VirtRegMap.cpp revision addc55af6c7f8b71eedd68d48f6a93ceecff2840
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <iostream>
33using namespace llvm;
34
35namespace {
36  Statistic<> NumSpills("spiller", "Number of register spills");
37  Statistic<> NumStores("spiller", "Number of stores added");
38  Statistic<> NumLoads ("spiller", "Number of loads added");
39  Statistic<> NumReused("spiller", "Number of values reused");
40  Statistic<> NumDSE   ("spiller", "Number of dead stores elided");
41  Statistic<> NumDCE   ("spiller", "Number of copies elided");
42
43  enum SpillerName { simple, local };
44
45  cl::opt<SpillerName>
46  SpillerOpt("spiller",
47             cl::desc("Spiller to use: (default: local)"),
48             cl::Prefix,
49             cl::values(clEnumVal(simple, "  simple spiller"),
50                        clEnumVal(local,  "  local spiller"),
51                        clEnumValEnd),
52             cl::init(local));
53}
54
55//===----------------------------------------------------------------------===//
56//  VirtRegMap implementation
57//===----------------------------------------------------------------------===//
58
59void VirtRegMap::grow() {
60  Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg());
61  Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg());
62}
63
64int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
65  assert(MRegisterInfo::isVirtualRegister(virtReg));
66  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
67         "attempt to assign stack slot to already spilled register");
68  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
69  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
70                                                        RC->getAlignment());
71  Virt2StackSlotMap[virtReg] = frameIndex;
72  ++NumSpills;
73  return frameIndex;
74}
75
76void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
77  assert(MRegisterInfo::isVirtualRegister(virtReg));
78  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
79         "attempt to assign stack slot to already spilled register");
80  Virt2StackSlotMap[virtReg] = frameIndex;
81}
82
83void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
84                            unsigned OpNo, MachineInstr *NewMI) {
85  // Move previous memory references folded to new instruction.
86  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
87  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
88         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
89    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
90    MI2VirtMap.erase(I++);
91  }
92
93  ModRef MRInfo;
94  if (!OldMI->getOperand(OpNo).isDef()) {
95    assert(OldMI->getOperand(OpNo).isUse() && "Operand is not use or def?");
96    MRInfo = isRef;
97  } else {
98    MRInfo = OldMI->getOperand(OpNo).isUse() ? isModRef : isMod;
99  }
100
101  // add new memory reference
102  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
103}
104
105void VirtRegMap::print(std::ostream &OS) const {
106  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
107
108  OS << "********** REGISTER MAP **********\n";
109  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
110         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
111    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
112      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
113
114  }
115
116  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
117         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
118    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
119      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
120  OS << '\n';
121}
122
123void VirtRegMap::dump() const { print(std::cerr); }
124
125
126//===----------------------------------------------------------------------===//
127// Simple Spiller Implementation
128//===----------------------------------------------------------------------===//
129
130Spiller::~Spiller() {}
131
132namespace {
133  struct SimpleSpiller : public Spiller {
134    bool runOnMachineFunction(MachineFunction& mf, const VirtRegMap &VRM);
135  };
136}
137
138bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF,
139                                         const VirtRegMap &VRM) {
140  DEBUG(std::cerr << "********** REWRITE MACHINE CODE **********\n");
141  DEBUG(std::cerr << "********** Function: "
142                  << MF.getFunction()->getName() << '\n');
143  const TargetMachine &TM = MF.getTarget();
144  const MRegisterInfo &MRI = *TM.getRegisterInfo();
145  bool *PhysRegsUsed = MF.getUsedPhysregs();
146
147  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
148  // each vreg once (in the case where a spilled vreg is used by multiple
149  // operands).  This is always smaller than the number of operands to the
150  // current machine instr, so it should be small.
151  std::vector<unsigned> LoadedRegs;
152
153  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
154       MBBI != E; ++MBBI) {
155    DEBUG(std::cerr << MBBI->getBasicBlock()->getName() << ":\n");
156    MachineBasicBlock &MBB = *MBBI;
157    for (MachineBasicBlock::iterator MII = MBB.begin(),
158           E = MBB.end(); MII != E; ++MII) {
159      MachineInstr &MI = *MII;
160      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
161        MachineOperand &MO = MI.getOperand(i);
162        if (MO.isRegister() && MO.getReg())
163          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
164            unsigned VirtReg = MO.getReg();
165            unsigned PhysReg = VRM.getPhys(VirtReg);
166            if (VRM.hasStackSlot(VirtReg)) {
167              int StackSlot = VRM.getStackSlot(VirtReg);
168              const TargetRegisterClass* RC =
169                MF.getSSARegMap()->getRegClass(VirtReg);
170
171              if (MO.isUse() &&
172                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
173                  == LoadedRegs.end()) {
174                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
175                LoadedRegs.push_back(VirtReg);
176                ++NumLoads;
177                DEBUG(std::cerr << '\t' << *prior(MII));
178              }
179
180              if (MO.isDef()) {
181                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
182                ++NumStores;
183              }
184            }
185            PhysRegsUsed[PhysReg] = true;
186            MI.SetMachineOperandReg(i, PhysReg);
187          } else {
188            PhysRegsUsed[MO.getReg()] = true;
189          }
190      }
191
192      DEBUG(std::cerr << '\t' << MI);
193      LoadedRegs.clear();
194    }
195  }
196  return true;
197}
198
199//===----------------------------------------------------------------------===//
200//  Local Spiller Implementation
201//===----------------------------------------------------------------------===//
202
203namespace {
204  /// LocalSpiller - This spiller does a simple pass over the machine basic
205  /// block to attempt to keep spills in registers as much as possible for
206  /// blocks that have low register pressure (the vreg may be spilled due to
207  /// register pressure in other blocks).
208  class LocalSpiller : public Spiller {
209    const MRegisterInfo *MRI;
210    const TargetInstrInfo *TII;
211  public:
212    bool runOnMachineFunction(MachineFunction &MF, const VirtRegMap &VRM) {
213      MRI = MF.getTarget().getRegisterInfo();
214      TII = MF.getTarget().getInstrInfo();
215      DEBUG(std::cerr << "\n**** Local spiller rewriting function '"
216                      << MF.getFunction()->getName() << "':\n");
217
218      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
219           MBB != E; ++MBB)
220        RewriteMBB(*MBB, VRM);
221      return true;
222    }
223  private:
224    void RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM);
225    void ClobberPhysReg(unsigned PR, std::map<int, unsigned> &SpillSlots,
226                        std::multimap<unsigned, int> &PhysRegs);
227    void ClobberPhysRegOnly(unsigned PR, std::map<int, unsigned> &SpillSlots,
228                            std::multimap<unsigned, int> &PhysRegs);
229    void ModifyStackSlot(int Slot, std::map<int, unsigned> &SpillSlots,
230                         std::multimap<unsigned, int> &PhysRegs);
231  };
232}
233
234/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
235/// top down, keep track of which spills slots are available in each register.
236///
237/// Note that not all physregs are created equal here.  In particular, some
238/// physregs are reloads that we are allowed to clobber or ignore at any time.
239/// Other physregs are values that the register allocated program is using that
240/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
241/// per-stack-slot basis as the low bit in the value of the SpillSlotsAvailable
242/// entries.  The predicate 'canClobberPhysReg()' checks this bit and
243/// addAvailable sets it if.
244class AvailableSpills {
245  const MRegisterInfo *MRI;
246  const TargetInstrInfo *TII;
247
248  // SpillSlotsAvailable - This map keeps track of all of the spilled virtual
249  // register values that are still available, due to being loaded or stored to,
250  // but not invalidated yet.
251  std::map<int, unsigned> SpillSlotsAvailable;
252
253  // PhysRegsAvailable - This is the inverse of SpillSlotsAvailable, indicating
254  // which stack slot values are currently held by a physreg.  This is used to
255  // invalidate entries in SpillSlotsAvailable when a physreg is modified.
256  std::multimap<unsigned, int> PhysRegsAvailable;
257
258  void ClobberPhysRegOnly(unsigned PhysReg);
259public:
260  AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
261    : MRI(mri), TII(tii) {
262  }
263
264  /// getSpillSlotPhysReg - If the specified stack slot is available in a
265  /// physical register, return that PhysReg, otherwise return 0.
266  unsigned getSpillSlotPhysReg(int Slot) const {
267    std::map<int, unsigned>::const_iterator I = SpillSlotsAvailable.find(Slot);
268    if (I != SpillSlotsAvailable.end())
269      return I->second >> 1;  // Remove the CanClobber bit.
270    return 0;
271  }
272
273  const MRegisterInfo *getRegInfo() const { return MRI; }
274
275  /// addAvailable - Mark that the specified stack slot is available in the
276  /// specified physreg.  If CanClobber is true, the physreg can be modified at
277  /// any time without changing the semantics of the program.
278  void addAvailable(int Slot, unsigned Reg, bool CanClobber = true) {
279    // If this stack slot is thought to be available in some other physreg,
280    // remove its record.
281    ModifyStackSlot(Slot);
282
283    PhysRegsAvailable.insert(std::make_pair(Reg, Slot));
284    SpillSlotsAvailable[Slot] = (Reg << 1) | (unsigned)CanClobber;
285
286    DEBUG(std::cerr << "Remembering SS#" << Slot << " in physreg "
287                    << MRI->getName(Reg) << "\n");
288  }
289
290  /// canClobberPhysReg - Return true if the spiller is allowed to change the
291  /// value of the specified stackslot register if it desires.  The specified
292  /// stack slot must be available in a physreg for this query to make sense.
293  bool canClobberPhysReg(int Slot) const {
294    assert(SpillSlotsAvailable.count(Slot) && "Slot not available!");
295    return SpillSlotsAvailable.find(Slot)->second & 1;
296  }
297
298  /// ClobberPhysReg - This is called when the specified physreg changes
299  /// value.  We use this to invalidate any info about stuff we thing lives in
300  /// it and any of its aliases.
301  void ClobberPhysReg(unsigned PhysReg);
302
303  /// ModifyStackSlot - This method is called when the value in a stack slot
304  /// changes.  This removes information about which register the previous value
305  /// for this slot lives in (as the previous value is dead now).
306  void ModifyStackSlot(int Slot);
307};
308
309/// ClobberPhysRegOnly - This is called when the specified physreg changes
310/// value.  We use this to invalidate any info about stuff we thing lives in it.
311void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
312  std::multimap<unsigned, int>::iterator I =
313    PhysRegsAvailable.lower_bound(PhysReg);
314  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
315    int Slot = I->second;
316    PhysRegsAvailable.erase(I++);
317    assert((SpillSlotsAvailable[Slot] >> 1) == PhysReg &&
318           "Bidirectional map mismatch!");
319    SpillSlotsAvailable.erase(Slot);
320    DEBUG(std::cerr << "PhysReg " << MRI->getName(PhysReg)
321                    << " clobbered, invalidating SS#" << Slot << "\n");
322  }
323}
324
325/// ClobberPhysReg - This is called when the specified physreg changes
326/// value.  We use this to invalidate any info about stuff we thing lives in
327/// it and any of its aliases.
328void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
329  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
330    ClobberPhysRegOnly(*AS);
331  ClobberPhysRegOnly(PhysReg);
332}
333
334/// ModifyStackSlot - This method is called when the value in a stack slot
335/// changes.  This removes information about which register the previous value
336/// for this slot lives in (as the previous value is dead now).
337void AvailableSpills::ModifyStackSlot(int Slot) {
338  std::map<int, unsigned>::iterator It = SpillSlotsAvailable.find(Slot);
339  if (It == SpillSlotsAvailable.end()) return;
340  unsigned Reg = It->second >> 1;
341  SpillSlotsAvailable.erase(It);
342
343  // This register may hold the value of multiple stack slots, only remove this
344  // stack slot from the set of values the register contains.
345  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
346  for (; ; ++I) {
347    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
348           "Map inverse broken!");
349    if (I->second == Slot) break;
350  }
351  PhysRegsAvailable.erase(I);
352}
353
354
355
356// ReusedOp - For each reused operand, we keep track of a bit of information, in
357// case we need to rollback upon processing a new operand.  See comments below.
358namespace {
359  struct ReusedOp {
360    // The MachineInstr operand that reused an available value.
361    unsigned Operand;
362
363    // StackSlot - The spill slot of the value being reused.
364    unsigned StackSlot;
365
366    // PhysRegReused - The physical register the value was available in.
367    unsigned PhysRegReused;
368
369    // AssignedPhysReg - The physreg that was assigned for use by the reload.
370    unsigned AssignedPhysReg;
371
372    // VirtReg - The virtual register itself.
373    unsigned VirtReg;
374
375    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
376             unsigned vreg)
377      : Operand(o), StackSlot(ss), PhysRegReused(prr), AssignedPhysReg(apr),
378      VirtReg(vreg) {}
379  };
380
381  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
382  /// is reused instead of reloaded.
383  class ReuseInfo {
384    MachineInstr &MI;
385    std::vector<ReusedOp> Reuses;
386  public:
387    ReuseInfo(MachineInstr &mi) : MI(mi) {}
388
389    bool hasReuses() const {
390      return !Reuses.empty();
391    }
392
393    /// addReuse - If we choose to reuse a virtual register that is already
394    /// available instead of reloading it, remember that we did so.
395    void addReuse(unsigned OpNo, unsigned StackSlot,
396                  unsigned PhysRegReused, unsigned AssignedPhysReg,
397                  unsigned VirtReg) {
398      // If the reload is to the assigned register anyway, no undo will be
399      // required.
400      if (PhysRegReused == AssignedPhysReg) return;
401
402      // Otherwise, remember this.
403      Reuses.push_back(ReusedOp(OpNo, StackSlot, PhysRegReused,
404                                AssignedPhysReg, VirtReg));
405    }
406
407    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
408    /// is some other operand that is using the specified register, either pick
409    /// a new register to use, or evict the previous reload and use this reg.
410    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
411                             AvailableSpills &Spills,
412                             std::map<int, MachineInstr*> &MaybeDeadStores) {
413      if (Reuses.empty()) return PhysReg;  // This is most often empty.
414
415      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
416        ReusedOp &Op = Reuses[ro];
417        // If we find some other reuse that was supposed to use this register
418        // exactly for its reload, we can change this reload to use ITS reload
419        // register.
420        if (Op.PhysRegReused == PhysReg) {
421          // Yup, use the reload register that we didn't use before.
422          unsigned NewReg = Op.AssignedPhysReg;
423
424          // Remove the record for the previous reuse.  We know it can never be
425          // invalidated now.
426          Reuses.erase(Reuses.begin()+ro);
427          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores);
428        } else {
429          // Otherwise, we might also have a problem if a previously reused
430          // value aliases the new register.  If so, codegen the previous reload
431          // and use this one.
432          unsigned PRRU = Op.PhysRegReused;
433          const MRegisterInfo *MRI = Spills.getRegInfo();
434          if (MRI->areAliases(PRRU, PhysReg)) {
435            // Okay, we found out that an alias of a reused register
436            // was used.  This isn't good because it means we have
437            // to undo a previous reuse.
438            MachineBasicBlock *MBB = MI->getParent();
439            const TargetRegisterClass *AliasRC =
440              MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
441
442            // Copy Op out of the vector and remove it, we're going to insert an
443            // explicit load for it.
444            ReusedOp NewOp = Op;
445            Reuses.erase(Reuses.begin()+ro);
446
447            // Ok, we're going to try to reload the assigned physreg into the
448            // slot that we were supposed to in the first place.  However, that
449            // register could hold a reuse.  Check to see if it conflicts or
450            // would prefer us to use a different register.
451            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
452                                                  MI, Spills, MaybeDeadStores);
453
454            MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
455                                      NewOp.StackSlot, AliasRC);
456            Spills.ClobberPhysReg(NewPhysReg);
457            Spills.ClobberPhysReg(NewOp.PhysRegReused);
458
459            // Any stores to this stack slot are not dead anymore.
460            MaybeDeadStores.erase(NewOp.StackSlot);
461
462            MI->SetMachineOperandReg(NewOp.Operand, NewPhysReg);
463
464            Spills.addAvailable(NewOp.StackSlot, NewPhysReg);
465            ++NumLoads;
466            DEBUG(MachineBasicBlock::iterator MII = MI;
467                  std::cerr << '\t' << *prior(MII));
468
469            DEBUG(std::cerr << "Reuse undone!\n");
470            --NumReused;
471
472            // Finally, PhysReg is now available, go ahead and use it.
473            return PhysReg;
474          }
475        }
476      }
477      return PhysReg;
478    }
479  };
480}
481
482
483/// rewriteMBB - Keep track of which spills are available even after the
484/// register allocator is done with them.  If possible, avoid reloading vregs.
485void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, const VirtRegMap &VRM) {
486
487  DEBUG(std::cerr << MBB.getBasicBlock()->getName() << ":\n");
488
489  // Spills - Keep track of which spilled values are available in physregs so
490  // that we can choose to reuse the physregs instead of emitting reloads.
491  AvailableSpills Spills(MRI, TII);
492
493  // DefAndUseVReg - When we see a def&use operand that is spilled, keep track
494  // of it.  ".first" is the machine operand index (should always be 0 for now),
495  // and ".second" is the virtual register that is spilled.
496  std::vector<std::pair<unsigned, unsigned> > DefAndUseVReg;
497
498  // MaybeDeadStores - When we need to write a value back into a stack slot,
499  // keep track of the inserted store.  If the stack slot value is never read
500  // (because the value was used from some available register, for example), and
501  // subsequently stored to, the original store is dead.  This map keeps track
502  // of inserted stores that are not used.  If we see a subsequent store to the
503  // same stack slot, the original store is deleted.
504  std::map<int, MachineInstr*> MaybeDeadStores;
505
506  bool *PhysRegsUsed = MBB.getParent()->getUsedPhysregs();
507
508  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
509       MII != E; ) {
510    MachineInstr &MI = *MII;
511    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
512
513    /// ReusedOperands - Keep track of operand reuse in case we need to undo
514    /// reuse.
515    ReuseInfo ReusedOperands(MI);
516
517    DefAndUseVReg.clear();
518
519    // Process all of the spilled uses and all non spilled reg references.
520    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
521      MachineOperand &MO = MI.getOperand(i);
522      if (!MO.isRegister() || MO.getReg() == 0)
523        continue;   // Ignore non-register operands.
524
525      if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
526        // Ignore physregs for spilling, but remember that it is used by this
527        // function.
528        PhysRegsUsed[MO.getReg()] = true;
529        continue;
530      }
531
532      assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
533             "Not a virtual or a physical register?");
534
535      unsigned VirtReg = MO.getReg();
536      if (!VRM.hasStackSlot(VirtReg)) {
537        // This virtual register was assigned a physreg!
538        unsigned Phys = VRM.getPhys(VirtReg);
539        PhysRegsUsed[Phys] = true;
540        MI.SetMachineOperandReg(i, Phys);
541        continue;
542      }
543
544      // This virtual register is now known to be a spilled value.
545      if (!MO.isUse())
546        continue;  // Handle defs in the loop below (handle use&def here though)
547
548      // If this is both a def and a use, we need to emit a store to the
549      // stack slot after the instruction.  Keep track of D&U operands
550      // because we are about to change it to a physreg here.
551      if (MO.isDef()) {
552        // Remember that this was a def-and-use operand, and that the
553        // stack slot is live after this instruction executes.
554        DefAndUseVReg.push_back(std::make_pair(i, VirtReg));
555      }
556
557      int StackSlot = VRM.getStackSlot(VirtReg);
558      unsigned PhysReg;
559
560      // Check to see if this stack slot is available.
561      if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) {
562
563        // Don't reuse it for a def&use operand if we aren't allowed to change
564        // the physreg!
565        if (!MO.isDef() || Spills.canClobberPhysReg(StackSlot)) {
566          // If this stack slot value is already available, reuse it!
567          DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg "
568                          << MRI->getName(PhysReg) << " for vreg"
569                          << VirtReg <<" instead of reloading into physreg "
570                          << MRI->getName(VRM.getPhys(VirtReg)) << "\n");
571          MI.SetMachineOperandReg(i, PhysReg);
572
573          // The only technical detail we have is that we don't know that
574          // PhysReg won't be clobbered by a reloaded stack slot that occurs
575          // later in the instruction.  In particular, consider 'op V1, V2'.
576          // If V1 is available in physreg R0, we would choose to reuse it
577          // here, instead of reloading it into the register the allocator
578          // indicated (say R1).  However, V2 might have to be reloaded
579          // later, and it might indicate that it needs to live in R0.  When
580          // this occurs, we need to have information available that
581          // indicates it is safe to use R1 for the reload instead of R0.
582          //
583          // To further complicate matters, we might conflict with an alias,
584          // or R0 and R1 might not be compatible with each other.  In this
585          // case, we actually insert a reload for V1 in R1, ensuring that
586          // we can get at R0 or its alias.
587          ReusedOperands.addReuse(i, StackSlot, PhysReg,
588                                  VRM.getPhys(VirtReg), VirtReg);
589          ++NumReused;
590          continue;
591        }
592
593        // Otherwise we have a situation where we have a two-address instruction
594        // whose mod/ref operand needs to be reloaded.  This reload is already
595        // available in some register "PhysReg", but if we used PhysReg as the
596        // operand to our 2-addr instruction, the instruction would modify
597        // PhysReg.  This isn't cool if something later uses PhysReg and expects
598        // to get its initial value.
599        //
600        // To avoid this problem, and to avoid doing a load right after a store,
601        // we emit a copy from PhysReg into the designated register for this
602        // operand.
603        unsigned DesignatedReg = VRM.getPhys(VirtReg);
604        assert(DesignatedReg && "Must map virtreg to physreg!");
605
606        // Note that, if we reused a register for a previous operand, the
607        // register we want to reload into might not actually be
608        // available.  If this occurs, use the register indicated by the
609        // reuser.
610        if (ReusedOperands.hasReuses())
611          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
612                                                      Spills, MaybeDeadStores);
613
614        const TargetRegisterClass* RC =
615          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
616
617        PhysRegsUsed[DesignatedReg] = true;
618        MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC);
619
620        // This invalidates DesignatedReg.
621        Spills.ClobberPhysReg(DesignatedReg);
622
623        Spills.addAvailable(StackSlot, DesignatedReg);
624        MI.SetMachineOperandReg(i, DesignatedReg);
625        DEBUG(std::cerr << '\t' << *prior(MII));
626        ++NumReused;
627        continue;
628      }
629
630      // Otherwise, reload it and remember that we have it.
631      PhysReg = VRM.getPhys(VirtReg);
632      assert(PhysReg && "Must map virtreg to physreg!");
633      const TargetRegisterClass* RC =
634        MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
635
636      // Note that, if we reused a register for a previous operand, the
637      // register we want to reload into might not actually be
638      // available.  If this occurs, use the register indicated by the
639      // reuser.
640      if (ReusedOperands.hasReuses())
641        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
642                                                 Spills, MaybeDeadStores);
643
644      PhysRegsUsed[PhysReg] = true;
645      MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
646      // This invalidates PhysReg.
647      Spills.ClobberPhysReg(PhysReg);
648
649      // Any stores to this stack slot are not dead anymore.
650      MaybeDeadStores.erase(StackSlot);
651      Spills.addAvailable(StackSlot, PhysReg);
652      ++NumLoads;
653      MI.SetMachineOperandReg(i, PhysReg);
654      DEBUG(std::cerr << '\t' << *prior(MII));
655    }
656
657    // Loop over all of the implicit defs, clearing them from our available
658    // sets.
659    for (const unsigned *ImpDef = TII->getImplicitDefs(MI.getOpcode());
660         *ImpDef; ++ImpDef) {
661      PhysRegsUsed[*ImpDef] = true;
662      Spills.ClobberPhysReg(*ImpDef);
663    }
664
665    DEBUG(std::cerr << '\t' << MI);
666
667    // If we have folded references to memory operands, make sure we clear all
668    // physical registers that may contain the value of the spilled virtual
669    // register
670    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
671    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
672      DEBUG(std::cerr << "Folded vreg: " << I->second.first << "  MR: "
673                      << I->second.second);
674      unsigned VirtReg = I->second.first;
675      VirtRegMap::ModRef MR = I->second.second;
676      if (!VRM.hasStackSlot(VirtReg)) {
677        DEBUG(std::cerr << ": No stack slot!\n");
678        continue;
679      }
680      int SS = VRM.getStackSlot(VirtReg);
681      DEBUG(std::cerr << " - StackSlot: " << SS << "\n");
682
683      // If this folded instruction is just a use, check to see if it's a
684      // straight load from the virt reg slot.
685      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
686        int FrameIdx;
687        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
688          // If this spill slot is available, turn it into a copy (or nothing)
689          // instead of leaving it as a load!
690          unsigned InReg;
691          if (FrameIdx == SS && (InReg = Spills.getSpillSlotPhysReg(SS))) {
692            DEBUG(std::cerr << "Promoted Load To Copy: " << MI);
693            MachineFunction &MF = *MBB.getParent();
694            if (DestReg != InReg) {
695              MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
696                                MF.getSSARegMap()->getRegClass(VirtReg));
697              // Revisit the copy so we make sure to notice the effects of the
698              // operation on the destreg (either needing to RA it if it's
699              // virtual or needing to clobber any values if it's physical).
700              NextMII = &MI;
701              --NextMII;  // backtrack to the copy.
702            }
703            MBB.erase(&MI);
704            goto ProcessNextInst;
705          }
706        }
707      }
708
709      // If this reference is not a use, any previous store is now dead.
710      // Otherwise, the store to this stack slot is not dead anymore.
711      std::map<int, MachineInstr*>::iterator MDSI = MaybeDeadStores.find(SS);
712      if (MDSI != MaybeDeadStores.end()) {
713        if (MR & VirtRegMap::isRef)   // Previous store is not dead.
714          MaybeDeadStores.erase(MDSI);
715        else {
716          // If we get here, the store is dead, nuke it now.
717          assert(MR == VirtRegMap::isMod && "Can't be modref!");
718          MBB.erase(MDSI->second);
719          MaybeDeadStores.erase(MDSI);
720          ++NumDSE;
721        }
722      }
723
724      // If the spill slot value is available, and this is a new definition of
725      // the value, the value is not available anymore.
726      if (MR & VirtRegMap::isMod) {
727        // Notice that the value in this stack slot has been modified.
728        Spills.ModifyStackSlot(SS);
729
730        // If this is *just* a mod of the value, check to see if this is just a
731        // store to the spill slot (i.e. the spill got merged into the copy). If
732        // so, realize that the vreg is available now, and add the store to the
733        // MaybeDeadStore info.
734        int StackSlot;
735        if (!(MR & VirtRegMap::isRef)) {
736          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
737            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
738                   "Src hasn't been allocated yet?");
739            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
740            // this as a potentially dead store in case there is a subsequent
741            // store into the stack slot without a read from it.
742            MaybeDeadStores[StackSlot] = &MI;
743
744            // If the stack slot value was previously available in some other
745            // register, change it now.  Otherwise, make the register available,
746            // in PhysReg.
747            Spills.addAvailable(StackSlot, SrcReg, false /*don't clobber*/);
748          }
749        }
750      }
751    }
752
753    // Process all of the spilled defs.
754    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
755      MachineOperand &MO = MI.getOperand(i);
756      if (MO.isRegister() && MO.getReg() && MO.isDef()) {
757        unsigned VirtReg = MO.getReg();
758
759        if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
760          // Check to see if this is a def-and-use vreg operand that we do need
761          // to insert a store for.
762          bool OpTakenCareOf = false;
763          if (MO.isUse() && !DefAndUseVReg.empty()) {
764            for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau)
765              if (DefAndUseVReg[dau].first == i) {
766                VirtReg = DefAndUseVReg[dau].second;
767                OpTakenCareOf = true;
768                break;
769              }
770          }
771
772          if (!OpTakenCareOf) {
773            // Check to see if this is a noop copy.  If so, eliminate the
774            // instruction before considering the dest reg to be changed.
775            unsigned Src, Dst;
776            if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
777              ++NumDCE;
778              DEBUG(std::cerr << "Removing now-noop copy: " << MI);
779              MBB.erase(&MI);
780              goto ProcessNextInst;
781            }
782            Spills.ClobberPhysReg(VirtReg);
783            continue;
784          }
785        }
786
787        // The only vregs left are stack slot definitions.
788        int StackSlot = VRM.getStackSlot(VirtReg);
789        const TargetRegisterClass *RC =
790          MBB.getParent()->getSSARegMap()->getRegClass(VirtReg);
791        unsigned PhysReg;
792
793        // If this is a def&use operand, and we used a different physreg for
794        // it than the one assigned, make sure to execute the store from the
795        // correct physical register.
796        if (MO.getReg() == VirtReg)
797          PhysReg = VRM.getPhys(VirtReg);
798        else
799          PhysReg = MO.getReg();
800
801        PhysRegsUsed[PhysReg] = true;
802        MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
803        DEBUG(std::cerr << "Store:\t" << *next(MII));
804        MI.SetMachineOperandReg(i, PhysReg);
805
806        // Check to see if this is a noop copy.  If so, eliminate the
807        // instruction before considering the dest reg to be changed.
808        {
809          unsigned Src, Dst;
810          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
811            ++NumDCE;
812            DEBUG(std::cerr << "Removing now-noop copy: " << MI);
813            MBB.erase(&MI);
814            goto ProcessNextInst;
815          }
816        }
817
818        // If there is a dead store to this stack slot, nuke it now.
819        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
820        if (LastStore) {
821          DEBUG(std::cerr << " Killed store:\t" << *LastStore);
822          ++NumDSE;
823          MBB.erase(LastStore);
824        }
825        LastStore = next(MII);
826
827        // If the stack slot value was previously available in some other
828        // register, change it now.  Otherwise, make the register available,
829        // in PhysReg.
830        Spills.ModifyStackSlot(StackSlot);
831        Spills.ClobberPhysReg(PhysReg);
832        Spills.addAvailable(StackSlot, PhysReg);
833        ++NumStores;
834      }
835    }
836  ProcessNextInst:
837    MII = NextMII;
838  }
839}
840
841
842
843llvm::Spiller* llvm::createSpiller() {
844  switch (SpillerOpt) {
845  default: assert(0 && "Unreachable!");
846  case local:
847    return new LocalSpiller();
848  case simple:
849    return new SimpleSpiller();
850  }
851}
852