VirtRegMap.cpp revision ad077b80c983af3379805f1f83e3dd260ef3a4c3
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/SmallSet.h"
36#include <algorithm>
37using namespace llvm;
38
39STATISTIC(NumSpills  , "Number of register spills");
40STATISTIC(NumPSpills , "Number of physical register spills");
41STATISTIC(NumReMats  , "Number of re-materialization");
42STATISTIC(NumDRM     , "Number of re-materializable defs elided");
43STATISTIC(NumStores  , "Number of stores added");
44STATISTIC(NumLoads   , "Number of loads added");
45STATISTIC(NumReused  , "Number of values reused");
46STATISTIC(NumDSE     , "Number of dead stores elided");
47STATISTIC(NumDCE     , "Number of copies elided");
48STATISTIC(NumDSS     , "Number of dead spill slots removed");
49STATISTIC(NumCommutes, "Number of instructions commuted");
50
51namespace {
52  enum SpillerName { simple, local };
53}
54
55static cl::opt<SpillerName>
56SpillerOpt("spiller",
57           cl::desc("Spiller to use: (default: local)"),
58           cl::Prefix,
59           cl::values(clEnumVal(simple, "  simple spiller"),
60                      clEnumVal(local,  "  local spiller"),
61                      clEnumValEnd),
62           cl::init(local));
63
64//===----------------------------------------------------------------------===//
65//  VirtRegMap implementation
66//===----------------------------------------------------------------------===//
67
68VirtRegMap::VirtRegMap(MachineFunction &mf)
69  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
70    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
71    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
72    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1),
73    LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) {
74  SpillSlotToUsesMap.resize(8);
75  ImplicitDefed.resize(MF.getRegInfo().getLastVirtReg()+1-
76                       TargetRegisterInfo::FirstVirtualRegister);
77  grow();
78}
79
80void VirtRegMap::grow() {
81  unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
82  Virt2PhysMap.grow(LastVirtReg);
83  Virt2StackSlotMap.grow(LastVirtReg);
84  Virt2ReMatIdMap.grow(LastVirtReg);
85  Virt2SplitMap.grow(LastVirtReg);
86  Virt2SplitKillMap.grow(LastVirtReg);
87  ReMatMap.grow(LastVirtReg);
88  ImplicitDefed.resize(LastVirtReg-TargetRegisterInfo::FirstVirtualRegister+1);
89}
90
91int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
92  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
93  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
94         "attempt to assign stack slot to already spilled register");
95  const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
96  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
97                                                RC->getAlignment());
98  if (LowSpillSlot == NO_STACK_SLOT)
99    LowSpillSlot = SS;
100  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
101    HighSpillSlot = SS;
102  unsigned Idx = SS-LowSpillSlot;
103  while (Idx >= SpillSlotToUsesMap.size())
104    SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2);
105  Virt2StackSlotMap[virtReg] = SS;
106  ++NumSpills;
107  return SS;
108}
109
110void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
111  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
112  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
113         "attempt to assign stack slot to already spilled register");
114  assert((SS >= 0 ||
115          (SS >= MF.getFrameInfo()->getObjectIndexBegin())) &&
116         "illegal fixed frame index");
117  Virt2StackSlotMap[virtReg] = SS;
118}
119
120int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
121  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
122  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
123         "attempt to assign re-mat id to already spilled register");
124  Virt2ReMatIdMap[virtReg] = ReMatId;
125  return ReMatId++;
126}
127
128void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
129  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
130  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
131         "attempt to assign re-mat id to already spilled register");
132  Virt2ReMatIdMap[virtReg] = id;
133}
134
135int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
136  std::map<const TargetRegisterClass*, int>::iterator I =
137    EmergencySpillSlots.find(RC);
138  if (I != EmergencySpillSlots.end())
139    return I->second;
140  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
141                                                RC->getAlignment());
142  if (LowSpillSlot == NO_STACK_SLOT)
143    LowSpillSlot = SS;
144  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
145    HighSpillSlot = SS;
146  EmergencySpillSlots[RC] = SS;
147  return SS;
148}
149
150void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
151  if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) {
152    // If FI < LowSpillSlot, this stack reference was produced by
153    // instruction selection and is not a spill
154    if (FI >= LowSpillSlot) {
155      assert(FI >= 0 && "Spill slot index should not be negative!");
156      assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
157             && "Invalid spill slot");
158      SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI);
159    }
160  }
161}
162
163void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
164                            MachineInstr *NewMI, ModRef MRInfo) {
165  // Move previous memory references folded to new instruction.
166  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
167  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
168         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
169    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
170    MI2VirtMap.erase(I++);
171  }
172
173  // add new memory reference
174  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
175}
176
177void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
178  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
179  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
180}
181
182void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
183  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
184    MachineOperand &MO = MI->getOperand(i);
185    if (!MO.isFI())
186      continue;
187    int FI = MO.getIndex();
188    if (MF.getFrameInfo()->isFixedObjectIndex(FI))
189      continue;
190    // This stack reference was produced by instruction selection and
191    // is not a spill
192    if (FI < LowSpillSlot)
193      continue;
194    assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
195           && "Invalid spill slot");
196    SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
197  }
198  MI2VirtMap.erase(MI);
199  SpillPt2VirtMap.erase(MI);
200  RestorePt2VirtMap.erase(MI);
201  EmergencySpillMap.erase(MI);
202}
203
204void VirtRegMap::print(std::ostream &OS) const {
205  const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
206
207  OS << "********** REGISTER MAP **********\n";
208  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
209         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
210    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
211      OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i])
212         << "]\n";
213  }
214
215  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
216         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
217    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
218      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
219  OS << '\n';
220}
221
222void VirtRegMap::dump() const {
223  print(cerr);
224}
225
226
227//===----------------------------------------------------------------------===//
228// Simple Spiller Implementation
229//===----------------------------------------------------------------------===//
230
231Spiller::~Spiller() {}
232
233namespace {
234  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
235    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
236  };
237}
238
239bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
240  DOUT << "********** REWRITE MACHINE CODE **********\n";
241  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
242  const TargetMachine &TM = MF.getTarget();
243  const TargetInstrInfo &TII = *TM.getInstrInfo();
244  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
245
246
247  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
248  // each vreg once (in the case where a spilled vreg is used by multiple
249  // operands).  This is always smaller than the number of operands to the
250  // current machine instr, so it should be small.
251  std::vector<unsigned> LoadedRegs;
252
253  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
254       MBBI != E; ++MBBI) {
255    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
256    MachineBasicBlock &MBB = *MBBI;
257    for (MachineBasicBlock::iterator MII = MBB.begin(),
258           E = MBB.end(); MII != E; ++MII) {
259      MachineInstr &MI = *MII;
260      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
261        MachineOperand &MO = MI.getOperand(i);
262        if (MO.isReg() && MO.getReg()) {
263          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
264            unsigned VirtReg = MO.getReg();
265            unsigned SubIdx = MO.getSubReg();
266            unsigned PhysReg = VRM.getPhys(VirtReg);
267            unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
268            if (!VRM.isAssignedReg(VirtReg)) {
269              int StackSlot = VRM.getStackSlot(VirtReg);
270              const TargetRegisterClass* RC =
271                MF.getRegInfo().getRegClass(VirtReg);
272
273              if (MO.isUse() &&
274                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
275                  == LoadedRegs.end()) {
276                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
277                MachineInstr *LoadMI = prior(MII);
278                VRM.addSpillSlotUse(StackSlot, LoadMI);
279                LoadedRegs.push_back(VirtReg);
280                ++NumLoads;
281                DOUT << '\t' << *LoadMI;
282              }
283
284              if (MO.isDef()) {
285                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
286                                        StackSlot, RC);
287                MachineInstr *StoreMI = next(MII);
288                VRM.addSpillSlotUse(StackSlot, StoreMI);
289                ++NumStores;
290              }
291            }
292            MF.getRegInfo().setPhysRegUsed(RReg);
293            MI.getOperand(i).setReg(RReg);
294          } else {
295            MF.getRegInfo().setPhysRegUsed(MO.getReg());
296          }
297        }
298      }
299
300      DOUT << '\t' << MI;
301      LoadedRegs.clear();
302    }
303  }
304  return true;
305}
306
307//===----------------------------------------------------------------------===//
308//  Local Spiller Implementation
309//===----------------------------------------------------------------------===//
310
311namespace {
312  class AvailableSpills;
313
314  /// LocalSpiller - This spiller does a simple pass over the machine basic
315  /// block to attempt to keep spills in registers as much as possible for
316  /// blocks that have low register pressure (the vreg may be spilled due to
317  /// register pressure in other blocks).
318  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
319    MachineRegisterInfo *RegInfo;
320    const TargetRegisterInfo *TRI;
321    const TargetInstrInfo *TII;
322    DenseMap<MachineInstr*, unsigned> DistanceMap;
323  public:
324    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
325      RegInfo = &MF.getRegInfo();
326      TRI = MF.getTarget().getRegisterInfo();
327      TII = MF.getTarget().getInstrInfo();
328      DOUT << "\n**** Local spiller rewriting function '"
329           << MF.getFunction()->getName() << "':\n";
330      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
331              " ****\n";
332      DEBUG(MF.dump());
333
334      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
335           MBB != E; ++MBB)
336        RewriteMBB(*MBB, VRM);
337
338      // Mark unused spill slots.
339      MachineFrameInfo *MFI = MF.getFrameInfo();
340      int SS = VRM.getLowSpillSlot();
341      if (SS != VirtRegMap::NO_STACK_SLOT)
342        for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
343          if (!VRM.isSpillSlotUsed(SS)) {
344            MFI->RemoveStackObject(SS);
345            ++NumDSS;
346          }
347
348      DOUT << "**** Post Machine Instrs ****\n";
349      DEBUG(MF.dump());
350
351      return true;
352    }
353  private:
354    void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
355                          unsigned Reg, BitVector &RegKills,
356                          std::vector<MachineOperand*> &KillOps);
357    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
358                           MachineBasicBlock::iterator &MII,
359                           std::vector<MachineInstr*> &MaybeDeadStores,
360                           AvailableSpills &Spills, BitVector &RegKills,
361                           std::vector<MachineOperand*> &KillOps,
362                           VirtRegMap &VRM);
363    bool CommuteToFoldReload(MachineBasicBlock &MBB,
364                             MachineBasicBlock::iterator &MII,
365                             unsigned VirtReg, unsigned SrcReg, int SS,
366                             BitVector &RegKills,
367                             std::vector<MachineOperand*> &KillOps,
368                             const TargetRegisterInfo *TRI,
369                             VirtRegMap &VRM);
370    void SpillRegToStackSlot(MachineBasicBlock &MBB,
371                             MachineBasicBlock::iterator &MII,
372                             int Idx, unsigned PhysReg, int StackSlot,
373                             const TargetRegisterClass *RC,
374                             bool isAvailable, MachineInstr *&LastStore,
375                             AvailableSpills &Spills,
376                             SmallSet<MachineInstr*, 4> &ReMatDefs,
377                             BitVector &RegKills,
378                             std::vector<MachineOperand*> &KillOps,
379                             VirtRegMap &VRM);
380    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
381  };
382}
383
384/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
385/// top down, keep track of which spills slots or remat are available in each
386/// register.
387///
388/// Note that not all physregs are created equal here.  In particular, some
389/// physregs are reloads that we are allowed to clobber or ignore at any time.
390/// Other physregs are values that the register allocated program is using that
391/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
392/// per-stack-slot / remat id basis as the low bit in the value of the
393/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
394/// this bit and addAvailable sets it if.
395namespace {
396class VISIBILITY_HIDDEN AvailableSpills {
397  const TargetRegisterInfo *TRI;
398  const TargetInstrInfo *TII;
399
400  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
401  // or remat'ed virtual register values that are still available, due to being
402  // loaded or stored to, but not invalidated yet.
403  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
404
405  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
406  // indicating which stack slot values are currently held by a physreg.  This
407  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
408  // physreg is modified.
409  std::multimap<unsigned, int> PhysRegsAvailable;
410
411  void disallowClobberPhysRegOnly(unsigned PhysReg);
412
413  void ClobberPhysRegOnly(unsigned PhysReg);
414public:
415  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
416    : TRI(tri), TII(tii) {
417  }
418
419  const TargetRegisterInfo *getRegInfo() const { return TRI; }
420
421  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
422  /// available in a  physical register, return that PhysReg, otherwise
423  /// return 0.
424  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
425    std::map<int, unsigned>::const_iterator I =
426      SpillSlotsOrReMatsAvailable.find(Slot);
427    if (I != SpillSlotsOrReMatsAvailable.end()) {
428      return I->second >> 1;  // Remove the CanClobber bit.
429    }
430    return 0;
431  }
432
433  /// addAvailable - Mark that the specified stack slot / remat is available in
434  /// the specified physreg.  If CanClobber is true, the physreg can be modified
435  /// at any time without changing the semantics of the program.
436  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
437                    bool CanClobber = true) {
438    // If this stack slot is thought to be available in some other physreg,
439    // remove its record.
440    ModifyStackSlotOrReMat(SlotOrReMat);
441
442    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
443    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
444
445    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
446      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
447    else
448      DOUT << "Remembering SS#" << SlotOrReMat;
449    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
450  }
451
452  /// canClobberPhysReg - Return true if the spiller is allowed to change the
453  /// value of the specified stackslot register if it desires.  The specified
454  /// stack slot must be available in a physreg for this query to make sense.
455  bool canClobberPhysReg(int SlotOrReMat) const {
456    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
457           "Value not available!");
458    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
459  }
460
461  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
462  /// stackslot register. The register is still available but is no longer
463  /// allowed to be modifed.
464  void disallowClobberPhysReg(unsigned PhysReg);
465
466  /// ClobberPhysReg - This is called when the specified physreg changes
467  /// value.  We use this to invalidate any info about stuff that lives in
468  /// it and any of its aliases.
469  void ClobberPhysReg(unsigned PhysReg);
470
471  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
472  /// slot changes.  This removes information about which register the previous
473  /// value for this slot lives in (as the previous value is dead now).
474  void ModifyStackSlotOrReMat(int SlotOrReMat);
475};
476}
477
478/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
479/// stackslot register. The register is still available but is no longer
480/// allowed to be modifed.
481void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
482  std::multimap<unsigned, int>::iterator I =
483    PhysRegsAvailable.lower_bound(PhysReg);
484  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
485    int SlotOrReMat = I->second;
486    I++;
487    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
488           "Bidirectional map mismatch!");
489    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
490    DOUT << "PhysReg " << TRI->getName(PhysReg)
491         << " copied, it is available for use but can no longer be modified\n";
492  }
493}
494
495/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
496/// stackslot register and its aliases. The register and its aliases may
497/// still available but is no longer allowed to be modifed.
498void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
499  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
500    disallowClobberPhysRegOnly(*AS);
501  disallowClobberPhysRegOnly(PhysReg);
502}
503
504/// ClobberPhysRegOnly - This is called when the specified physreg changes
505/// value.  We use this to invalidate any info about stuff we thing lives in it.
506void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
507  std::multimap<unsigned, int>::iterator I =
508    PhysRegsAvailable.lower_bound(PhysReg);
509  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
510    int SlotOrReMat = I->second;
511    PhysRegsAvailable.erase(I++);
512    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
513           "Bidirectional map mismatch!");
514    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
515    DOUT << "PhysReg " << TRI->getName(PhysReg)
516         << " clobbered, invalidating ";
517    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
518      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
519    else
520      DOUT << "SS#" << SlotOrReMat << "\n";
521  }
522}
523
524/// ClobberPhysReg - This is called when the specified physreg changes
525/// value.  We use this to invalidate any info about stuff we thing lives in
526/// it and any of its aliases.
527void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
528  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
529    ClobberPhysRegOnly(*AS);
530  ClobberPhysRegOnly(PhysReg);
531}
532
533/// ModifyStackSlotOrReMat - This method is called when the value in a stack
534/// slot changes.  This removes information about which register the previous
535/// value for this slot lives in (as the previous value is dead now).
536void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
537  std::map<int, unsigned>::iterator It =
538    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
539  if (It == SpillSlotsOrReMatsAvailable.end()) return;
540  unsigned Reg = It->second >> 1;
541  SpillSlotsOrReMatsAvailable.erase(It);
542
543  // This register may hold the value of multiple stack slots, only remove this
544  // stack slot from the set of values the register contains.
545  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
546  for (; ; ++I) {
547    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
548           "Map inverse broken!");
549    if (I->second == SlotOrReMat) break;
550  }
551  PhysRegsAvailable.erase(I);
552}
553
554
555
556/// InvalidateKills - MI is going to be deleted. If any of its operands are
557/// marked kill, then invalidate the information.
558static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
559                            std::vector<MachineOperand*> &KillOps,
560                            SmallVector<unsigned, 2> *KillRegs = NULL) {
561  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
562    MachineOperand &MO = MI.getOperand(i);
563    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
564      continue;
565    unsigned Reg = MO.getReg();
566    if (TargetRegisterInfo::isVirtualRegister(Reg))
567      continue;
568    if (KillRegs)
569      KillRegs->push_back(Reg);
570    assert(Reg < KillOps.size());
571    if (KillOps[Reg] == &MO) {
572      RegKills.reset(Reg);
573      KillOps[Reg] = NULL;
574    }
575  }
576}
577
578/// InvalidateKill - A MI that defines the specified register is being deleted,
579/// invalidate the register kill information.
580static void InvalidateKill(unsigned Reg, BitVector &RegKills,
581                           std::vector<MachineOperand*> &KillOps) {
582  if (RegKills[Reg]) {
583    KillOps[Reg]->setIsKill(false);
584    KillOps[Reg] = NULL;
585    RegKills.reset(Reg);
586  }
587}
588
589/// InvalidateRegDef - If the def operand of the specified def MI is now dead
590/// (since it's spill instruction is removed), mark it isDead. Also checks if
591/// the def MI has other definition operands that are not dead. Returns it by
592/// reference.
593static bool InvalidateRegDef(MachineBasicBlock::iterator I,
594                             MachineInstr &NewDef, unsigned Reg,
595                             bool &HasLiveDef) {
596  // Due to remat, it's possible this reg isn't being reused. That is,
597  // the def of this reg (by prev MI) is now dead.
598  MachineInstr *DefMI = I;
599  MachineOperand *DefOp = NULL;
600  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
601    MachineOperand &MO = DefMI->getOperand(i);
602    if (MO.isReg() && MO.isDef()) {
603      if (MO.getReg() == Reg)
604        DefOp = &MO;
605      else if (!MO.isDead())
606        HasLiveDef = true;
607    }
608  }
609  if (!DefOp)
610    return false;
611
612  bool FoundUse = false, Done = false;
613  MachineBasicBlock::iterator E = &NewDef;
614  ++I; ++E;
615  for (; !Done && I != E; ++I) {
616    MachineInstr *NMI = I;
617    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
618      MachineOperand &MO = NMI->getOperand(j);
619      if (!MO.isReg() || MO.getReg() != Reg)
620        continue;
621      if (MO.isUse())
622        FoundUse = true;
623      Done = true; // Stop after scanning all the operands of this MI.
624    }
625  }
626  if (!FoundUse) {
627    // Def is dead!
628    DefOp->setIsDead();
629    return true;
630  }
631  return false;
632}
633
634/// UpdateKills - Track and update kill info. If a MI reads a register that is
635/// marked kill, then it must be due to register reuse. Transfer the kill info
636/// over.
637static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
638                        std::vector<MachineOperand*> &KillOps) {
639  const TargetInstrDesc &TID = MI.getDesc();
640  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
641    MachineOperand &MO = MI.getOperand(i);
642    if (!MO.isReg() || !MO.isUse())
643      continue;
644    unsigned Reg = MO.getReg();
645    if (Reg == 0)
646      continue;
647
648    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
649      // That can't be right. Register is killed but not re-defined and it's
650      // being reused. Let's fix that.
651      KillOps[Reg]->setIsKill(false);
652      KillOps[Reg] = NULL;
653      RegKills.reset(Reg);
654      if (i < TID.getNumOperands() &&
655          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
656        // Unless it's a two-address operand, this is the new kill.
657        MO.setIsKill();
658    }
659    if (MO.isKill()) {
660      RegKills.set(Reg);
661      KillOps[Reg] = &MO;
662    }
663  }
664
665  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
666    const MachineOperand &MO = MI.getOperand(i);
667    if (!MO.isReg() || !MO.isDef())
668      continue;
669    unsigned Reg = MO.getReg();
670    RegKills.reset(Reg);
671    KillOps[Reg] = NULL;
672  }
673}
674
675/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
676///
677static void ReMaterialize(MachineBasicBlock &MBB,
678                          MachineBasicBlock::iterator &MII,
679                          unsigned DestReg, unsigned Reg,
680                          const TargetInstrInfo *TII,
681                          const TargetRegisterInfo *TRI,
682                          VirtRegMap &VRM) {
683  TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
684  MachineInstr *NewMI = prior(MII);
685  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
686    MachineOperand &MO = NewMI->getOperand(i);
687    if (!MO.isReg() || MO.getReg() == 0)
688      continue;
689    unsigned VirtReg = MO.getReg();
690    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
691      continue;
692    assert(MO.isUse());
693    unsigned SubIdx = MO.getSubReg();
694    unsigned Phys = VRM.getPhys(VirtReg);
695    assert(Phys);
696    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
697    MO.setReg(RReg);
698  }
699  ++NumReMats;
700}
701
702
703// ReusedOp - For each reused operand, we keep track of a bit of information, in
704// case we need to rollback upon processing a new operand.  See comments below.
705namespace {
706  struct ReusedOp {
707    // The MachineInstr operand that reused an available value.
708    unsigned Operand;
709
710    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
711    unsigned StackSlotOrReMat;
712
713    // PhysRegReused - The physical register the value was available in.
714    unsigned PhysRegReused;
715
716    // AssignedPhysReg - The physreg that was assigned for use by the reload.
717    unsigned AssignedPhysReg;
718
719    // VirtReg - The virtual register itself.
720    unsigned VirtReg;
721
722    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
723             unsigned vreg)
724      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
725        AssignedPhysReg(apr), VirtReg(vreg) {}
726  };
727
728  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
729  /// is reused instead of reloaded.
730  class VISIBILITY_HIDDEN ReuseInfo {
731    MachineInstr &MI;
732    std::vector<ReusedOp> Reuses;
733    BitVector PhysRegsClobbered;
734  public:
735    ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
736      PhysRegsClobbered.resize(tri->getNumRegs());
737    }
738
739    bool hasReuses() const {
740      return !Reuses.empty();
741    }
742
743    /// addReuse - If we choose to reuse a virtual register that is already
744    /// available instead of reloading it, remember that we did so.
745    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
746                  unsigned PhysRegReused, unsigned AssignedPhysReg,
747                  unsigned VirtReg) {
748      // If the reload is to the assigned register anyway, no undo will be
749      // required.
750      if (PhysRegReused == AssignedPhysReg) return;
751
752      // Otherwise, remember this.
753      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
754                                AssignedPhysReg, VirtReg));
755    }
756
757    void markClobbered(unsigned PhysReg) {
758      PhysRegsClobbered.set(PhysReg);
759    }
760
761    bool isClobbered(unsigned PhysReg) const {
762      return PhysRegsClobbered.test(PhysReg);
763    }
764
765    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
766    /// is some other operand that is using the specified register, either pick
767    /// a new register to use, or evict the previous reload and use this reg.
768    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
769                             AvailableSpills &Spills,
770                             std::vector<MachineInstr*> &MaybeDeadStores,
771                             SmallSet<unsigned, 8> &Rejected,
772                             BitVector &RegKills,
773                             std::vector<MachineOperand*> &KillOps,
774                             VirtRegMap &VRM) {
775      const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
776                                   .getInstrInfo();
777
778      if (Reuses.empty()) return PhysReg;  // This is most often empty.
779
780      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
781        ReusedOp &Op = Reuses[ro];
782        // If we find some other reuse that was supposed to use this register
783        // exactly for its reload, we can change this reload to use ITS reload
784        // register. That is, unless its reload register has already been
785        // considered and subsequently rejected because it has also been reused
786        // by another operand.
787        if (Op.PhysRegReused == PhysReg &&
788            Rejected.count(Op.AssignedPhysReg) == 0) {
789          // Yup, use the reload register that we didn't use before.
790          unsigned NewReg = Op.AssignedPhysReg;
791          Rejected.insert(PhysReg);
792          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
793                                 RegKills, KillOps, VRM);
794        } else {
795          // Otherwise, we might also have a problem if a previously reused
796          // value aliases the new register.  If so, codegen the previous reload
797          // and use this one.
798          unsigned PRRU = Op.PhysRegReused;
799          const TargetRegisterInfo *TRI = Spills.getRegInfo();
800          if (TRI->areAliases(PRRU, PhysReg)) {
801            // Okay, we found out that an alias of a reused register
802            // was used.  This isn't good because it means we have
803            // to undo a previous reuse.
804            MachineBasicBlock *MBB = MI->getParent();
805            const TargetRegisterClass *AliasRC =
806              MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
807
808            // Copy Op out of the vector and remove it, we're going to insert an
809            // explicit load for it.
810            ReusedOp NewOp = Op;
811            Reuses.erase(Reuses.begin()+ro);
812
813            // Ok, we're going to try to reload the assigned physreg into the
814            // slot that we were supposed to in the first place.  However, that
815            // register could hold a reuse.  Check to see if it conflicts or
816            // would prefer us to use a different register.
817            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
818                                                  MI, Spills, MaybeDeadStores,
819                                              Rejected, RegKills, KillOps, VRM);
820
821            MachineBasicBlock::iterator MII = MI;
822            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
823              ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
824            } else {
825              TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
826                                        NewOp.StackSlotOrReMat, AliasRC);
827              MachineInstr *LoadMI = prior(MII);
828              VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
829              // Any stores to this stack slot are not dead anymore.
830              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
831              ++NumLoads;
832            }
833            Spills.ClobberPhysReg(NewPhysReg);
834            Spills.ClobberPhysReg(NewOp.PhysRegReused);
835
836            unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
837            unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
838            MI->getOperand(NewOp.Operand).setReg(RReg);
839
840            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
841            --MII;
842            UpdateKills(*MII, RegKills, KillOps);
843            DOUT << '\t' << *MII;
844
845            DOUT << "Reuse undone!\n";
846            --NumReused;
847
848            // Finally, PhysReg is now available, go ahead and use it.
849            return PhysReg;
850          }
851        }
852      }
853      return PhysReg;
854    }
855
856    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
857    /// 'Rejected' set to remember which registers have been considered and
858    /// rejected for the reload. This avoids infinite looping in case like
859    /// this:
860    /// t1 := op t2, t3
861    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
862    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
863    /// t1 <- desires r1
864    ///       sees r1 is taken by t2, tries t2's reload register r0
865    ///       sees r0 is taken by t3, tries t3's reload register r1
866    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
867    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
868                             AvailableSpills &Spills,
869                             std::vector<MachineInstr*> &MaybeDeadStores,
870                             BitVector &RegKills,
871                             std::vector<MachineOperand*> &KillOps,
872                             VirtRegMap &VRM) {
873      SmallSet<unsigned, 8> Rejected;
874      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
875                             RegKills, KillOps, VRM);
876    }
877  };
878}
879
880/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
881/// instruction. e.g.
882///     xorl  %edi, %eax
883///     movl  %eax, -32(%ebp)
884///     movl  -36(%ebp), %eax
885///     orl   %eax, -32(%ebp)
886/// ==>
887///     xorl  %edi, %eax
888///     orl   -36(%ebp), %eax
889///     mov   %eax, -32(%ebp)
890/// This enables unfolding optimization for a subsequent instruction which will
891/// also eliminate the newly introduced store instruction.
892bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
893                                    MachineBasicBlock::iterator &MII,
894                                    std::vector<MachineInstr*> &MaybeDeadStores,
895                                    AvailableSpills &Spills,
896                                    BitVector &RegKills,
897                                    std::vector<MachineOperand*> &KillOps,
898                                    VirtRegMap &VRM) {
899  MachineFunction &MF = *MBB.getParent();
900  MachineInstr &MI = *MII;
901  unsigned UnfoldedOpc = 0;
902  unsigned UnfoldPR = 0;
903  unsigned UnfoldVR = 0;
904  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
905  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
906  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
907    // Only transform a MI that folds a single register.
908    if (UnfoldedOpc)
909      return false;
910    UnfoldVR = I->second.first;
911    VirtRegMap::ModRef MR = I->second.second;
912    // MI2VirtMap be can updated which invalidate the iterator.
913    // Increment the iterator first.
914    ++I;
915    if (VRM.isAssignedReg(UnfoldVR))
916      continue;
917    // If this reference is not a use, any previous store is now dead.
918    // Otherwise, the store to this stack slot is not dead anymore.
919    FoldedSS = VRM.getStackSlot(UnfoldVR);
920    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
921    if (DeadStore && (MR & VirtRegMap::isModRef)) {
922      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
923      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
924        continue;
925      UnfoldPR = PhysReg;
926      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
927                                                    false, true);
928    }
929  }
930
931  if (!UnfoldedOpc)
932    return false;
933
934  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
935    MachineOperand &MO = MI.getOperand(i);
936    if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
937      continue;
938    unsigned VirtReg = MO.getReg();
939    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
940      continue;
941    if (VRM.isAssignedReg(VirtReg)) {
942      unsigned PhysReg = VRM.getPhys(VirtReg);
943      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
944        return false;
945    } else if (VRM.isReMaterialized(VirtReg))
946      continue;
947    int SS = VRM.getStackSlot(VirtReg);
948    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
949    if (PhysReg) {
950      if (TRI->regsOverlap(PhysReg, UnfoldPR))
951        return false;
952      continue;
953    }
954    if (VRM.hasPhys(VirtReg)) {
955      PhysReg = VRM.getPhys(VirtReg);
956      if (!TRI->regsOverlap(PhysReg, UnfoldPR))
957        continue;
958    }
959
960    // Ok, we'll need to reload the value into a register which makes
961    // it impossible to perform the store unfolding optimization later.
962    // Let's see if it is possible to fold the load if the store is
963    // unfolded. This allows us to perform the store unfolding
964    // optimization.
965    SmallVector<MachineInstr*, 4> NewMIs;
966    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
967      assert(NewMIs.size() == 1);
968      MachineInstr *NewMI = NewMIs.back();
969      NewMIs.clear();
970      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
971      assert(Idx != -1);
972      SmallVector<unsigned, 2> Ops;
973      Ops.push_back(Idx);
974      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
975      if (FoldedMI) {
976        VRM.addSpillSlotUse(SS, FoldedMI);
977        if (!VRM.hasPhys(UnfoldVR))
978          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
979        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
980        MII = MBB.insert(MII, FoldedMI);
981        InvalidateKills(MI, RegKills, KillOps);
982        VRM.RemoveMachineInstrFromMaps(&MI);
983        MBB.erase(&MI);
984        MF.DeleteMachineInstr(NewMI);
985        return true;
986      }
987      MF.DeleteMachineInstr(NewMI);
988    }
989  }
990  return false;
991}
992
993/// CommuteToFoldReload -
994/// Look for
995/// r1 = load fi#1
996/// r1 = op r1, r2<kill>
997/// store r1, fi#1
998///
999/// If op is commutable and r2 is killed, then we can xform these to
1000/// r2 = op r2, fi#1
1001/// store r2, fi#1
1002bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
1003                                    MachineBasicBlock::iterator &MII,
1004                                    unsigned VirtReg, unsigned SrcReg, int SS,
1005                                    BitVector &RegKills,
1006                                    std::vector<MachineOperand*> &KillOps,
1007                                    const TargetRegisterInfo *TRI,
1008                                    VirtRegMap &VRM) {
1009  if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1010    return false;
1011
1012  MachineFunction &MF = *MBB.getParent();
1013  MachineInstr &MI = *MII;
1014  MachineBasicBlock::iterator DefMII = prior(MII);
1015  MachineInstr *DefMI = DefMII;
1016  const TargetInstrDesc &TID = DefMI->getDesc();
1017  unsigned NewDstIdx;
1018  if (DefMII != MBB.begin() &&
1019      TID.isCommutable() &&
1020      TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
1021    MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1022    unsigned NewReg = NewDstMO.getReg();
1023    if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1024      return false;
1025    MachineInstr *ReloadMI = prior(DefMII);
1026    int FrameIdx;
1027    unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1028    if (DestReg != SrcReg || FrameIdx != SS)
1029      return false;
1030    int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1031    if (UseIdx == -1)
1032      return false;
1033    int DefIdx = TID.getOperandConstraint(UseIdx, TOI::TIED_TO);
1034    if (DefIdx == -1)
1035      return false;
1036    assert(DefMI->getOperand(DefIdx).isReg() &&
1037           DefMI->getOperand(DefIdx).getReg() == SrcReg);
1038
1039    // Now commute def instruction.
1040    MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1041    if (!CommutedMI)
1042      return false;
1043    SmallVector<unsigned, 2> Ops;
1044    Ops.push_back(NewDstIdx);
1045    MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1046    // Not needed since foldMemoryOperand returns new MI.
1047    MF.DeleteMachineInstr(CommutedMI);
1048    if (!FoldedMI)
1049      return false;
1050
1051    VRM.addSpillSlotUse(SS, FoldedMI);
1052    VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1053    // Insert new def MI and spill MI.
1054    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
1055    TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1056    MII = prior(MII);
1057    MachineInstr *StoreMI = MII;
1058    VRM.addSpillSlotUse(SS, StoreMI);
1059    VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1060    MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.
1061
1062    // Delete all 3 old instructions.
1063    InvalidateKills(*ReloadMI, RegKills, KillOps);
1064    VRM.RemoveMachineInstrFromMaps(ReloadMI);
1065    MBB.erase(ReloadMI);
1066    InvalidateKills(*DefMI, RegKills, KillOps);
1067    VRM.RemoveMachineInstrFromMaps(DefMI);
1068    MBB.erase(DefMI);
1069    InvalidateKills(MI, RegKills, KillOps);
1070    VRM.RemoveMachineInstrFromMaps(&MI);
1071    MBB.erase(&MI);
1072
1073    ++NumCommutes;
1074    return true;
1075  }
1076
1077  return false;
1078}
1079
1080/// findSuperReg - Find the SubReg's super-register of given register class
1081/// where its SubIdx sub-register is SubReg.
1082static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
1083                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
1084  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1085       I != E; ++I) {
1086    unsigned Reg = *I;
1087    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
1088      return Reg;
1089  }
1090  return 0;
1091}
1092
1093/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1094/// the last store to the same slot is now dead. If so, remove the last store.
1095void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
1096                                  MachineBasicBlock::iterator &MII,
1097                                  int Idx, unsigned PhysReg, int StackSlot,
1098                                  const TargetRegisterClass *RC,
1099                                  bool isAvailable, MachineInstr *&LastStore,
1100                                  AvailableSpills &Spills,
1101                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
1102                                  BitVector &RegKills,
1103                                  std::vector<MachineOperand*> &KillOps,
1104                                  VirtRegMap &VRM) {
1105  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1106  MachineInstr *StoreMI = next(MII);
1107  VRM.addSpillSlotUse(StackSlot, StoreMI);
1108  DOUT << "Store:\t" << *StoreMI;
1109
1110  // If there is a dead store to this stack slot, nuke it now.
1111  if (LastStore) {
1112    DOUT << "Removed dead store:\t" << *LastStore;
1113    ++NumDSE;
1114    SmallVector<unsigned, 2> KillRegs;
1115    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
1116    MachineBasicBlock::iterator PrevMII = LastStore;
1117    bool CheckDef = PrevMII != MBB.begin();
1118    if (CheckDef)
1119      --PrevMII;
1120    VRM.RemoveMachineInstrFromMaps(LastStore);
1121    MBB.erase(LastStore);
1122    if (CheckDef) {
1123      // Look at defs of killed registers on the store. Mark the defs
1124      // as dead since the store has been deleted and they aren't
1125      // being reused.
1126      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1127        bool HasOtherDef = false;
1128        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1129          MachineInstr *DeadDef = PrevMII;
1130          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1131            // FIXME: This assumes a remat def does not have side
1132            // effects.
1133            VRM.RemoveMachineInstrFromMaps(DeadDef);
1134            MBB.erase(DeadDef);
1135            ++NumDRM;
1136          }
1137        }
1138      }
1139    }
1140  }
1141
1142  LastStore = next(MII);
1143
1144  // If the stack slot value was previously available in some other
1145  // register, change it now.  Otherwise, make the register available,
1146  // in PhysReg.
1147  Spills.ModifyStackSlotOrReMat(StackSlot);
1148  Spills.ClobberPhysReg(PhysReg);
1149  Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
1150  ++NumStores;
1151}
1152
1153/// TransferDeadness - A identity copy definition is dead and it's being
1154/// removed. Find the last def or use and mark it as dead / kill.
1155void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1156                                    unsigned Reg, BitVector &RegKills,
1157                                    std::vector<MachineOperand*> &KillOps) {
1158  int LastUDDist = -1;
1159  MachineInstr *LastUDMI = NULL;
1160  for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1161         RE = RegInfo->reg_end(); RI != RE; ++RI) {
1162    MachineInstr *UDMI = &*RI;
1163    if (UDMI->getParent() != MBB)
1164      continue;
1165    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1166    if (DI == DistanceMap.end() || DI->second > CurDist)
1167      continue;
1168    if ((int)DI->second < LastUDDist)
1169      continue;
1170    LastUDDist = DI->second;
1171    LastUDMI = UDMI;
1172  }
1173
1174  if (LastUDMI) {
1175    const TargetInstrDesc &TID = LastUDMI->getDesc();
1176    MachineOperand *LastUD = NULL;
1177    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1178      MachineOperand &MO = LastUDMI->getOperand(i);
1179      if (!MO.isReg() || MO.getReg() != Reg)
1180        continue;
1181      if (!LastUD || (LastUD->isUse() && MO.isDef()))
1182        LastUD = &MO;
1183      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
1184        return;
1185    }
1186    if (LastUD->isDef())
1187      LastUD->setIsDead();
1188    else {
1189      LastUD->setIsKill();
1190      RegKills.set(Reg);
1191      KillOps[Reg] = LastUD;
1192    }
1193  }
1194}
1195
1196/// rewriteMBB - Keep track of which spills are available even after the
1197/// register allocator is done with them.  If possible, avid reloading vregs.
1198void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
1199  DOUT << MBB.getBasicBlock()->getName() << ":\n";
1200
1201  MachineFunction &MF = *MBB.getParent();
1202
1203  // Spills - Keep track of which spilled values are available in physregs so
1204  // that we can choose to reuse the physregs instead of emitting reloads.
1205  AvailableSpills Spills(TRI, TII);
1206
1207  // MaybeDeadStores - When we need to write a value back into a stack slot,
1208  // keep track of the inserted store.  If the stack slot value is never read
1209  // (because the value was used from some available register, for example), and
1210  // subsequently stored to, the original store is dead.  This map keeps track
1211  // of inserted stores that are not used.  If we see a subsequent store to the
1212  // same stack slot, the original store is deleted.
1213  std::vector<MachineInstr*> MaybeDeadStores;
1214  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1215
1216  // ReMatDefs - These are rematerializable def MIs which are not deleted.
1217  SmallSet<MachineInstr*, 4> ReMatDefs;
1218
1219  // Keep track of kill information.
1220  BitVector RegKills(TRI->getNumRegs());
1221  std::vector<MachineOperand*>  KillOps;
1222  KillOps.resize(TRI->getNumRegs(), NULL);
1223
1224  unsigned Dist = 0;
1225  DistanceMap.clear();
1226  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1227       MII != E; ) {
1228    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
1229
1230    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1231    bool Erased = false;
1232    bool BackTracked = false;
1233    if (PrepForUnfoldOpti(MBB, MII,
1234                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1235      NextMII = next(MII);
1236
1237    MachineInstr &MI = *MII;
1238    const TargetInstrDesc &TID = MI.getDesc();
1239
1240    if (VRM.hasEmergencySpills(&MI)) {
1241      // Spill physical register(s) in the rare case the allocator has run out
1242      // of registers to allocate.
1243      SmallSet<int, 4> UsedSS;
1244      std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1245      for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1246        unsigned PhysReg = EmSpills[i];
1247        const TargetRegisterClass *RC =
1248          TRI->getPhysicalRegisterRegClass(PhysReg);
1249        assert(RC && "Unable to determine register class!");
1250        int SS = VRM.getEmergencySpillSlot(RC);
1251        if (UsedSS.count(SS))
1252          assert(0 && "Need to spill more than one physical registers!");
1253        UsedSS.insert(SS);
1254        TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1255        MachineInstr *StoreMI = prior(MII);
1256        VRM.addSpillSlotUse(SS, StoreMI);
1257        TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1258        MachineInstr *LoadMI = next(MII);
1259        VRM.addSpillSlotUse(SS, LoadMI);
1260        ++NumPSpills;
1261      }
1262      NextMII = next(MII);
1263    }
1264
1265    // Insert restores here if asked to.
1266    if (VRM.isRestorePt(&MI)) {
1267      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1268      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1269        unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
1270        if (!VRM.getPreSplitReg(VirtReg))
1271          continue; // Split interval spilled again.
1272        unsigned Phys = VRM.getPhys(VirtReg);
1273        RegInfo->setPhysRegUsed(Phys);
1274        if (VRM.isReMaterialized(VirtReg)) {
1275          ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1276        } else {
1277          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1278          int SS = VRM.getStackSlot(VirtReg);
1279          TII->loadRegFromStackSlot(MBB, &MI, Phys, SS, RC);
1280          MachineInstr *LoadMI = prior(MII);
1281          VRM.addSpillSlotUse(SS, LoadMI);
1282          ++NumLoads;
1283        }
1284        // This invalidates Phys.
1285        Spills.ClobberPhysReg(Phys);
1286        UpdateKills(*prior(MII), RegKills, KillOps);
1287        DOUT << '\t' << *prior(MII);
1288      }
1289    }
1290
1291    // Insert spills here if asked to.
1292    if (VRM.isSpillPt(&MI)) {
1293      std::vector<std::pair<unsigned,bool> > &SpillRegs =
1294        VRM.getSpillPtSpills(&MI);
1295      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1296        unsigned VirtReg = SpillRegs[i].first;
1297        bool isKill = SpillRegs[i].second;
1298        if (!VRM.getPreSplitReg(VirtReg))
1299          continue; // Split interval spilled again.
1300        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1301        unsigned Phys = VRM.getPhys(VirtReg);
1302        int StackSlot = VRM.getStackSlot(VirtReg);
1303        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1304        MachineInstr *StoreMI = next(MII);
1305        VRM.addSpillSlotUse(StackSlot, StoreMI);
1306        DOUT << "Store:\t" << *StoreMI;
1307        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1308      }
1309      NextMII = next(MII);
1310    }
1311
1312    /// ReusedOperands - Keep track of operand reuse in case we need to undo
1313    /// reuse.
1314    ReuseInfo ReusedOperands(MI, TRI);
1315    SmallVector<unsigned, 4> VirtUseOps;
1316    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1317      MachineOperand &MO = MI.getOperand(i);
1318      if (!MO.isReg() || MO.getReg() == 0)
1319        continue;   // Ignore non-register operands.
1320
1321      unsigned VirtReg = MO.getReg();
1322      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1323        // Ignore physregs for spilling, but remember that it is used by this
1324        // function.
1325        RegInfo->setPhysRegUsed(VirtReg);
1326        continue;
1327      }
1328
1329      // We want to process implicit virtual register uses first.
1330      if (MO.isImplicit())
1331        // If the virtual register is implicitly defined, emit a implicit_def
1332        // before so scavenger knows it's "defined".
1333        VirtUseOps.insert(VirtUseOps.begin(), i);
1334      else
1335        VirtUseOps.push_back(i);
1336    }
1337
1338    // Process all of the spilled uses and all non spilled reg references.
1339    for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1340      unsigned i = VirtUseOps[j];
1341      MachineOperand &MO = MI.getOperand(i);
1342      unsigned VirtReg = MO.getReg();
1343      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1344             "Not a virtual register?");
1345
1346      unsigned SubIdx = MO.getSubReg();
1347      if (VRM.isAssignedReg(VirtReg)) {
1348        // This virtual register was assigned a physreg!
1349        unsigned Phys = VRM.getPhys(VirtReg);
1350        RegInfo->setPhysRegUsed(Phys);
1351        if (MO.isDef())
1352          ReusedOperands.markClobbered(Phys);
1353        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1354        MI.getOperand(i).setReg(RReg);
1355        if (VRM.isImplicitlyDefined(VirtReg))
1356          BuildMI(MBB, &MI, TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1357        continue;
1358      }
1359
1360      // This virtual register is now known to be a spilled value.
1361      if (!MO.isUse())
1362        continue;  // Handle defs in the loop below (handle use&def here though)
1363
1364      bool DoReMat = VRM.isReMaterialized(VirtReg);
1365      int SSorRMId = DoReMat
1366        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1367      int ReuseSlot = SSorRMId;
1368
1369      // Check to see if this stack slot is available.
1370      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1371
1372      // If this is a sub-register use, make sure the reuse register is in the
1373      // right register class. For example, for x86 not all of the 32-bit
1374      // registers have accessible sub-registers.
1375      // Similarly so for EXTRACT_SUBREG. Consider this:
1376      // EDI = op
1377      // MOV32_mr fi#1, EDI
1378      // ...
1379      //       = EXTRACT_SUBREG fi#1
1380      // fi#1 is available in EDI, but it cannot be reused because it's not in
1381      // the right register file.
1382      if (PhysReg &&
1383          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1384        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1385        if (!RC->contains(PhysReg))
1386          PhysReg = 0;
1387      }
1388
1389      if (PhysReg) {
1390        // This spilled operand might be part of a two-address operand.  If this
1391        // is the case, then changing it will necessarily require changing the
1392        // def part of the instruction as well.  However, in some cases, we
1393        // aren't allowed to modify the reused register.  If none of these cases
1394        // apply, reuse it.
1395        bool CanReuse = true;
1396        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1397        if (ti != -1 &&
1398            MI.getOperand(ti).isReg() &&
1399            MI.getOperand(ti).getReg() == VirtReg) {
1400          // Okay, we have a two address operand.  We can reuse this physreg as
1401          // long as we are allowed to clobber the value and there isn't an
1402          // earlier def that has already clobbered the physreg.
1403          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1404            !ReusedOperands.isClobbered(PhysReg);
1405        }
1406
1407        if (CanReuse) {
1408          // If this stack slot value is already available, reuse it!
1409          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1410            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1411          else
1412            DOUT << "Reusing SS#" << ReuseSlot;
1413          DOUT << " from physreg "
1414               << TRI->getName(PhysReg) << " for vreg"
1415               << VirtReg <<" instead of reloading into physreg "
1416               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1417          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1418          MI.getOperand(i).setReg(RReg);
1419
1420          // The only technical detail we have is that we don't know that
1421          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1422          // later in the instruction.  In particular, consider 'op V1, V2'.
1423          // If V1 is available in physreg R0, we would choose to reuse it
1424          // here, instead of reloading it into the register the allocator
1425          // indicated (say R1).  However, V2 might have to be reloaded
1426          // later, and it might indicate that it needs to live in R0.  When
1427          // this occurs, we need to have information available that
1428          // indicates it is safe to use R1 for the reload instead of R0.
1429          //
1430          // To further complicate matters, we might conflict with an alias,
1431          // or R0 and R1 might not be compatible with each other.  In this
1432          // case, we actually insert a reload for V1 in R1, ensuring that
1433          // we can get at R0 or its alias.
1434          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1435                                  VRM.getPhys(VirtReg), VirtReg);
1436          if (ti != -1)
1437            // Only mark it clobbered if this is a use&def operand.
1438            ReusedOperands.markClobbered(PhysReg);
1439          ++NumReused;
1440
1441          if (MI.getOperand(i).isKill() &&
1442              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1443            // This was the last use and the spilled value is still available
1444            // for reuse. That means the spill was unnecessary!
1445            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1446            if (DeadStore) {
1447              DOUT << "Removed dead store:\t" << *DeadStore;
1448              InvalidateKills(*DeadStore, RegKills, KillOps);
1449              VRM.RemoveMachineInstrFromMaps(DeadStore);
1450              MBB.erase(DeadStore);
1451              MaybeDeadStores[ReuseSlot] = NULL;
1452              ++NumDSE;
1453            }
1454          }
1455          continue;
1456        }  // CanReuse
1457
1458        // Otherwise we have a situation where we have a two-address instruction
1459        // whose mod/ref operand needs to be reloaded.  This reload is already
1460        // available in some register "PhysReg", but if we used PhysReg as the
1461        // operand to our 2-addr instruction, the instruction would modify
1462        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1463        // to get its initial value.
1464        //
1465        // To avoid this problem, and to avoid doing a load right after a store,
1466        // we emit a copy from PhysReg into the designated register for this
1467        // operand.
1468        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1469        assert(DesignatedReg && "Must map virtreg to physreg!");
1470
1471        // Note that, if we reused a register for a previous operand, the
1472        // register we want to reload into might not actually be
1473        // available.  If this occurs, use the register indicated by the
1474        // reuser.
1475        if (ReusedOperands.hasReuses())
1476          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1477                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1478
1479        // If the mapped designated register is actually the physreg we have
1480        // incoming, we don't need to inserted a dead copy.
1481        if (DesignatedReg == PhysReg) {
1482          // If this stack slot value is already available, reuse it!
1483          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1484            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1485          else
1486            DOUT << "Reusing SS#" << ReuseSlot;
1487          DOUT << " from physreg " << TRI->getName(PhysReg)
1488               << " for vreg" << VirtReg
1489               << " instead of reloading into same physreg.\n";
1490          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1491          MI.getOperand(i).setReg(RReg);
1492          ReusedOperands.markClobbered(RReg);
1493          ++NumReused;
1494          continue;
1495        }
1496
1497        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1498        RegInfo->setPhysRegUsed(DesignatedReg);
1499        ReusedOperands.markClobbered(DesignatedReg);
1500        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1501
1502        MachineInstr *CopyMI = prior(MII);
1503        UpdateKills(*CopyMI, RegKills, KillOps);
1504
1505        // This invalidates DesignatedReg.
1506        Spills.ClobberPhysReg(DesignatedReg);
1507
1508        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1509        unsigned RReg =
1510          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1511        MI.getOperand(i).setReg(RReg);
1512        DOUT << '\t' << *prior(MII);
1513        ++NumReused;
1514        continue;
1515      } // if (PhysReg)
1516
1517      // Otherwise, reload it and remember that we have it.
1518      PhysReg = VRM.getPhys(VirtReg);
1519      assert(PhysReg && "Must map virtreg to physreg!");
1520
1521      // Note that, if we reused a register for a previous operand, the
1522      // register we want to reload into might not actually be
1523      // available.  If this occurs, use the register indicated by the
1524      // reuser.
1525      if (ReusedOperands.hasReuses())
1526        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1527                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1528
1529      RegInfo->setPhysRegUsed(PhysReg);
1530      ReusedOperands.markClobbered(PhysReg);
1531      if (DoReMat) {
1532        ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1533      } else {
1534        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1535        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1536        MachineInstr *LoadMI = prior(MII);
1537        VRM.addSpillSlotUse(SSorRMId, LoadMI);
1538        ++NumLoads;
1539      }
1540      // This invalidates PhysReg.
1541      Spills.ClobberPhysReg(PhysReg);
1542
1543      // Any stores to this stack slot are not dead anymore.
1544      if (!DoReMat)
1545        MaybeDeadStores[SSorRMId] = NULL;
1546      Spills.addAvailable(SSorRMId, &MI, PhysReg);
1547      // Assumes this is the last use. IsKill will be unset if reg is reused
1548      // unless it's a two-address operand.
1549      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
1550        MI.getOperand(i).setIsKill();
1551      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1552      MI.getOperand(i).setReg(RReg);
1553      UpdateKills(*prior(MII), RegKills, KillOps);
1554      DOUT << '\t' << *prior(MII);
1555    }
1556
1557    DOUT << '\t' << MI;
1558
1559
1560    // If we have folded references to memory operands, make sure we clear all
1561    // physical registers that may contain the value of the spilled virtual
1562    // register
1563    SmallSet<int, 2> FoldedSS;
1564    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1565      unsigned VirtReg = I->second.first;
1566      VirtRegMap::ModRef MR = I->second.second;
1567      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1568
1569      // MI2VirtMap be can updated which invalidate the iterator.
1570      // Increment the iterator first.
1571      ++I;
1572      int SS = VRM.getStackSlot(VirtReg);
1573      if (SS == VirtRegMap::NO_STACK_SLOT)
1574        continue;
1575      FoldedSS.insert(SS);
1576      DOUT << " - StackSlot: " << SS << "\n";
1577
1578      // If this folded instruction is just a use, check to see if it's a
1579      // straight load from the virt reg slot.
1580      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1581        int FrameIdx;
1582        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1583        if (DestReg && FrameIdx == SS) {
1584          // If this spill slot is available, turn it into a copy (or nothing)
1585          // instead of leaving it as a load!
1586          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1587            DOUT << "Promoted Load To Copy: " << MI;
1588            if (DestReg != InReg) {
1589              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1590              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1591              MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1592              unsigned SubIdx = DefMO->getSubReg();
1593              // Revisit the copy so we make sure to notice the effects of the
1594              // operation on the destreg (either needing to RA it if it's
1595              // virtual or needing to clobber any values if it's physical).
1596              NextMII = &MI;
1597              --NextMII;  // backtrack to the copy.
1598              // Propagate the sub-register index over.
1599              if (SubIdx) {
1600                DefMO = NextMII->findRegisterDefOperand(DestReg);
1601                DefMO->setSubReg(SubIdx);
1602              }
1603              BackTracked = true;
1604            } else {
1605              DOUT << "Removing now-noop copy: " << MI;
1606              // Unset last kill since it's being reused.
1607              InvalidateKill(InReg, RegKills, KillOps);
1608            }
1609
1610            InvalidateKills(MI, RegKills, KillOps);
1611            VRM.RemoveMachineInstrFromMaps(&MI);
1612            MBB.erase(&MI);
1613            Erased = true;
1614            goto ProcessNextInst;
1615          }
1616        } else {
1617          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1618          SmallVector<MachineInstr*, 4> NewMIs;
1619          if (PhysReg &&
1620              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1621            MBB.insert(MII, NewMIs[0]);
1622            InvalidateKills(MI, RegKills, KillOps);
1623            VRM.RemoveMachineInstrFromMaps(&MI);
1624            MBB.erase(&MI);
1625            Erased = true;
1626            --NextMII;  // backtrack to the unfolded instruction.
1627            BackTracked = true;
1628            goto ProcessNextInst;
1629          }
1630        }
1631      }
1632
1633      // If this reference is not a use, any previous store is now dead.
1634      // Otherwise, the store to this stack slot is not dead anymore.
1635      MachineInstr* DeadStore = MaybeDeadStores[SS];
1636      if (DeadStore) {
1637        bool isDead = !(MR & VirtRegMap::isRef);
1638        MachineInstr *NewStore = NULL;
1639        if (MR & VirtRegMap::isModRef) {
1640          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1641          SmallVector<MachineInstr*, 4> NewMIs;
1642          // We can reuse this physreg as long as we are allowed to clobber
1643          // the value and there isn't an earlier def that has already clobbered
1644          // the physreg.
1645          if (PhysReg &&
1646              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1647            MachineOperand *KillOpnd =
1648              DeadStore->findRegisterUseOperand(PhysReg, true);
1649            // Note, if the store is storing a sub-register, it's possible the
1650            // super-register is needed below.
1651            if (KillOpnd && !KillOpnd->getSubReg() &&
1652                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1653              MBB.insert(MII, NewMIs[0]);
1654              NewStore = NewMIs[1];
1655              MBB.insert(MII, NewStore);
1656              VRM.addSpillSlotUse(SS, NewStore);
1657              InvalidateKills(MI, RegKills, KillOps);
1658              VRM.RemoveMachineInstrFromMaps(&MI);
1659              MBB.erase(&MI);
1660              Erased = true;
1661              --NextMII;
1662              --NextMII;  // backtrack to the unfolded instruction.
1663              BackTracked = true;
1664              isDead = true;
1665            }
1666          }
1667        }
1668
1669        if (isDead) {  // Previous store is dead.
1670          // If we get here, the store is dead, nuke it now.
1671          DOUT << "Removed dead store:\t" << *DeadStore;
1672          InvalidateKills(*DeadStore, RegKills, KillOps);
1673          VRM.RemoveMachineInstrFromMaps(DeadStore);
1674          MBB.erase(DeadStore);
1675          if (!NewStore)
1676            ++NumDSE;
1677        }
1678
1679        MaybeDeadStores[SS] = NULL;
1680        if (NewStore) {
1681          // Treat this store as a spill merged into a copy. That makes the
1682          // stack slot value available.
1683          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1684          goto ProcessNextInst;
1685        }
1686      }
1687
1688      // If the spill slot value is available, and this is a new definition of
1689      // the value, the value is not available anymore.
1690      if (MR & VirtRegMap::isMod) {
1691        // Notice that the value in this stack slot has been modified.
1692        Spills.ModifyStackSlotOrReMat(SS);
1693
1694        // If this is *just* a mod of the value, check to see if this is just a
1695        // store to the spill slot (i.e. the spill got merged into the copy). If
1696        // so, realize that the vreg is available now, and add the store to the
1697        // MaybeDeadStore info.
1698        int StackSlot;
1699        if (!(MR & VirtRegMap::isRef)) {
1700          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1701            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1702                   "Src hasn't been allocated yet?");
1703
1704            if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
1705                                    RegKills, KillOps, TRI, VRM)) {
1706              NextMII = next(MII);
1707              BackTracked = true;
1708              goto ProcessNextInst;
1709            }
1710
1711            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1712            // this as a potentially dead store in case there is a subsequent
1713            // store into the stack slot without a read from it.
1714            MaybeDeadStores[StackSlot] = &MI;
1715
1716            // If the stack slot value was previously available in some other
1717            // register, change it now.  Otherwise, make the register
1718            // available in PhysReg.
1719            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*!clobber*/);
1720          }
1721        }
1722      }
1723    }
1724
1725    // Process all of the spilled defs.
1726    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1727      MachineOperand &MO = MI.getOperand(i);
1728      if (!(MO.isReg() && MO.getReg() && MO.isDef()))
1729        continue;
1730
1731      unsigned VirtReg = MO.getReg();
1732      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1733        // Check to see if this is a noop copy.  If so, eliminate the
1734        // instruction before considering the dest reg to be changed.
1735        unsigned Src, Dst;
1736        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1737          ++NumDCE;
1738          DOUT << "Removing now-noop copy: " << MI;
1739          SmallVector<unsigned, 2> KillRegs;
1740          InvalidateKills(MI, RegKills, KillOps, &KillRegs);
1741          if (MO.isDead() && !KillRegs.empty()) {
1742            // Source register or an implicit super-register use is killed.
1743            assert(KillRegs[0] == Dst || TRI->isSubRegister(KillRegs[0], Dst));
1744            // Last def is now dead.
1745            TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
1746          }
1747          VRM.RemoveMachineInstrFromMaps(&MI);
1748          MBB.erase(&MI);
1749          Erased = true;
1750          Spills.disallowClobberPhysReg(VirtReg);
1751          goto ProcessNextInst;
1752        }
1753
1754        // If it's not a no-op copy, it clobbers the value in the destreg.
1755        Spills.ClobberPhysReg(VirtReg);
1756        ReusedOperands.markClobbered(VirtReg);
1757
1758        // Check to see if this instruction is a load from a stack slot into
1759        // a register.  If so, this provides the stack slot value in the reg.
1760        int FrameIdx;
1761        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1762          assert(DestReg == VirtReg && "Unknown load situation!");
1763
1764          // If it is a folded reference, then it's not safe to clobber.
1765          bool Folded = FoldedSS.count(FrameIdx);
1766          // Otherwise, if it wasn't available, remember that it is now!
1767          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1768          goto ProcessNextInst;
1769        }
1770
1771        continue;
1772      }
1773
1774      unsigned SubIdx = MO.getSubReg();
1775      bool DoReMat = VRM.isReMaterialized(VirtReg);
1776      if (DoReMat)
1777        ReMatDefs.insert(&MI);
1778
1779      // The only vregs left are stack slot definitions.
1780      int StackSlot = VRM.getStackSlot(VirtReg);
1781      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1782
1783      // If this def is part of a two-address operand, make sure to execute
1784      // the store from the correct physical register.
1785      unsigned PhysReg;
1786      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
1787      if (TiedOp != -1) {
1788        PhysReg = MI.getOperand(TiedOp).getReg();
1789        if (SubIdx) {
1790          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1791          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1792                 "Can't find corresponding super-register!");
1793          PhysReg = SuperReg;
1794        }
1795      } else {
1796        PhysReg = VRM.getPhys(VirtReg);
1797        if (ReusedOperands.isClobbered(PhysReg)) {
1798          // Another def has taken the assigned physreg. It must have been a
1799          // use&def which got it due to reuse. Undo the reuse!
1800          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1801                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1802        }
1803      }
1804
1805      assert(PhysReg && "VR not assigned a physical register?");
1806      RegInfo->setPhysRegUsed(PhysReg);
1807      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1808      ReusedOperands.markClobbered(RReg);
1809      MI.getOperand(i).setReg(RReg);
1810
1811      if (!MO.isDead()) {
1812        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1813        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1814                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1815        NextMII = next(MII);
1816
1817        // Check to see if this is a noop copy.  If so, eliminate the
1818        // instruction before considering the dest reg to be changed.
1819        {
1820          unsigned Src, Dst;
1821          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1822            ++NumDCE;
1823            DOUT << "Removing now-noop copy: " << MI;
1824            InvalidateKills(MI, RegKills, KillOps);
1825            VRM.RemoveMachineInstrFromMaps(&MI);
1826            MBB.erase(&MI);
1827            Erased = true;
1828            UpdateKills(*LastStore, RegKills, KillOps);
1829            goto ProcessNextInst;
1830          }
1831        }
1832      }
1833    }
1834  ProcessNextInst:
1835    DistanceMap.insert(std::make_pair(&MI, Dist++));
1836    if (!Erased && !BackTracked) {
1837      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
1838        UpdateKills(*II, RegKills, KillOps);
1839    }
1840    MII = NextMII;
1841  }
1842}
1843
1844llvm::Spiller* llvm::createSpiller() {
1845  switch (SpillerOpt) {
1846  default: assert(0 && "Unreachable!");
1847  case local:
1848    return new LocalSpiller();
1849  case simple:
1850    return new SimpleSpiller();
1851  }
1852}
1853