymore.
1302      MachineInstr* DeadStore = MaybeDeadStores[SS];
1303      if (DeadStore) {
1304        bool isDead = !(MR & VirtRegMap::isRef);
1305        MachineInstr *NewStore = NULL;
1306        if (MR & VirtRegMap::isModRef) {
1307          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1308          SmallVector<MachineInstr*, 4> NewMIs;
1309          if (PhysReg &&
1310              DeadStore->findRegisterUseOperandIdx(PhysReg, true) != -1 &&
1311              MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, true, NewMIs)) {
1312            MBB.insert(MII, NewMIs[0]);
1313            NewStore = NewMIs[1];
1314            MBB.insert(MII, NewStore);
1315            VRM.RemoveMachineInstrFromMaps(&MI);
1316            MBB.erase(&MI);
1317            Erased = true;
1318            --NextMII;
1319            --NextMII;  // backtrack to the unfolded instruction.
1320            BackTracked = true;
1321            isDead = true;
1322          }
1323        }
1324
1325        if (isDead) {  // Previous store is dead.
1326          // If we get here, the store is dead, nuke it now.
1327          DOUT << "Removed dead store:\t" << *DeadStore;
1328          InvalidateKills(*DeadStore, RegKills, KillOps);
1329          VRM.RemoveMachineInstrFromMaps(DeadStore);
1330          MBB.erase(DeadStore);
1331          if (!NewStore)
1332            ++NumDSE;
1333        }
1334
1335        MaybeDeadStores[SS] = NULL;
1336        if (NewStore) {
1337          // Treat this store as a spill merged into a copy. That makes the
1338          // stack slot value available.
1339          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1340          goto ProcessNextInst;
1341        }
1342      }
1343
1344      // If the spill slot value is available, and this is a new definition of
1345      // the value, the value is not available anymore.
1346      if (MR & VirtRegMap::isMod) {
1347        // Notice that the value in this stack slot has been modified.
1348        Spills.ModifyStackSlotOrReMat(SS);
1349
1350        // If this is *just* a mod of the value, check to see if this is just a
1351        // store to the spill slot (i.e. the spill got merged into the copy). If
1352        // so, realize that the vreg is available now, and add the store to the
1353        // MaybeDeadStore info.
1354        int StackSlot;
1355        if (!(MR & VirtRegMap::isRef)) {
1356          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1357            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
1358                   "Src hasn't been allocated yet?");
1359            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1360            // this as a potentially dead store in case there is a subsequent
1361            // store into the stack slot without a read from it.
1362            MaybeDeadStores[StackSlot] = &MI;
1363
1364            // If the stack slot value was previously available in some other
1365            // register, change it now.  Otherwise, make the register available,
1366            // in PhysReg.
1367            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
1368          }
1369        }
1370      }
1371    }
1372
1373    // Process all of the spilled defs.
1374    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1375      MachineOperand &MO = MI.getOperand(i);
1376      if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
1377        continue;
1378
1379      unsigned VirtReg = MO.getReg();
1380      if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
1381        // Check to see if this is a noop copy.  If so, eliminate the
1382        // instruction before considering the dest reg to be changed.
1383        unsigned Src, Dst;
1384        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1385          ++NumDCE;
1386          DOUT << "Removing now-noop copy: " << MI;
1387          MBB.erase(&MI);
1388          Erased = true;
1389          VRM.RemoveMachineInstrFromMaps(&MI);
1390          Spills.disallowClobberPhysReg(VirtReg);
1391          goto ProcessNextInst;
1392        }
1393
1394        // If it's not a no-op copy, it clobbers the value in the destreg.
1395        Spills.ClobberPhysReg(VirtReg);
1396        ReusedOperands.markClobbered(VirtReg);
1397
1398        // Check to see if this instruction is a load from a stack slot into
1399        // a register.  If so, this provides the stack slot value in the reg.
1400        int FrameIdx;
1401        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1402          assert(DestReg == VirtReg && "Unknown load situation!");
1403
1404          // If it is a folded reference, then it's not safe to clobber.
1405          bool Folded = FoldedSS.count(FrameIdx);
1406          // Otherwise, if it wasn't available, remember that it is now!
1407          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1408          goto ProcessNextInst;
1409        }
1410
1411        continue;
1412      }
1413
1414      unsigned SubIdx = MO.getSubReg();
1415      bool DoReMat = VRM.isReMaterialized(VirtReg);
1416      if (DoReMat)
1417        ReMatDefs.insert(&MI);
1418
1419      // The only vregs left are stack slot definitions.
1420      int StackSlot = VRM.getStackSlot(VirtReg);
1421      const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
1422
1423      // If this def is part of a two-address operand, make sure to execute
1424      // the store from the correct physical register.
1425      unsigned PhysReg;
1426      int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
1427      if (TiedOp != -1) {
1428        PhysReg = MI.getOperand(TiedOp).getReg();
1429        if (SubIdx) {
1430          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, MRI);
1431          assert(SuperReg && MRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1432                 "Can't find corresponding super-register!");
1433          PhysReg = SuperReg;
1434        }
1435      } else {
1436        PhysReg = VRM.getPhys(VirtReg);
1437        if (ReusedOperands.isClobbered(PhysReg)) {
1438          // Another def has taken the assigned physreg. It must have been a
1439          // use&def which got it due to reuse. Undo the reuse!
1440          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1441                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1442        }
1443      }
1444
1445      MF.setPhysRegUsed(PhysReg);
1446      unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1447      ReusedOperands.markClobbered(RReg);
1448      MI.getOperand(i).setReg(RReg);
1449
1450      if (!MO.isDead()) {
1451        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1452        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, LastStore,
1453                            Spills, ReMatDefs, RegKills, KillOps, VRM);
1454
1455        // Check to see if this is a noop copy.  If so, eliminate the
1456        // instruction before considering the dest reg to be changed.
1457        {
1458          unsigned Src, Dst;
1459          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1460            ++NumDCE;
1461            DOUT << "Removing now-noop copy: " << MI;
1462            MBB.erase(&MI);
1463            Erased = true;
1464            VRM.RemoveMachineInstrFromMaps(&MI);
1465            UpdateKills(*LastStore, RegKills, KillOps);
1466            goto ProcessNextInst;
1467          }
1468        }
1469      }
1470    }
1471  ProcessNextInst:
1472    if (!Erased && !BackTracked)
1473      for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II)
1474        UpdateKills(*II, RegKills, KillOps);
1475    MII = NextMII;
1476  }
1477}
1478
1479llvm::Spiller* llvm::createSpiller() {
1480  switch (SpillerOpt) {
1481  default: assert(0 && "Unreachable!");
1482  case local:
1483    return new LocalSpiller();
1484  case simple:
1485    return new SimpleSpiller();
1486  }
1487}
1488