VirtRegMap.cpp revision a51e838d36b571c779425464529d1b4555652989
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/DepthFirstIterator.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/ADT/SmallSet.h"
37#include <algorithm>
38using namespace llvm;
39
40STATISTIC(NumSpills  , "Number of register spills");
41STATISTIC(NumPSpills , "Number of physical register spills");
42STATISTIC(NumReMats  , "Number of re-materialization");
43STATISTIC(NumDRM     , "Number of re-materializable defs elided");
44STATISTIC(NumStores  , "Number of stores added");
45STATISTIC(NumLoads   , "Number of loads added");
46STATISTIC(NumReused  , "Number of values reused");
47STATISTIC(NumDSE     , "Number of dead stores elided");
48STATISTIC(NumDCE     , "Number of copies elided");
49STATISTIC(NumDSS     , "Number of dead spill slots removed");
50STATISTIC(NumCommutes, "Number of instructions commuted");
51STATISTIC(NumOmitted , "Number of reloads omited");
52STATISTIC(NumCopified, "Number of available reloads turned into copies");
53
54namespace {
55  enum SpillerName { simple, local };
56}
57
58static cl::opt<SpillerName>
59SpillerOpt("spiller",
60           cl::desc("Spiller to use: (default: local)"),
61           cl::Prefix,
62           cl::values(clEnumVal(simple, "simple spiller"),
63                      clEnumVal(local,  "local spiller"),
64                      clEnumValEnd),
65           cl::init(local));
66
67//===----------------------------------------------------------------------===//
68//  VirtRegMap implementation
69//===----------------------------------------------------------------------===//
70
71VirtRegMap::VirtRegMap(MachineFunction &mf)
72  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
73    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
74    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
75    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1),
76    LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) {
77  SpillSlotToUsesMap.resize(8);
78  ImplicitDefed.resize(MF.getRegInfo().getLastVirtReg()+1-
79                       TargetRegisterInfo::FirstVirtualRegister);
80  grow();
81}
82
83void VirtRegMap::grow() {
84  unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
85  Virt2PhysMap.grow(LastVirtReg);
86  Virt2StackSlotMap.grow(LastVirtReg);
87  Virt2ReMatIdMap.grow(LastVirtReg);
88  Virt2SplitMap.grow(LastVirtReg);
89  Virt2SplitKillMap.grow(LastVirtReg);
90  ReMatMap.grow(LastVirtReg);
91  ImplicitDefed.resize(LastVirtReg-TargetRegisterInfo::FirstVirtualRegister+1);
92}
93
94int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
95  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
96  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
97         "attempt to assign stack slot to already spilled register");
98  const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
99  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
100                                                RC->getAlignment());
101  if (LowSpillSlot == NO_STACK_SLOT)
102    LowSpillSlot = SS;
103  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
104    HighSpillSlot = SS;
105  unsigned Idx = SS-LowSpillSlot;
106  while (Idx >= SpillSlotToUsesMap.size())
107    SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2);
108  Virt2StackSlotMap[virtReg] = SS;
109  ++NumSpills;
110  return SS;
111}
112
113void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
114  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
115  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
116         "attempt to assign stack slot to already spilled register");
117  assert((SS >= 0 ||
118          (SS >= MF.getFrameInfo()->getObjectIndexBegin())) &&
119         "illegal fixed frame index");
120  Virt2StackSlotMap[virtReg] = SS;
121}
122
123int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
124  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
125  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
126         "attempt to assign re-mat id to already spilled register");
127  Virt2ReMatIdMap[virtReg] = ReMatId;
128  return ReMatId++;
129}
130
131void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
132  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
133  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
134         "attempt to assign re-mat id to already spilled register");
135  Virt2ReMatIdMap[virtReg] = id;
136}
137
138int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
139  std::map<const TargetRegisterClass*, int>::iterator I =
140    EmergencySpillSlots.find(RC);
141  if (I != EmergencySpillSlots.end())
142    return I->second;
143  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
144                                                RC->getAlignment());
145  if (LowSpillSlot == NO_STACK_SLOT)
146    LowSpillSlot = SS;
147  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
148    HighSpillSlot = SS;
149  EmergencySpillSlots[RC] = SS;
150  return SS;
151}
152
153void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
154  if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) {
155    // If FI < LowSpillSlot, this stack reference was produced by
156    // instruction selection and is not a spill
157    if (FI >= LowSpillSlot) {
158      assert(FI >= 0 && "Spill slot index should not be negative!");
159      assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
160             && "Invalid spill slot");
161      SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI);
162    }
163  }
164}
165
166void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
167                            MachineInstr *NewMI, ModRef MRInfo) {
168  // Move previous memory references folded to new instruction.
169  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
170  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
171         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
172    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
173    MI2VirtMap.erase(I++);
174  }
175
176  // add new memory reference
177  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
178}
179
180void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
181  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
182  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
183}
184
185void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
186  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
187    MachineOperand &MO = MI->getOperand(i);
188    if (!MO.isFI())
189      continue;
190    int FI = MO.getIndex();
191    if (MF.getFrameInfo()->isFixedObjectIndex(FI))
192      continue;
193    // This stack reference was produced by instruction selection and
194    // is not a spill
195    if (FI < LowSpillSlot)
196      continue;
197    assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
198           && "Invalid spill slot");
199    SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
200  }
201  MI2VirtMap.erase(MI);
202  SpillPt2VirtMap.erase(MI);
203  RestorePt2VirtMap.erase(MI);
204  EmergencySpillMap.erase(MI);
205}
206
207void VirtRegMap::print(std::ostream &OS) const {
208  const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
209
210  OS << "********** REGISTER MAP **********\n";
211  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
212         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
213    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
214      OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i])
215         << "]\n";
216  }
217
218  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
219         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
220    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
221      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
222  OS << '\n';
223}
224
225void VirtRegMap::dump() const {
226  print(cerr);
227}
228
229
230//===----------------------------------------------------------------------===//
231// Simple Spiller Implementation
232//===----------------------------------------------------------------------===//
233
234Spiller::~Spiller() {}
235
236namespace {
237  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
238    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
239  };
240}
241
242bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
243  DOUT << "********** REWRITE MACHINE CODE **********\n";
244  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
245  const TargetMachine &TM = MF.getTarget();
246  const TargetInstrInfo &TII = *TM.getInstrInfo();
247  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
248
249
250  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
251  // each vreg once (in the case where a spilled vreg is used by multiple
252  // operands).  This is always smaller than the number of operands to the
253  // current machine instr, so it should be small.
254  std::vector<unsigned> LoadedRegs;
255
256  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
257       MBBI != E; ++MBBI) {
258    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
259    MachineBasicBlock &MBB = *MBBI;
260    for (MachineBasicBlock::iterator MII = MBB.begin(),
261           E = MBB.end(); MII != E; ++MII) {
262      MachineInstr &MI = *MII;
263      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
264        MachineOperand &MO = MI.getOperand(i);
265        if (MO.isReg() && MO.getReg()) {
266          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
267            unsigned VirtReg = MO.getReg();
268            unsigned SubIdx = MO.getSubReg();
269            unsigned PhysReg = VRM.getPhys(VirtReg);
270            unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
271            if (!VRM.isAssignedReg(VirtReg)) {
272              int StackSlot = VRM.getStackSlot(VirtReg);
273              const TargetRegisterClass* RC =
274                MF.getRegInfo().getRegClass(VirtReg);
275
276              if (MO.isUse() &&
277                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
278                  == LoadedRegs.end()) {
279                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
280                MachineInstr *LoadMI = prior(MII);
281                VRM.addSpillSlotUse(StackSlot, LoadMI);
282                LoadedRegs.push_back(VirtReg);
283                ++NumLoads;
284                DOUT << '\t' << *LoadMI;
285              }
286
287              if (MO.isDef()) {
288                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
289                                        StackSlot, RC);
290                MachineInstr *StoreMI = next(MII);
291                VRM.addSpillSlotUse(StackSlot, StoreMI);
292                ++NumStores;
293              }
294            }
295            MF.getRegInfo().setPhysRegUsed(RReg);
296            MI.getOperand(i).setReg(RReg);
297          } else {
298            MF.getRegInfo().setPhysRegUsed(MO.getReg());
299          }
300        }
301      }
302
303      DOUT << '\t' << MI;
304      LoadedRegs.clear();
305    }
306  }
307  return true;
308}
309
310//===----------------------------------------------------------------------===//
311//  Local Spiller Implementation
312//===----------------------------------------------------------------------===//
313
314/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
315/// top down, keep track of which spills slots or remat are available in each
316/// register.
317///
318/// Note that not all physregs are created equal here.  In particular, some
319/// physregs are reloads that we are allowed to clobber or ignore at any time.
320/// Other physregs are values that the register allocated program is using that
321/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
322/// per-stack-slot / remat id basis as the low bit in the value of the
323/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
324/// this bit and addAvailable sets it if.
325namespace {
326class VISIBILITY_HIDDEN AvailableSpills {
327  const TargetRegisterInfo *TRI;
328  const TargetInstrInfo *TII;
329
330  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
331  // or remat'ed virtual register values that are still available, due to being
332  // loaded or stored to, but not invalidated yet.
333  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
334
335  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
336  // indicating which stack slot values are currently held by a physreg.  This
337  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
338  // physreg is modified.
339  std::multimap<unsigned, int> PhysRegsAvailable;
340
341  void disallowClobberPhysRegOnly(unsigned PhysReg);
342
343  void ClobberPhysRegOnly(unsigned PhysReg);
344public:
345  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
346    : TRI(tri), TII(tii) {
347  }
348
349  /// clear - Reset the state.
350  void clear() {
351    SpillSlotsOrReMatsAvailable.clear();
352    PhysRegsAvailable.clear();
353  }
354
355  const TargetRegisterInfo *getRegInfo() const { return TRI; }
356
357  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
358  /// available in a  physical register, return that PhysReg, otherwise
359  /// return 0.
360  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
361    std::map<int, unsigned>::const_iterator I =
362      SpillSlotsOrReMatsAvailable.find(Slot);
363    if (I != SpillSlotsOrReMatsAvailable.end()) {
364      return I->second >> 1;  // Remove the CanClobber bit.
365    }
366    return 0;
367  }
368
369  /// addAvailable - Mark that the specified stack slot / remat is available in
370  /// the specified physreg.  If CanClobber is true, the physreg can be modified
371  /// at any time without changing the semantics of the program.
372  void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
373    // If this stack slot is thought to be available in some other physreg,
374    // remove its record.
375    ModifyStackSlotOrReMat(SlotOrReMat);
376
377    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
378    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
379
380    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
381      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
382    else
383      DOUT << "Remembering SS#" << SlotOrReMat;
384    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
385  }
386
387  /// canClobberPhysReg - Return true if the spiller is allowed to change the
388  /// value of the specified stackslot register if it desires.  The specified
389  /// stack slot must be available in a physreg for this query to make sense.
390  bool canClobberPhysReg(int SlotOrReMat) const {
391    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
392           "Value not available!");
393    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
394  }
395
396  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
397  /// stackslot register. The register is still available but is no longer
398  /// allowed to be modifed.
399  void disallowClobberPhysReg(unsigned PhysReg);
400
401  /// ClobberPhysReg - This is called when the specified physreg changes
402  /// value.  We use this to invalidate any info about stuff that lives in
403  /// it and any of its aliases.
404  void ClobberPhysReg(unsigned PhysReg);
405
406  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
407  /// slot changes.  This removes information about which register the previous
408  /// value for this slot lives in (as the previous value is dead now).
409  void ModifyStackSlotOrReMat(int SlotOrReMat);
410
411  /// AddAvailableRegsToLiveIn - Availability information is being kept coming
412  /// into the specified MBB. Add available physical registers as potential
413  /// live-in's. If they are reused in the MBB, they will be added to the
414  /// live-in set to make register scavenger and post-allocation scheduler.
415  void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
416                                std::vector<MachineOperand*> &KillOps);
417};
418}
419
420/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
421/// stackslot register. The register is still available but is no longer
422/// allowed to be modifed.
423void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
424  std::multimap<unsigned, int>::iterator I =
425    PhysRegsAvailable.lower_bound(PhysReg);
426  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
427    int SlotOrReMat = I->second;
428    I++;
429    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
430           "Bidirectional map mismatch!");
431    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
432    DOUT << "PhysReg " << TRI->getName(PhysReg)
433         << " copied, it is available for use but can no longer be modified\n";
434  }
435}
436
437/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
438/// stackslot register and its aliases. The register and its aliases may
439/// still available but is no longer allowed to be modifed.
440void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
441  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
442    disallowClobberPhysRegOnly(*AS);
443  disallowClobberPhysRegOnly(PhysReg);
444}
445
446/// ClobberPhysRegOnly - This is called when the specified physreg changes
447/// value.  We use this to invalidate any info about stuff we thing lives in it.
448void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
449  std::multimap<unsigned, int>::iterator I =
450    PhysRegsAvailable.lower_bound(PhysReg);
451  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
452    int SlotOrReMat = I->second;
453    PhysRegsAvailable.erase(I++);
454    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
455           "Bidirectional map mismatch!");
456    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
457    DOUT << "PhysReg " << TRI->getName(PhysReg)
458         << " clobbered, invalidating ";
459    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
460      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
461    else
462      DOUT << "SS#" << SlotOrReMat << "\n";
463  }
464}
465
466/// ClobberPhysReg - This is called when the specified physreg changes
467/// value.  We use this to invalidate any info about stuff we thing lives in
468/// it and any of its aliases.
469void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
470  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
471    ClobberPhysRegOnly(*AS);
472  ClobberPhysRegOnly(PhysReg);
473}
474
475/// ModifyStackSlotOrReMat - This method is called when the value in a stack
476/// slot changes.  This removes information about which register the previous
477/// value for this slot lives in (as the previous value is dead now).
478void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
479  std::map<int, unsigned>::iterator It =
480    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
481  if (It == SpillSlotsOrReMatsAvailable.end()) return;
482  unsigned Reg = It->second >> 1;
483  SpillSlotsOrReMatsAvailable.erase(It);
484
485  // This register may hold the value of multiple stack slots, only remove this
486  // stack slot from the set of values the register contains.
487  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
488  for (; ; ++I) {
489    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
490           "Map inverse broken!");
491    if (I->second == SlotOrReMat) break;
492  }
493  PhysRegsAvailable.erase(I);
494}
495
496/// InvalidateKill - A MI that defines the specified register is being deleted,
497/// invalidate the register kill information.
498static void InvalidateKill(unsigned Reg, BitVector &RegKills,
499                           std::vector<MachineOperand*> &KillOps) {
500  if (RegKills[Reg]) {
501    KillOps[Reg]->setIsKill(false);
502    KillOps[Reg] = NULL;
503    RegKills.reset(Reg);
504  }
505}
506
507/// AddAvailableRegsToLiveIn - Availability information is being kept coming
508/// into the specified MBB. Add available physical registers as potential
509/// live-in's. If they are reused in the MBB, they will be added to the
510/// live-in set to make register scavenger and post-allocation scheduler.
511void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
512                                        BitVector &RegKills,
513                                        std::vector<MachineOperand*> &KillOps) {
514  std::set<unsigned> NotAvailable;
515  for (std::multimap<unsigned, int>::iterator
516         I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
517       I != E; ++I) {
518    unsigned Reg = I->first;
519    bool MakeAvail = true;
520    const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
521    // FIXME: A temporary workaround. We can't reuse available value if it's
522    // not safe to move the def of the virtual register's class. e.g.
523    // X86::RFP* register classes. Do not add it as a live-in.
524    if (!TII->isSafeToMoveRegClassDefs(RC))
525      MakeAvail = false;
526    if (MBB.isLiveIn(Reg))
527      // It's already livein somehow. Be conservative, do not make it available.
528      MakeAvail = false;
529
530    if (!MakeAvail)
531      // This is no longer available.
532      NotAvailable.insert(Reg);
533    else {
534      MBB.addLiveIn(Reg);
535      InvalidateKill(Reg, RegKills, KillOps);
536    }
537
538    // Skip over the same register.
539    std::multimap<unsigned, int>::iterator NI = next(I);
540    while (NI != E && NI->first == Reg) {
541      ++I;
542      ++NI;
543    }
544  }
545
546  for (std::set<unsigned>::iterator I = NotAvailable.begin(),
547         E = NotAvailable.end(); I != E; ++I) {
548    ClobberPhysReg(*I);
549    for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
550       *SubRegs; ++SubRegs)
551      ClobberPhysReg(*SubRegs);
552  }
553}
554
555/// findSinglePredSuccessor - Return via reference a vector of machine basic
556/// blocks each of which is a successor of the specified BB and has no other
557/// predecessor.
558static void findSinglePredSuccessor(MachineBasicBlock *MBB,
559                                   SmallVectorImpl<MachineBasicBlock *> &Succs) {
560  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
561         SE = MBB->succ_end(); SI != SE; ++SI) {
562    MachineBasicBlock *SuccMBB = *SI;
563    if (SuccMBB->pred_size() == 1)
564      Succs.push_back(SuccMBB);
565  }
566}
567
568namespace {
569  /// LocalSpiller - This spiller does a simple pass over the machine basic
570  /// block to attempt to keep spills in registers as much as possible for
571  /// blocks that have low register pressure (the vreg may be spilled due to
572  /// register pressure in other blocks).
573  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
574    MachineRegisterInfo *RegInfo;
575    const TargetRegisterInfo *TRI;
576    const TargetInstrInfo *TII;
577    DenseMap<MachineInstr*, unsigned> DistanceMap;
578  public:
579    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
580      RegInfo = &MF.getRegInfo();
581      TRI = MF.getTarget().getRegisterInfo();
582      TII = MF.getTarget().getInstrInfo();
583      DOUT << "\n**** Local spiller rewriting function '"
584           << MF.getFunction()->getName() << "':\n";
585      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
586              " ****\n";
587      DEBUG(MF.dump());
588
589      // Spills - Keep track of which spilled values are available in physregs
590      // so that we can choose to reuse the physregs instead of emitting
591      // reloads. This is usually refreshed per basic block.
592      AvailableSpills Spills(TRI, TII);
593
594      // Keep track of kill information.
595      BitVector RegKills(TRI->getNumRegs());
596      std::vector<MachineOperand*> KillOps;
597      KillOps.resize(TRI->getNumRegs(), NULL);
598
599      // SingleEntrySuccs - Successor blocks which have a single predecessor.
600      SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
601      SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
602
603      // Traverse the basic blocks depth first.
604      MachineBasicBlock *Entry = MF.begin();
605      SmallPtrSet<MachineBasicBlock*,16> Visited;
606      for (df_ext_iterator<MachineBasicBlock*,
607             SmallPtrSet<MachineBasicBlock*,16> >
608             DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
609           DFI != E; ++DFI) {
610        MachineBasicBlock *MBB = *DFI;
611        if (!EarlyVisited.count(MBB))
612          RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
613
614        // If this MBB is the only predecessor of a successor. Keep the
615        // availability information and visit it next.
616        do {
617          // Keep visiting single predecessor successor as long as possible.
618          SinglePredSuccs.clear();
619          findSinglePredSuccessor(MBB, SinglePredSuccs);
620          if (SinglePredSuccs.empty())
621            MBB = 0;
622          else {
623            // FIXME: More than one successors, each of which has MBB has
624            // the only predecessor.
625            MBB = SinglePredSuccs[0];
626            if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
627              Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
628              RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
629            }
630          }
631        } while (MBB);
632
633        // Clear the availability info.
634        Spills.clear();
635      }
636
637      DOUT << "**** Post Machine Instrs ****\n";
638      DEBUG(MF.dump());
639
640      // Mark unused spill slots.
641      MachineFrameInfo *MFI = MF.getFrameInfo();
642      int SS = VRM.getLowSpillSlot();
643      if (SS != VirtRegMap::NO_STACK_SLOT)
644        for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
645          if (!VRM.isSpillSlotUsed(SS)) {
646            MFI->RemoveStackObject(SS);
647            ++NumDSS;
648          }
649
650      return true;
651    }
652  private:
653    void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
654                          unsigned Reg, BitVector &RegKills,
655                          std::vector<MachineOperand*> &KillOps);
656    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
657                           MachineBasicBlock::iterator &MII,
658                           std::vector<MachineInstr*> &MaybeDeadStores,
659                           AvailableSpills &Spills, BitVector &RegKills,
660                           std::vector<MachineOperand*> &KillOps,
661                           VirtRegMap &VRM);
662    bool CommuteToFoldReload(MachineBasicBlock &MBB,
663                             MachineBasicBlock::iterator &MII,
664                             unsigned VirtReg, unsigned SrcReg, int SS,
665                             AvailableSpills &Spills,
666                             BitVector &RegKills,
667                             std::vector<MachineOperand*> &KillOps,
668                             const TargetRegisterInfo *TRI,
669                             VirtRegMap &VRM);
670    void SpillRegToStackSlot(MachineBasicBlock &MBB,
671                             MachineBasicBlock::iterator &MII,
672                             int Idx, unsigned PhysReg, int StackSlot,
673                             const TargetRegisterClass *RC,
674                             bool isAvailable, MachineInstr *&LastStore,
675                             AvailableSpills &Spills,
676                             SmallSet<MachineInstr*, 4> &ReMatDefs,
677                             BitVector &RegKills,
678                             std::vector<MachineOperand*> &KillOps,
679                             VirtRegMap &VRM);
680    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
681                    AvailableSpills &Spills,
682                    BitVector &RegKills, std::vector<MachineOperand*> &KillOps);
683  };
684}
685
686/// InvalidateKills - MI is going to be deleted. If any of its operands are
687/// marked kill, then invalidate the information.
688static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
689                            std::vector<MachineOperand*> &KillOps,
690                            SmallVector<unsigned, 2> *KillRegs = NULL) {
691  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
692    MachineOperand &MO = MI.getOperand(i);
693    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
694      continue;
695    unsigned Reg = MO.getReg();
696    if (TargetRegisterInfo::isVirtualRegister(Reg))
697      continue;
698    if (KillRegs)
699      KillRegs->push_back(Reg);
700    assert(Reg < KillOps.size());
701    if (KillOps[Reg] == &MO) {
702      RegKills.reset(Reg);
703      KillOps[Reg] = NULL;
704    }
705  }
706}
707
708/// InvalidateRegDef - If the def operand of the specified def MI is now dead
709/// (since it's spill instruction is removed), mark it isDead. Also checks if
710/// the def MI has other definition operands that are not dead. Returns it by
711/// reference.
712static bool InvalidateRegDef(MachineBasicBlock::iterator I,
713                             MachineInstr &NewDef, unsigned Reg,
714                             bool &HasLiveDef) {
715  // Due to remat, it's possible this reg isn't being reused. That is,
716  // the def of this reg (by prev MI) is now dead.
717  MachineInstr *DefMI = I;
718  MachineOperand *DefOp = NULL;
719  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
720    MachineOperand &MO = DefMI->getOperand(i);
721    if (MO.isReg() && MO.isDef()) {
722      if (MO.getReg() == Reg)
723        DefOp = &MO;
724      else if (!MO.isDead())
725        HasLiveDef = true;
726    }
727  }
728  if (!DefOp)
729    return false;
730
731  bool FoundUse = false, Done = false;
732  MachineBasicBlock::iterator E = &NewDef;
733  ++I; ++E;
734  for (; !Done && I != E; ++I) {
735    MachineInstr *NMI = I;
736    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
737      MachineOperand &MO = NMI->getOperand(j);
738      if (!MO.isReg() || MO.getReg() != Reg)
739        continue;
740      if (MO.isUse())
741        FoundUse = true;
742      Done = true; // Stop after scanning all the operands of this MI.
743    }
744  }
745  if (!FoundUse) {
746    // Def is dead!
747    DefOp->setIsDead();
748    return true;
749  }
750  return false;
751}
752
753/// UpdateKills - Track and update kill info. If a MI reads a register that is
754/// marked kill, then it must be due to register reuse. Transfer the kill info
755/// over.
756static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
757                        std::vector<MachineOperand*> &KillOps,
758                        const TargetRegisterInfo* TRI) {
759  const TargetInstrDesc &TID = MI.getDesc();
760  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
761    MachineOperand &MO = MI.getOperand(i);
762    if (!MO.isReg() || !MO.isUse())
763      continue;
764    unsigned Reg = MO.getReg();
765    if (Reg == 0)
766      continue;
767
768    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
769      // That can't be right. Register is killed but not re-defined and it's
770      // being reused. Let's fix that.
771      KillOps[Reg]->setIsKill(false);
772      KillOps[Reg] = NULL;
773      RegKills.reset(Reg);
774      if (i < TID.getNumOperands() &&
775          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
776        // Unless it's a two-address operand, this is the new kill.
777        MO.setIsKill();
778    }
779    if (MO.isKill()) {
780      RegKills.set(Reg);
781      KillOps[Reg] = &MO;
782    }
783  }
784
785  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
786    const MachineOperand &MO = MI.getOperand(i);
787    if (!MO.isReg() || !MO.isDef())
788      continue;
789    unsigned Reg = MO.getReg();
790    RegKills.reset(Reg);
791    KillOps[Reg] = NULL;
792    // It also defines (or partially define) aliases.
793    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
794      RegKills.reset(*AS);
795      KillOps[*AS] = NULL;
796    }
797  }
798}
799
800/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
801///
802static void ReMaterialize(MachineBasicBlock &MBB,
803                          MachineBasicBlock::iterator &MII,
804                          unsigned DestReg, unsigned Reg,
805                          const TargetInstrInfo *TII,
806                          const TargetRegisterInfo *TRI,
807                          VirtRegMap &VRM) {
808  TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
809  MachineInstr *NewMI = prior(MII);
810  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
811    MachineOperand &MO = NewMI->getOperand(i);
812    if (!MO.isReg() || MO.getReg() == 0)
813      continue;
814    unsigned VirtReg = MO.getReg();
815    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
816      continue;
817    assert(MO.isUse());
818    unsigned SubIdx = MO.getSubReg();
819    unsigned Phys = VRM.getPhys(VirtReg);
820    assert(Phys);
821    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
822    MO.setReg(RReg);
823  }
824  ++NumReMats;
825}
826
827
828// ReusedOp - For each reused operand, we keep track of a bit of information, in
829// case we need to rollback upon processing a new operand.  See comments below.
830namespace {
831  struct ReusedOp {
832    // The MachineInstr operand that reused an available value.
833    unsigned Operand;
834
835    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
836    unsigned StackSlotOrReMat;
837
838    // PhysRegReused - The physical register the value was available in.
839    unsigned PhysRegReused;
840
841    // AssignedPhysReg - The physreg that was assigned for use by the reload.
842    unsigned AssignedPhysReg;
843
844    // VirtReg - The virtual register itself.
845    unsigned VirtReg;
846
847    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
848             unsigned vreg)
849      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
850        AssignedPhysReg(apr), VirtReg(vreg) {}
851  };
852
853  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
854  /// is reused instead of reloaded.
855  class VISIBILITY_HIDDEN ReuseInfo {
856    MachineInstr &MI;
857    std::vector<ReusedOp> Reuses;
858    BitVector PhysRegsClobbered;
859  public:
860    ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
861      PhysRegsClobbered.resize(tri->getNumRegs());
862    }
863
864    bool hasReuses() const {
865      return !Reuses.empty();
866    }
867
868    /// addReuse - If we choose to reuse a virtual register that is already
869    /// available instead of reloading it, remember that we did so.
870    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
871                  unsigned PhysRegReused, unsigned AssignedPhysReg,
872                  unsigned VirtReg) {
873      // If the reload is to the assigned register anyway, no undo will be
874      // required.
875      if (PhysRegReused == AssignedPhysReg) return;
876
877      // Otherwise, remember this.
878      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
879                                AssignedPhysReg, VirtReg));
880    }
881
882    void markClobbered(unsigned PhysReg) {
883      PhysRegsClobbered.set(PhysReg);
884    }
885
886    bool isClobbered(unsigned PhysReg) const {
887      return PhysRegsClobbered.test(PhysReg);
888    }
889
890    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
891    /// is some other operand that is using the specified register, either pick
892    /// a new register to use, or evict the previous reload and use this reg.
893    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
894                             AvailableSpills &Spills,
895                             std::vector<MachineInstr*> &MaybeDeadStores,
896                             SmallSet<unsigned, 8> &Rejected,
897                             BitVector &RegKills,
898                             std::vector<MachineOperand*> &KillOps,
899                             VirtRegMap &VRM) {
900      const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
901                                   .getInstrInfo();
902
903      if (Reuses.empty()) return PhysReg;  // This is most often empty.
904
905      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
906        ReusedOp &Op = Reuses[ro];
907        // If we find some other reuse that was supposed to use this register
908        // exactly for its reload, we can change this reload to use ITS reload
909        // register. That is, unless its reload register has already been
910        // considered and subsequently rejected because it has also been reused
911        // by another operand.
912        if (Op.PhysRegReused == PhysReg &&
913            Rejected.count(Op.AssignedPhysReg) == 0) {
914          // Yup, use the reload register that we didn't use before.
915          unsigned NewReg = Op.AssignedPhysReg;
916          Rejected.insert(PhysReg);
917          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
918                                 RegKills, KillOps, VRM);
919        } else {
920          // Otherwise, we might also have a problem if a previously reused
921          // value aliases the new register.  If so, codegen the previous reload
922          // and use this one.
923          unsigned PRRU = Op.PhysRegReused;
924          const TargetRegisterInfo *TRI = Spills.getRegInfo();
925          if (TRI->areAliases(PRRU, PhysReg)) {
926            // Okay, we found out that an alias of a reused register
927            // was used.  This isn't good because it means we have
928            // to undo a previous reuse.
929            MachineBasicBlock *MBB = MI->getParent();
930            const TargetRegisterClass *AliasRC =
931              MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
932
933            // Copy Op out of the vector and remove it, we're going to insert an
934            // explicit load for it.
935            ReusedOp NewOp = Op;
936            Reuses.erase(Reuses.begin()+ro);
937
938            // Ok, we're going to try to reload the assigned physreg into the
939            // slot that we were supposed to in the first place.  However, that
940            // register could hold a reuse.  Check to see if it conflicts or
941            // would prefer us to use a different register.
942            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
943                                                  MI, Spills, MaybeDeadStores,
944                                              Rejected, RegKills, KillOps, VRM);
945
946            MachineBasicBlock::iterator MII = MI;
947            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
948              ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
949            } else {
950              TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
951                                        NewOp.StackSlotOrReMat, AliasRC);
952              MachineInstr *LoadMI = prior(MII);
953              VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
954              // Any stores to this stack slot are not dead anymore.
955              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
956              ++NumLoads;
957            }
958            Spills.ClobberPhysReg(NewPhysReg);
959            Spills.ClobberPhysReg(NewOp.PhysRegReused);
960
961            unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
962            unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
963            MI->getOperand(NewOp.Operand).setReg(RReg);
964
965            Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
966            --MII;
967            UpdateKills(*MII, RegKills, KillOps, TRI);
968            DOUT << '\t' << *MII;
969
970            DOUT << "Reuse undone!\n";
971            --NumReused;
972
973            // Finally, PhysReg is now available, go ahead and use it.
974            return PhysReg;
975          }
976        }
977      }
978      return PhysReg;
979    }
980
981    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
982    /// 'Rejected' set to remember which registers have been considered and
983    /// rejected for the reload. This avoids infinite looping in case like
984    /// this:
985    /// t1 := op t2, t3
986    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
987    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
988    /// t1 <- desires r1
989    ///       sees r1 is taken by t2, tries t2's reload register r0
990    ///       sees r0 is taken by t3, tries t3's reload register r1
991    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
992    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
993                             AvailableSpills &Spills,
994                             std::vector<MachineInstr*> &MaybeDeadStores,
995                             BitVector &RegKills,
996                             std::vector<MachineOperand*> &KillOps,
997                             VirtRegMap &VRM) {
998      SmallSet<unsigned, 8> Rejected;
999      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
1000                             RegKills, KillOps, VRM);
1001    }
1002  };
1003}
1004
1005/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
1006/// instruction. e.g.
1007///     xorl  %edi, %eax
1008///     movl  %eax, -32(%ebp)
1009///     movl  -36(%ebp), %eax
1010///     orl   %eax, -32(%ebp)
1011/// ==>
1012///     xorl  %edi, %eax
1013///     orl   -36(%ebp), %eax
1014///     mov   %eax, -32(%ebp)
1015/// This enables unfolding optimization for a subsequent instruction which will
1016/// also eliminate the newly introduced store instruction.
1017bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
1018                                    MachineBasicBlock::iterator &MII,
1019                                    std::vector<MachineInstr*> &MaybeDeadStores,
1020                                    AvailableSpills &Spills,
1021                                    BitVector &RegKills,
1022                                    std::vector<MachineOperand*> &KillOps,
1023                                    VirtRegMap &VRM) {
1024  MachineFunction &MF = *MBB.getParent();
1025  MachineInstr &MI = *MII;
1026  unsigned UnfoldedOpc = 0;
1027  unsigned UnfoldPR = 0;
1028  unsigned UnfoldVR = 0;
1029  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1030  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1031  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1032    // Only transform a MI that folds a single register.
1033    if (UnfoldedOpc)
1034      return false;
1035    UnfoldVR = I->second.first;
1036    VirtRegMap::ModRef MR = I->second.second;
1037    // MI2VirtMap be can updated which invalidate the iterator.
1038    // Increment the iterator first.
1039    ++I;
1040    if (VRM.isAssignedReg(UnfoldVR))
1041      continue;
1042    // If this reference is not a use, any previous store is now dead.
1043    // Otherwise, the store to this stack slot is not dead anymore.
1044    FoldedSS = VRM.getStackSlot(UnfoldVR);
1045    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1046    if (DeadStore && (MR & VirtRegMap::isModRef)) {
1047      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1048      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1049        continue;
1050      UnfoldPR = PhysReg;
1051      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1052                                                    false, true);
1053    }
1054  }
1055
1056  if (!UnfoldedOpc)
1057    return false;
1058
1059  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1060    MachineOperand &MO = MI.getOperand(i);
1061    if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1062      continue;
1063    unsigned VirtReg = MO.getReg();
1064    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1065      continue;
1066    if (VRM.isAssignedReg(VirtReg)) {
1067      unsigned PhysReg = VRM.getPhys(VirtReg);
1068      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1069        return false;
1070    } else if (VRM.isReMaterialized(VirtReg))
1071      continue;
1072    int SS = VRM.getStackSlot(VirtReg);
1073    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1074    if (PhysReg) {
1075      if (TRI->regsOverlap(PhysReg, UnfoldPR))
1076        return false;
1077      continue;
1078    }
1079    if (VRM.hasPhys(VirtReg)) {
1080      PhysReg = VRM.getPhys(VirtReg);
1081      if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1082        continue;
1083    }
1084
1085    // Ok, we'll need to reload the value into a register which makes
1086    // it impossible to perform the store unfolding optimization later.
1087    // Let's see if it is possible to fold the load if the store is
1088    // unfolded. This allows us to perform the store unfolding
1089    // optimization.
1090    SmallVector<MachineInstr*, 4> NewMIs;
1091    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1092      assert(NewMIs.size() == 1);
1093      MachineInstr *NewMI = NewMIs.back();
1094      NewMIs.clear();
1095      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1096      assert(Idx != -1);
1097      SmallVector<unsigned, 1> Ops;
1098      Ops.push_back(Idx);
1099      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1100      if (FoldedMI) {
1101        VRM.addSpillSlotUse(SS, FoldedMI);
1102        if (!VRM.hasPhys(UnfoldVR))
1103          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1104        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1105        MII = MBB.insert(MII, FoldedMI);
1106        InvalidateKills(MI, RegKills, KillOps);
1107        VRM.RemoveMachineInstrFromMaps(&MI);
1108        MBB.erase(&MI);
1109        MF.DeleteMachineInstr(NewMI);
1110        return true;
1111      }
1112      MF.DeleteMachineInstr(NewMI);
1113    }
1114  }
1115  return false;
1116}
1117
1118/// CommuteToFoldReload -
1119/// Look for
1120/// r1 = load fi#1
1121/// r1 = op r1, r2<kill>
1122/// store r1, fi#1
1123///
1124/// If op is commutable and r2 is killed, then we can xform these to
1125/// r2 = op r2, fi#1
1126/// store r2, fi#1
1127bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
1128                                    MachineBasicBlock::iterator &MII,
1129                                    unsigned VirtReg, unsigned SrcReg, int SS,
1130                                    AvailableSpills &Spills,
1131                                    BitVector &RegKills,
1132                                    std::vector<MachineOperand*> &KillOps,
1133                                    const TargetRegisterInfo *TRI,
1134                                    VirtRegMap &VRM) {
1135  if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1136    return false;
1137
1138  MachineFunction &MF = *MBB.getParent();
1139  MachineInstr &MI = *MII;
1140  MachineBasicBlock::iterator DefMII = prior(MII);
1141  MachineInstr *DefMI = DefMII;
1142  const TargetInstrDesc &TID = DefMI->getDesc();
1143  unsigned NewDstIdx;
1144  if (DefMII != MBB.begin() &&
1145      TID.isCommutable() &&
1146      TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
1147    MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1148    unsigned NewReg = NewDstMO.getReg();
1149    if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1150      return false;
1151    MachineInstr *ReloadMI = prior(DefMII);
1152    int FrameIdx;
1153    unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1154    if (DestReg != SrcReg || FrameIdx != SS)
1155      return false;
1156    int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1157    if (UseIdx == -1)
1158      return false;
1159    int DefIdx = TID.getOperandConstraint(UseIdx, TOI::TIED_TO);
1160    if (DefIdx == -1)
1161      return false;
1162    assert(DefMI->getOperand(DefIdx).isReg() &&
1163           DefMI->getOperand(DefIdx).getReg() == SrcReg);
1164
1165    // Now commute def instruction.
1166    MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1167    if (!CommutedMI)
1168      return false;
1169    SmallVector<unsigned, 1> Ops;
1170    Ops.push_back(NewDstIdx);
1171    MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1172    // Not needed since foldMemoryOperand returns new MI.
1173    MF.DeleteMachineInstr(CommutedMI);
1174    if (!FoldedMI)
1175      return false;
1176
1177    VRM.addSpillSlotUse(SS, FoldedMI);
1178    VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1179    // Insert new def MI and spill MI.
1180    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
1181    TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1182    MII = prior(MII);
1183    MachineInstr *StoreMI = MII;
1184    VRM.addSpillSlotUse(SS, StoreMI);
1185    VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1186    MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.
1187
1188    // Delete all 3 old instructions.
1189    InvalidateKills(*ReloadMI, RegKills, KillOps);
1190    VRM.RemoveMachineInstrFromMaps(ReloadMI);
1191    MBB.erase(ReloadMI);
1192    InvalidateKills(*DefMI, RegKills, KillOps);
1193    VRM.RemoveMachineInstrFromMaps(DefMI);
1194    MBB.erase(DefMI);
1195    InvalidateKills(MI, RegKills, KillOps);
1196    VRM.RemoveMachineInstrFromMaps(&MI);
1197    MBB.erase(&MI);
1198
1199    // If NewReg was previously holding value of some SS, it's now clobbered.
1200    // This has to be done now because it's a physical register. When this
1201    // instruction is re-visited, it's ignored.
1202    Spills.ClobberPhysReg(NewReg);
1203
1204    ++NumCommutes;
1205    return true;
1206  }
1207
1208  return false;
1209}
1210
1211/// findSuperReg - Find the SubReg's super-register of given register class
1212/// where its SubIdx sub-register is SubReg.
1213static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
1214                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
1215  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1216       I != E; ++I) {
1217    unsigned Reg = *I;
1218    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
1219      return Reg;
1220  }
1221  return 0;
1222}
1223
1224/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1225/// the last store to the same slot is now dead. If so, remove the last store.
1226void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
1227                                  MachineBasicBlock::iterator &MII,
1228                                  int Idx, unsigned PhysReg, int StackSlot,
1229                                  const TargetRegisterClass *RC,
1230                                  bool isAvailable, MachineInstr *&LastStore,
1231                                  AvailableSpills &Spills,
1232                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
1233                                  BitVector &RegKills,
1234                                  std::vector<MachineOperand*> &KillOps,
1235                                  VirtRegMap &VRM) {
1236  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1237  MachineInstr *StoreMI = next(MII);
1238  VRM.addSpillSlotUse(StackSlot, StoreMI);
1239  DOUT << "Store:\t" << *StoreMI;
1240
1241  // If there is a dead store to this stack slot, nuke it now.
1242  if (LastStore) {
1243    DOUT << "Removed dead store:\t" << *LastStore;
1244    ++NumDSE;
1245    SmallVector<unsigned, 2> KillRegs;
1246    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
1247    MachineBasicBlock::iterator PrevMII = LastStore;
1248    bool CheckDef = PrevMII != MBB.begin();
1249    if (CheckDef)
1250      --PrevMII;
1251    VRM.RemoveMachineInstrFromMaps(LastStore);
1252    MBB.erase(LastStore);
1253    if (CheckDef) {
1254      // Look at defs of killed registers on the store. Mark the defs
1255      // as dead since the store has been deleted and they aren't
1256      // being reused.
1257      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1258        bool HasOtherDef = false;
1259        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1260          MachineInstr *DeadDef = PrevMII;
1261          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1262            // FIXME: This assumes a remat def does not have side
1263            // effects.
1264            VRM.RemoveMachineInstrFromMaps(DeadDef);
1265            MBB.erase(DeadDef);
1266            ++NumDRM;
1267          }
1268        }
1269      }
1270    }
1271  }
1272
1273  LastStore = next(MII);
1274
1275  // If the stack slot value was previously available in some other
1276  // register, change it now.  Otherwise, make the register available,
1277  // in PhysReg.
1278  Spills.ModifyStackSlotOrReMat(StackSlot);
1279  Spills.ClobberPhysReg(PhysReg);
1280  Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1281  ++NumStores;
1282}
1283
1284/// TransferDeadness - A identity copy definition is dead and it's being
1285/// removed. Find the last def or use and mark it as dead / kill.
1286void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1287                                    unsigned Reg, BitVector &RegKills,
1288                                    std::vector<MachineOperand*> &KillOps) {
1289  int LastUDDist = -1;
1290  MachineInstr *LastUDMI = NULL;
1291  for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1292         RE = RegInfo->reg_end(); RI != RE; ++RI) {
1293    MachineInstr *UDMI = &*RI;
1294    if (UDMI->getParent() != MBB)
1295      continue;
1296    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1297    if (DI == DistanceMap.end() || DI->second > CurDist)
1298      continue;
1299    if ((int)DI->second < LastUDDist)
1300      continue;
1301    LastUDDist = DI->second;
1302    LastUDMI = UDMI;
1303  }
1304
1305  if (LastUDMI) {
1306    const TargetInstrDesc &TID = LastUDMI->getDesc();
1307    MachineOperand *LastUD = NULL;
1308    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1309      MachineOperand &MO = LastUDMI->getOperand(i);
1310      if (!MO.isReg() || MO.getReg() != Reg)
1311        continue;
1312      if (!LastUD || (LastUD->isUse() && MO.isDef()))
1313        LastUD = &MO;
1314      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
1315        return;
1316    }
1317    if (LastUD->isDef())
1318      LastUD->setIsDead();
1319    else {
1320      LastUD->setIsKill();
1321      RegKills.set(Reg);
1322      KillOps[Reg] = LastUD;
1323    }
1324  }
1325}
1326
1327/// rewriteMBB - Keep track of which spills are available even after the
1328/// register allocator is done with them.  If possible, avid reloading vregs.
1329void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1330                              AvailableSpills &Spills, BitVector &RegKills,
1331                              std::vector<MachineOperand*> &KillOps) {
1332  DOUT << "\n**** Local spiller rewriting MBB '"
1333       << MBB.getBasicBlock()->getName() << ":\n";
1334
1335  MachineFunction &MF = *MBB.getParent();
1336
1337  // MaybeDeadStores - When we need to write a value back into a stack slot,
1338  // keep track of the inserted store.  If the stack slot value is never read
1339  // (because the value was used from some available register, for example), and
1340  // subsequently stored to, the original store is dead.  This map keeps track
1341  // of inserted stores that are not used.  If we see a subsequent store to the
1342  // same stack slot, the original store is deleted.
1343  std::vector<MachineInstr*> MaybeDeadStores;
1344  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1345
1346  // ReMatDefs - These are rematerializable def MIs which are not deleted.
1347  SmallSet<MachineInstr*, 4> ReMatDefs;
1348
1349  // Clear kill info.
1350  RegKills.reset();
1351  KillOps.clear();
1352  KillOps.resize(TRI->getNumRegs(), NULL);
1353
1354  unsigned Dist = 0;
1355  DistanceMap.clear();
1356  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1357       MII != E; ) {
1358    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
1359
1360    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1361    bool Erased = false;
1362    bool BackTracked = false;
1363    if (PrepForUnfoldOpti(MBB, MII,
1364                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1365      NextMII = next(MII);
1366
1367    MachineInstr &MI = *MII;
1368    const TargetInstrDesc &TID = MI.getDesc();
1369
1370    if (VRM.hasEmergencySpills(&MI)) {
1371      // Spill physical register(s) in the rare case the allocator has run out
1372      // of registers to allocate.
1373      SmallSet<int, 4> UsedSS;
1374      std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1375      for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1376        unsigned PhysReg = EmSpills[i];
1377        const TargetRegisterClass *RC =
1378          TRI->getPhysicalRegisterRegClass(PhysReg);
1379        assert(RC && "Unable to determine register class!");
1380        int SS = VRM.getEmergencySpillSlot(RC);
1381        if (UsedSS.count(SS))
1382          assert(0 && "Need to spill more than one physical registers!");
1383        UsedSS.insert(SS);
1384        TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1385        MachineInstr *StoreMI = prior(MII);
1386        VRM.addSpillSlotUse(SS, StoreMI);
1387        TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1388        MachineInstr *LoadMI = next(MII);
1389        VRM.addSpillSlotUse(SS, LoadMI);
1390        ++NumPSpills;
1391      }
1392      NextMII = next(MII);
1393    }
1394
1395    // Insert restores here if asked to.
1396    if (VRM.isRestorePt(&MI)) {
1397      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1398      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1399        unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
1400        if (!VRM.getPreSplitReg(VirtReg))
1401          continue; // Split interval spilled again.
1402        unsigned Phys = VRM.getPhys(VirtReg);
1403        RegInfo->setPhysRegUsed(Phys);
1404
1405        // Check if the value being restored if available. If so, it must be
1406        // from a predecessor BB that fallthrough into this BB. We do not
1407        // expect:
1408        // BB1:
1409        // r1 = load fi#1
1410        // ...
1411        //    = r1<kill>
1412        // ... # r1 not clobbered
1413        // ...
1414        //    = load fi#1
1415        bool DoReMat = VRM.isReMaterialized(VirtReg);
1416        int SSorRMId = DoReMat
1417          ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1418        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1419        unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1420        if (InReg == Phys) {
1421          // If the value is already available in the expected register, save
1422          // a reload / remat.
1423          if (SSorRMId)
1424            DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1425          else
1426            DOUT << "Reusing SS#" << SSorRMId;
1427          DOUT << " from physreg "
1428               << TRI->getName(InReg) << " for vreg"
1429               << VirtReg <<" instead of reloading into physreg "
1430               << TRI->getName(Phys) << "\n";
1431          ++NumOmitted;
1432          continue;
1433        } else if (InReg && InReg != Phys) {
1434          if (SSorRMId)
1435            DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1436          else
1437            DOUT << "Reusing SS#" << SSorRMId;
1438          DOUT << " from physreg "
1439               << TRI->getName(InReg) << " for vreg"
1440               << VirtReg <<" by copying it into physreg "
1441               << TRI->getName(Phys) << "\n";
1442
1443          // If the reloaded / remat value is available in another register,
1444          // copy it to the desired register.
1445          TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
1446
1447          // This invalidates Phys.
1448          Spills.ClobberPhysReg(Phys);
1449          // Remember it's available.
1450          Spills.addAvailable(SSorRMId, Phys);
1451
1452          // Mark is killed.
1453          MachineInstr *CopyMI = prior(MII);
1454          MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1455          KillOpnd->setIsKill();
1456          UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1457
1458          DOUT << '\t' << *CopyMI;
1459          ++NumCopified;
1460          continue;
1461        }
1462
1463        if (VRM.isReMaterialized(VirtReg)) {
1464          ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1465        } else {
1466          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1467          TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
1468          MachineInstr *LoadMI = prior(MII);
1469          VRM.addSpillSlotUse(SSorRMId, LoadMI);
1470          ++NumLoads;
1471        }
1472
1473        // This invalidates Phys.
1474        Spills.ClobberPhysReg(Phys);
1475        // Remember it's available.
1476        Spills.addAvailable(SSorRMId, Phys);
1477
1478        UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1479        DOUT << '\t' << *prior(MII);
1480      }
1481    }
1482
1483    // Insert spills here if asked to.
1484    if (VRM.isSpillPt(&MI)) {
1485      std::vector<std::pair<unsigned,bool> > &SpillRegs =
1486        VRM.getSpillPtSpills(&MI);
1487      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1488        unsigned VirtReg = SpillRegs[i].first;
1489        bool isKill = SpillRegs[i].second;
1490        if (!VRM.getPreSplitReg(VirtReg))
1491          continue; // Split interval spilled again.
1492        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1493        unsigned Phys = VRM.getPhys(VirtReg);
1494        int StackSlot = VRM.getStackSlot(VirtReg);
1495        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1496        MachineInstr *StoreMI = next(MII);
1497        VRM.addSpillSlotUse(StackSlot, StoreMI);
1498        DOUT << "Store:\t" << *StoreMI;
1499        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1500      }
1501      NextMII = next(MII);
1502    }
1503
1504    /// ReusedOperands - Keep track of operand reuse in case we need to undo
1505    /// reuse.
1506    ReuseInfo ReusedOperands(MI, TRI);
1507    SmallVector<unsigned, 4> VirtUseOps;
1508    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1509      MachineOperand &MO = MI.getOperand(i);
1510      if (!MO.isReg() || MO.getReg() == 0)
1511        continue;   // Ignore non-register operands.
1512
1513      unsigned VirtReg = MO.getReg();
1514      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1515        // Ignore physregs for spilling, but remember that it is used by this
1516        // function.
1517        RegInfo->setPhysRegUsed(VirtReg);
1518        continue;
1519      }
1520
1521      // We want to process implicit virtual register uses first.
1522      if (MO.isImplicit())
1523        // If the virtual register is implicitly defined, emit a implicit_def
1524        // before so scavenger knows it's "defined".
1525        VirtUseOps.insert(VirtUseOps.begin(), i);
1526      else
1527        VirtUseOps.push_back(i);
1528    }
1529
1530    // Process all of the spilled uses and all non spilled reg references.
1531    SmallVector<int, 2> PotentialDeadStoreSlots;
1532    for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1533      unsigned i = VirtUseOps[j];
1534      MachineOperand &MO = MI.getOperand(i);
1535      unsigned VirtReg = MO.getReg();
1536      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1537             "Not a virtual register?");
1538
1539      unsigned SubIdx = MO.getSubReg();
1540      if (VRM.isAssignedReg(VirtReg)) {
1541        // This virtual register was assigned a physreg!
1542        unsigned Phys = VRM.getPhys(VirtReg);
1543        RegInfo->setPhysRegUsed(Phys);
1544        if (MO.isDef())
1545          ReusedOperands.markClobbered(Phys);
1546        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1547        MI.getOperand(i).setReg(RReg);
1548        if (VRM.isImplicitlyDefined(VirtReg))
1549          BuildMI(MBB, &MI, MI.getDebugLoc(),
1550                  TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1551        continue;
1552      }
1553
1554      // This virtual register is now known to be a spilled value.
1555      if (!MO.isUse())
1556        continue;  // Handle defs in the loop below (handle use&def here though)
1557
1558      bool DoReMat = VRM.isReMaterialized(VirtReg);
1559      int SSorRMId = DoReMat
1560        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1561      int ReuseSlot = SSorRMId;
1562
1563      // Check to see if this stack slot is available.
1564      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1565
1566      // If this is a sub-register use, make sure the reuse register is in the
1567      // right register class. For example, for x86 not all of the 32-bit
1568      // registers have accessible sub-registers.
1569      // Similarly so for EXTRACT_SUBREG. Consider this:
1570      // EDI = op
1571      // MOV32_mr fi#1, EDI
1572      // ...
1573      //       = EXTRACT_SUBREG fi#1
1574      // fi#1 is available in EDI, but it cannot be reused because it's not in
1575      // the right register file.
1576      if (PhysReg &&
1577          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1578        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1579        if (!RC->contains(PhysReg))
1580          PhysReg = 0;
1581      }
1582
1583      if (PhysReg) {
1584        // This spilled operand might be part of a two-address operand.  If this
1585        // is the case, then changing it will necessarily require changing the
1586        // def part of the instruction as well.  However, in some cases, we
1587        // aren't allowed to modify the reused register.  If none of these cases
1588        // apply, reuse it.
1589        bool CanReuse = true;
1590        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1591        if (ti != -1 &&
1592            MI.getOperand(ti).isReg() &&
1593            MI.getOperand(ti).getReg() == VirtReg) {
1594          // Okay, we have a two address operand.  We can reuse this physreg as
1595          // long as we are allowed to clobber the value and there isn't an
1596          // earlier def that has already clobbered the physreg.
1597          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1598            !ReusedOperands.isClobbered(PhysReg);
1599        }
1600
1601        if (CanReuse) {
1602          // If this stack slot value is already available, reuse it!
1603          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1604            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1605          else
1606            DOUT << "Reusing SS#" << ReuseSlot;
1607          DOUT << " from physreg "
1608               << TRI->getName(PhysReg) << " for vreg"
1609               << VirtReg <<" instead of reloading into physreg "
1610               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1611          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1612          MI.getOperand(i).setReg(RReg);
1613
1614          // The only technical detail we have is that we don't know that
1615          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1616          // later in the instruction.  In particular, consider 'op V1, V2'.
1617          // If V1 is available in physreg R0, we would choose to reuse it
1618          // here, instead of reloading it into the register the allocator
1619          // indicated (say R1).  However, V2 might have to be reloaded
1620          // later, and it might indicate that it needs to live in R0.  When
1621          // this occurs, we need to have information available that
1622          // indicates it is safe to use R1 for the reload instead of R0.
1623          //
1624          // To further complicate matters, we might conflict with an alias,
1625          // or R0 and R1 might not be compatible with each other.  In this
1626          // case, we actually insert a reload for V1 in R1, ensuring that
1627          // we can get at R0 or its alias.
1628          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1629                                  VRM.getPhys(VirtReg), VirtReg);
1630          if (ti != -1)
1631            // Only mark it clobbered if this is a use&def operand.
1632            ReusedOperands.markClobbered(PhysReg);
1633          ++NumReused;
1634
1635          if (MI.getOperand(i).isKill() &&
1636              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1637
1638            // The store of this spilled value is potentially dead, but we
1639            // won't know for certain until we've confirmed that the re-use
1640            // above is valid, which means waiting until the other operands
1641            // are processed. For now we just track the spill slot, we'll
1642            // remove it after the other operands are processed if valid.
1643
1644            PotentialDeadStoreSlots.push_back(ReuseSlot);
1645          }
1646
1647          continue;
1648        }  // CanReuse
1649
1650        // Otherwise we have a situation where we have a two-address instruction
1651        // whose mod/ref operand needs to be reloaded.  This reload is already
1652        // available in some register "PhysReg", but if we used PhysReg as the
1653        // operand to our 2-addr instruction, the instruction would modify
1654        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1655        // to get its initial value.
1656        //
1657        // To avoid this problem, and to avoid doing a load right after a store,
1658        // we emit a copy from PhysReg into the designated register for this
1659        // operand.
1660        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1661        assert(DesignatedReg && "Must map virtreg to physreg!");
1662
1663        // Note that, if we reused a register for a previous operand, the
1664        // register we want to reload into might not actually be
1665        // available.  If this occurs, use the register indicated by the
1666        // reuser.
1667        if (ReusedOperands.hasReuses())
1668          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1669                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1670
1671        // If the mapped designated register is actually the physreg we have
1672        // incoming, we don't need to inserted a dead copy.
1673        if (DesignatedReg == PhysReg) {
1674          // If this stack slot value is already available, reuse it!
1675          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1676            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1677          else
1678            DOUT << "Reusing SS#" << ReuseSlot;
1679          DOUT << " from physreg " << TRI->getName(PhysReg)
1680               << " for vreg" << VirtReg
1681               << " instead of reloading into same physreg.\n";
1682          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1683          MI.getOperand(i).setReg(RReg);
1684          ReusedOperands.markClobbered(RReg);
1685          ++NumReused;
1686          continue;
1687        }
1688
1689        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1690        RegInfo->setPhysRegUsed(DesignatedReg);
1691        ReusedOperands.markClobbered(DesignatedReg);
1692        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1693
1694        MachineInstr *CopyMI = prior(MII);
1695        UpdateKills(*CopyMI, RegKills, KillOps, TRI);
1696
1697        // This invalidates DesignatedReg.
1698        Spills.ClobberPhysReg(DesignatedReg);
1699
1700        Spills.addAvailable(ReuseSlot, DesignatedReg);
1701        unsigned RReg =
1702          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1703        MI.getOperand(i).setReg(RReg);
1704        DOUT << '\t' << *prior(MII);
1705        ++NumReused;
1706        continue;
1707      } // if (PhysReg)
1708
1709      // Otherwise, reload it and remember that we have it.
1710      PhysReg = VRM.getPhys(VirtReg);
1711      assert(PhysReg && "Must map virtreg to physreg!");
1712
1713      // Note that, if we reused a register for a previous operand, the
1714      // register we want to reload into might not actually be
1715      // available.  If this occurs, use the register indicated by the
1716      // reuser.
1717      if (ReusedOperands.hasReuses())
1718        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1719                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1720
1721      RegInfo->setPhysRegUsed(PhysReg);
1722      ReusedOperands.markClobbered(PhysReg);
1723      if (DoReMat) {
1724        ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1725      } else {
1726        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1727        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1728        MachineInstr *LoadMI = prior(MII);
1729        VRM.addSpillSlotUse(SSorRMId, LoadMI);
1730        ++NumLoads;
1731      }
1732      // This invalidates PhysReg.
1733      Spills.ClobberPhysReg(PhysReg);
1734
1735      // Any stores to this stack slot are not dead anymore.
1736      if (!DoReMat)
1737        MaybeDeadStores[SSorRMId] = NULL;
1738      Spills.addAvailable(SSorRMId, PhysReg);
1739      // Assumes this is the last use. IsKill will be unset if reg is reused
1740      // unless it's a two-address operand.
1741      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
1742        MI.getOperand(i).setIsKill();
1743      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1744      MI.getOperand(i).setReg(RReg);
1745      UpdateKills(*prior(MII), RegKills, KillOps, TRI);
1746      DOUT << '\t' << *prior(MII);
1747    }
1748
1749    // Ok - now we can remove stores that have been confirmed dead.
1750    for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1751      // This was the last use and the spilled value is still available
1752      // for reuse. That means the spill was unnecessary!
1753      int PDSSlot = PotentialDeadStoreSlots[j];
1754      MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1755      if (DeadStore) {
1756        DOUT << "Removed dead store:\t" << *DeadStore;
1757        InvalidateKills(*DeadStore, RegKills, KillOps);
1758        VRM.RemoveMachineInstrFromMaps(DeadStore);
1759        MBB.erase(DeadStore);
1760        MaybeDeadStores[PDSSlot] = NULL;
1761        ++NumDSE;
1762      }
1763    }
1764
1765
1766    DOUT << '\t' << MI;
1767
1768
1769    // If we have folded references to memory operands, make sure we clear all
1770    // physical registers that may contain the value of the spilled virtual
1771    // register
1772    SmallSet<int, 2> FoldedSS;
1773    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1774      unsigned VirtReg = I->second.first;
1775      VirtRegMap::ModRef MR = I->second.second;
1776      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1777
1778      // MI2VirtMap be can updated which invalidate the iterator.
1779      // Increment the iterator first.
1780      ++I;
1781      int SS = VRM.getStackSlot(VirtReg);
1782      if (SS == VirtRegMap::NO_STACK_SLOT)
1783        continue;
1784      FoldedSS.insert(SS);
1785      DOUT << " - StackSlot: " << SS << "\n";
1786
1787      // If this folded instruction is just a use, check to see if it's a
1788      // straight load from the virt reg slot.
1789      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1790        int FrameIdx;
1791        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1792        if (DestReg && FrameIdx == SS) {
1793          // If this spill slot is available, turn it into a copy (or nothing)
1794          // instead of leaving it as a load!
1795          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1796            DOUT << "Promoted Load To Copy: " << MI;
1797            if (DestReg != InReg) {
1798              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1799              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1800              MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1801              unsigned SubIdx = DefMO->getSubReg();
1802              // Revisit the copy so we make sure to notice the effects of the
1803              // operation on the destreg (either needing to RA it if it's
1804              // virtual or needing to clobber any values if it's physical).
1805              NextMII = &MI;
1806              --NextMII;  // backtrack to the copy.
1807              // Propagate the sub-register index over.
1808              if (SubIdx) {
1809                DefMO = NextMII->findRegisterDefOperand(DestReg);
1810                DefMO->setSubReg(SubIdx);
1811              }
1812
1813              // Mark is killed.
1814              MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
1815              KillOpnd->setIsKill();
1816
1817              BackTracked = true;
1818            } else {
1819              DOUT << "Removing now-noop copy: " << MI;
1820              // Unset last kill since it's being reused.
1821              InvalidateKill(InReg, RegKills, KillOps);
1822            }
1823
1824            InvalidateKills(MI, RegKills, KillOps);
1825            VRM.RemoveMachineInstrFromMaps(&MI);
1826            MBB.erase(&MI);
1827            Erased = true;
1828            goto ProcessNextInst;
1829          }
1830        } else {
1831          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1832          SmallVector<MachineInstr*, 4> NewMIs;
1833          if (PhysReg &&
1834              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1835            MBB.insert(MII, NewMIs[0]);
1836            InvalidateKills(MI, RegKills, KillOps);
1837            VRM.RemoveMachineInstrFromMaps(&MI);
1838            MBB.erase(&MI);
1839            Erased = true;
1840            --NextMII;  // backtrack to the unfolded instruction.
1841            BackTracked = true;
1842            goto ProcessNextInst;
1843          }
1844        }
1845      }
1846
1847      // If this reference is not a use, any previous store is now dead.
1848      // Otherwise, the store to this stack slot is not dead anymore.
1849      MachineInstr* DeadStore = MaybeDeadStores[SS];
1850      if (DeadStore) {
1851        bool isDead = !(MR & VirtRegMap::isRef);
1852        MachineInstr *NewStore = NULL;
1853        if (MR & VirtRegMap::isModRef) {
1854          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1855          SmallVector<MachineInstr*, 4> NewMIs;
1856          // We can reuse this physreg as long as we are allowed to clobber
1857          // the value and there isn't an earlier def that has already clobbered
1858          // the physreg.
1859          if (PhysReg &&
1860              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1861            MachineOperand *KillOpnd =
1862              DeadStore->findRegisterUseOperand(PhysReg, true);
1863            // Note, if the store is storing a sub-register, it's possible the
1864            // super-register is needed below.
1865            if (KillOpnd && !KillOpnd->getSubReg() &&
1866                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1867             MBB.insert(MII, NewMIs[0]);
1868              NewStore = NewMIs[1];
1869              MBB.insert(MII, NewStore);
1870              VRM.addSpillSlotUse(SS, NewStore);
1871              InvalidateKills(MI, RegKills, KillOps);
1872              VRM.RemoveMachineInstrFromMaps(&MI);
1873              MBB.erase(&MI);
1874              Erased = true;
1875              --NextMII;
1876              --NextMII;  // backtrack to the unfolded instruction.
1877              BackTracked = true;
1878              isDead = true;
1879            }
1880          }
1881        }
1882
1883        if (isDead) {  // Previous store is dead.
1884          // If we get here, the store is dead, nuke it now.
1885          DOUT << "Removed dead store:\t" << *DeadStore;
1886          InvalidateKills(*DeadStore, RegKills, KillOps);
1887          VRM.RemoveMachineInstrFromMaps(DeadStore);
1888          MBB.erase(DeadStore);
1889          if (!NewStore)
1890            ++NumDSE;
1891        }
1892
1893        MaybeDeadStores[SS] = NULL;
1894        if (NewStore) {
1895          // Treat this store as a spill merged into a copy. That makes the
1896          // stack slot value available.
1897          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1898          goto ProcessNextInst;
1899        }
1900      }
1901
1902      // If the spill slot value is available, and this is a new definition of
1903      // the value, the value is not available anymore.
1904      if (MR & VirtRegMap::isMod) {
1905        // Notice that the value in this stack slot has been modified.
1906        Spills.ModifyStackSlotOrReMat(SS);
1907
1908        // If this is *just* a mod of the value, check to see if this is just a
1909        // store to the spill slot (i.e. the spill got merged into the copy). If
1910        // so, realize that the vreg is available now, and add the store to the
1911        // MaybeDeadStore info.
1912        int StackSlot;
1913        if (!(MR & VirtRegMap::isRef)) {
1914          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1915            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1916                   "Src hasn't been allocated yet?");
1917
1918            if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
1919                                    Spills, RegKills, KillOps, TRI, VRM)) {
1920              NextMII = next(MII);
1921              BackTracked = true;
1922              goto ProcessNextInst;
1923            }
1924
1925            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1926            // this as a potentially dead store in case there is a subsequent
1927            // store into the stack slot without a read from it.
1928            MaybeDeadStores[StackSlot] = &MI;
1929
1930            // If the stack slot value was previously available in some other
1931            // register, change it now.  Otherwise, make the register
1932            // available in PhysReg.
1933            Spills.addAvailable(StackSlot, SrcReg, false/*!clobber*/);
1934          }
1935        }
1936      }
1937    }
1938
1939    // Process all of the spilled defs.
1940    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1941      MachineOperand &MO = MI.getOperand(i);
1942      if (!(MO.isReg() && MO.getReg() && MO.isDef()))
1943        continue;
1944
1945      unsigned VirtReg = MO.getReg();
1946      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1947        // Check to see if this is a noop copy.  If so, eliminate the
1948        // instruction before considering the dest reg to be changed.
1949        unsigned Src, Dst, SrcSR, DstSR;
1950        if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
1951          ++NumDCE;
1952          DOUT << "Removing now-noop copy: " << MI;
1953          SmallVector<unsigned, 2> KillRegs;
1954          InvalidateKills(MI, RegKills, KillOps, &KillRegs);
1955          if (MO.isDead() && !KillRegs.empty()) {
1956            // Source register or an implicit super/sub-register use is killed.
1957            assert(KillRegs[0] == Dst ||
1958                   TRI->isSubRegister(KillRegs[0], Dst) ||
1959                   TRI->isSuperRegister(KillRegs[0], Dst));
1960            // Last def is now dead.
1961            TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
1962          }
1963          VRM.RemoveMachineInstrFromMaps(&MI);
1964          MBB.erase(&MI);
1965          Erased = true;
1966          Spills.disallowClobberPhysReg(VirtReg);
1967          goto ProcessNextInst;
1968        }
1969
1970        // If it's not a no-op copy, it clobbers the value in the destreg.
1971        Spills.ClobberPhysReg(VirtReg);
1972        ReusedOperands.markClobbered(VirtReg);
1973
1974        // Check to see if this instruction is a load from a stack slot into
1975        // a register.  If so, this provides the stack slot value in the reg.
1976        int FrameIdx;
1977        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1978          assert(DestReg == VirtReg && "Unknown load situation!");
1979
1980          // If it is a folded reference, then it's not safe to clobber.
1981          bool Folded = FoldedSS.count(FrameIdx);
1982          // Otherwise, if it wasn't available, remember that it is now!
1983          Spills.addAvailable(FrameIdx, DestReg, !Folded);
1984          goto ProcessNextInst;
1985        }
1986
1987        continue;
1988      }
1989
1990      unsigned SubIdx = MO.getSubReg();
1991      bool DoReMat = VRM.isReMaterialized(VirtReg);
1992      if (DoReMat)
1993        ReMatDefs.insert(&MI);
1994
1995      // The only vregs left are stack slot definitions.
1996      int StackSlot = VRM.getStackSlot(VirtReg);
1997      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1998
1999      // If this def is part of a two-address operand, make sure to execute
2000      // the store from the correct physical register.
2001      unsigned PhysReg;
2002      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
2003      if (TiedOp != -1) {
2004        PhysReg = MI.getOperand(TiedOp).getReg();
2005        if (SubIdx) {
2006          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2007          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2008                 "Can't find corresponding super-register!");
2009          PhysReg = SuperReg;
2010        }
2011      } else {
2012        PhysReg = VRM.getPhys(VirtReg);
2013        if (ReusedOperands.isClobbered(PhysReg)) {
2014          // Another def has taken the assigned physreg. It must have been a
2015          // use&def which got it due to reuse. Undo the reuse!
2016          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
2017                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
2018        }
2019      }
2020
2021      assert(PhysReg && "VR not assigned a physical register?");
2022      RegInfo->setPhysRegUsed(PhysReg);
2023      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2024      ReusedOperands.markClobbered(RReg);
2025      MI.getOperand(i).setReg(RReg);
2026
2027      if (!MO.isDead()) {
2028        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2029        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2030                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2031        NextMII = next(MII);
2032
2033        // Check to see if this is a noop copy.  If so, eliminate the
2034        // instruction before considering the dest reg to be changed.
2035        {
2036          unsigned Src, Dst, SrcSR, DstSR;
2037          if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2038            ++NumDCE;
2039            DOUT << "Removing now-noop copy: " << MI;
2040            InvalidateKills(MI, RegKills, KillOps);
2041            VRM.RemoveMachineInstrFromMaps(&MI);
2042            MBB.erase(&MI);
2043            Erased = true;
2044            UpdateKills(*LastStore, RegKills, KillOps, TRI);
2045            goto ProcessNextInst;
2046          }
2047        }
2048      }
2049    }
2050  ProcessNextInst:
2051    DistanceMap.insert(std::make_pair(&MI, Dist++));
2052    if (!Erased && !BackTracked) {
2053      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2054        UpdateKills(*II, RegKills, KillOps, TRI);
2055    }
2056    MII = NextMII;
2057  }
2058
2059}
2060
2061llvm::Spiller* llvm::createSpiller() {
2062  switch (SpillerOpt) {
2063  default: assert(0 && "Unreachable!");
2064  case local:
2065    return new LocalSpiller();
2066  case simple:
2067    return new SimpleSpiller();
2068  }
2069}
2070