VirtRegMap.cpp revision aee4af68ae2016afc5b4ec0c430e539c5810a766
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallSet.h"
34#include <algorithm>
35using namespace llvm;
36
37STATISTIC(NumSpills, "Number of register spills");
38STATISTIC(NumReMats, "Number of re-materialization");
39STATISTIC(NumDRM   , "Number of re-materializable defs elided");
40STATISTIC(NumStores, "Number of stores added");
41STATISTIC(NumLoads , "Number of loads added");
42STATISTIC(NumReused, "Number of values reused");
43STATISTIC(NumDSE   , "Number of dead stores elided");
44STATISTIC(NumDCE   , "Number of copies elided");
45
46namespace {
47  enum SpillerName { simple, local };
48
49  static cl::opt<SpillerName>
50  SpillerOpt("spiller",
51             cl::desc("Spiller to use: (default: local)"),
52             cl::Prefix,
53             cl::values(clEnumVal(simple, "  simple spiller"),
54                        clEnumVal(local,  "  local spiller"),
55                        clEnumValEnd),
56             cl::init(local));
57}
58
59//===----------------------------------------------------------------------===//
60//  VirtRegMap implementation
61//===----------------------------------------------------------------------===//
62
63VirtRegMap::VirtRegMap(MachineFunction &mf)
64  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
65    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
66    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
67    ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1) {
68  grow();
69}
70
71void VirtRegMap::grow() {
72  unsigned LastVirtReg = MF.getSSARegMap()->getLastVirtReg();
73  Virt2PhysMap.grow(LastVirtReg);
74  Virt2StackSlotMap.grow(LastVirtReg);
75  Virt2ReMatIdMap.grow(LastVirtReg);
76  Virt2SplitMap.grow(LastVirtReg);
77  ReMatMap.grow(LastVirtReg);
78}
79
80int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
81  assert(MRegisterInfo::isVirtualRegister(virtReg));
82  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
83         "attempt to assign stack slot to already spilled register");
84  const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
85  int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
86                                                        RC->getAlignment());
87  Virt2StackSlotMap[virtReg] = frameIndex;
88  ++NumSpills;
89  return frameIndex;
90}
91
92void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
93  assert(MRegisterInfo::isVirtualRegister(virtReg));
94  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
95         "attempt to assign stack slot to already spilled register");
96  assert((frameIndex >= 0 ||
97          (frameIndex >= MF.getFrameInfo()->getObjectIndexBegin())) &&
98         "illegal fixed frame index");
99  Virt2StackSlotMap[virtReg] = frameIndex;
100}
101
102int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
103  assert(MRegisterInfo::isVirtualRegister(virtReg));
104  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
105         "attempt to assign re-mat id to already spilled register");
106  Virt2ReMatIdMap[virtReg] = ReMatId;
107  return ReMatId++;
108}
109
110void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
111  assert(MRegisterInfo::isVirtualRegister(virtReg));
112  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
113         "attempt to assign re-mat id to already spilled register");
114  Virt2ReMatIdMap[virtReg] = id;
115}
116
117void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
118                            MachineInstr *NewMI, ModRef MRInfo) {
119  // Move previous memory references folded to new instruction.
120  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
121  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
122         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
123    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
124    MI2VirtMap.erase(I++);
125  }
126
127  // add new memory reference
128  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
129}
130
131void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
132  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
133  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
134}
135
136void VirtRegMap::print(std::ostream &OS) const {
137  const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
138
139  OS << "********** REGISTER MAP **********\n";
140  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
141         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
142    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
143      OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
144
145  }
146
147  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
148         e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
149    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
150      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
151  OS << '\n';
152}
153
154void VirtRegMap::dump() const {
155  print(DOUT);
156}
157
158
159//===----------------------------------------------------------------------===//
160// Simple Spiller Implementation
161//===----------------------------------------------------------------------===//
162
163Spiller::~Spiller() {}
164
165namespace {
166  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
167    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
168  };
169}
170
171bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
172  DOUT << "********** REWRITE MACHINE CODE **********\n";
173  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
174  const TargetMachine &TM = MF.getTarget();
175  const MRegisterInfo &MRI = *TM.getRegisterInfo();
176
177  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
178  // each vreg once (in the case where a spilled vreg is used by multiple
179  // operands).  This is always smaller than the number of operands to the
180  // current machine instr, so it should be small.
181  std::vector<unsigned> LoadedRegs;
182
183  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
184       MBBI != E; ++MBBI) {
185    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
186    MachineBasicBlock &MBB = *MBBI;
187    for (MachineBasicBlock::iterator MII = MBB.begin(),
188           E = MBB.end(); MII != E; ++MII) {
189      MachineInstr &MI = *MII;
190      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
191        MachineOperand &MO = MI.getOperand(i);
192        if (MO.isRegister() && MO.getReg())
193          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
194            unsigned VirtReg = MO.getReg();
195            unsigned PhysReg = VRM.getPhys(VirtReg);
196            if (!VRM.isAssignedReg(VirtReg)) {
197              int StackSlot = VRM.getStackSlot(VirtReg);
198              const TargetRegisterClass* RC =
199                MF.getSSARegMap()->getRegClass(VirtReg);
200
201              if (MO.isUse() &&
202                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
203                  == LoadedRegs.end()) {
204                MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
205                LoadedRegs.push_back(VirtReg);
206                ++NumLoads;
207                DOUT << '\t' << *prior(MII);
208              }
209
210              if (MO.isDef()) {
211                MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
212                ++NumStores;
213              }
214            }
215            MF.setPhysRegUsed(PhysReg);
216            MI.getOperand(i).setReg(PhysReg);
217          } else {
218            MF.setPhysRegUsed(MO.getReg());
219          }
220      }
221
222      DOUT << '\t' << MI;
223      LoadedRegs.clear();
224    }
225  }
226  return true;
227}
228
229//===----------------------------------------------------------------------===//
230//  Local Spiller Implementation
231//===----------------------------------------------------------------------===//
232
233namespace {
234  class AvailableSpills;
235
236  /// LocalSpiller - This spiller does a simple pass over the machine basic
237  /// block to attempt to keep spills in registers as much as possible for
238  /// blocks that have low register pressure (the vreg may be spilled due to
239  /// register pressure in other blocks).
240  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
241    SSARegMap *RegMap;
242    const MRegisterInfo *MRI;
243    const TargetInstrInfo *TII;
244  public:
245    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
246      RegMap = MF.getSSARegMap();
247      MRI = MF.getTarget().getRegisterInfo();
248      TII = MF.getTarget().getInstrInfo();
249      DOUT << "\n**** Local spiller rewriting function '"
250           << MF.getFunction()->getName() << "':\n";
251      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!) ****\n";
252      DEBUG(MF.dump());
253
254      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
255           MBB != E; ++MBB)
256        RewriteMBB(*MBB, VRM);
257
258      DOUT << "**** Post Machine Instrs ****\n";
259      DEBUG(MF.dump());
260
261      return true;
262    }
263  private:
264    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
265                           MachineBasicBlock::iterator &MII,
266                           std::vector<MachineInstr*> &MaybeDeadStores,
267                           AvailableSpills &Spills, BitVector &RegKills,
268                           std::vector<MachineOperand*> &KillOps,
269                           VirtRegMap &VRM);
270    void SpillRegToStackSlot(MachineBasicBlock &MBB,
271                             MachineBasicBlock::iterator &MII,
272                             int Idx, unsigned PhysReg, int StackSlot,
273                             const TargetRegisterClass *RC,
274                             MachineInstr *&LastStore,
275                             AvailableSpills &Spills,
276                             SmallSet<MachineInstr*, 4> &ReMatDefs,
277                             BitVector &RegKills,
278                             std::vector<MachineOperand*> &KillOps,
279                             VirtRegMap &VRM);
280    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
281  };
282}
283
284/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
285/// top down, keep track of which spills slots or remat are available in each
286/// register.
287///
288/// Note that not all physregs are created equal here.  In particular, some
289/// physregs are reloads that we are allowed to clobber or ignore at any time.
290/// Other physregs are values that the register allocated program is using that
291/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
292/// per-stack-slot / remat id basis as the low bit in the value of the
293/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
294/// this bit and addAvailable sets it if.
295namespace {
296class VISIBILITY_HIDDEN AvailableSpills {
297  const MRegisterInfo *MRI;
298  const TargetInstrInfo *TII;
299
300  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
301  // or remat'ed virtual register values that are still available, due to being
302  // loaded or stored to, but not invalidated yet.
303  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
304
305  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
306  // indicating which stack slot values are currently held by a physreg.  This
307  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
308  // physreg is modified.
309  std::multimap<unsigned, int> PhysRegsAvailable;
310
311  void disallowClobberPhysRegOnly(unsigned PhysReg);
312
313  void ClobberPhysRegOnly(unsigned PhysReg);
314public:
315  AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
316    : MRI(mri), TII(tii) {
317  }
318
319  const MRegisterInfo *getRegInfo() const { return MRI; }
320
321  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
322  /// available in a  physical register, return that PhysReg, otherwise
323  /// return 0.
324  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
325    std::map<int, unsigned>::const_iterator I =
326      SpillSlotsOrReMatsAvailable.find(Slot);
327    if (I != SpillSlotsOrReMatsAvailable.end()) {
328      return I->second >> 1;  // Remove the CanClobber bit.
329    }
330    return 0;
331  }
332
333  /// addAvailable - Mark that the specified stack slot / remat is available in
334  /// the specified physreg.  If CanClobber is true, the physreg can be modified
335  /// at any time without changing the semantics of the program.
336  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
337                    bool CanClobber = true) {
338    // If this stack slot is thought to be available in some other physreg,
339    // remove its record.
340    ModifyStackSlotOrReMat(SlotOrReMat);
341
342    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
343    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
344
345    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
346      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
347    else
348      DOUT << "Remembering SS#" << SlotOrReMat;
349    DOUT << " in physreg " << MRI->getName(Reg) << "\n";
350  }
351
352  /// canClobberPhysReg - Return true if the spiller is allowed to change the
353  /// value of the specified stackslot register if it desires.  The specified
354  /// stack slot must be available in a physreg for this query to make sense.
355  bool canClobberPhysReg(int SlotOrReMat) const {
356    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
357           "Value not available!");
358    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
359  }
360
361  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
362  /// stackslot register. The register is still available but is no longer
363  /// allowed to be modifed.
364  void disallowClobberPhysReg(unsigned PhysReg);
365
366  /// ClobberPhysReg - This is called when the specified physreg changes
367  /// value.  We use this to invalidate any info about stuff that lives in
368  /// it and any of its aliases.
369  void ClobberPhysReg(unsigned PhysReg);
370
371  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
372  /// slot changes.  This removes information about which register the previous
373  /// value for this slot lives in (as the previous value is dead now).
374  void ModifyStackSlotOrReMat(int SlotOrReMat);
375};
376}
377
378/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
379/// stackslot register. The register is still available but is no longer
380/// allowed to be modifed.
381void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
382  std::multimap<unsigned, int>::iterator I =
383    PhysRegsAvailable.lower_bound(PhysReg);
384  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
385    int SlotOrReMat = I->second;
386    I++;
387    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
388           "Bidirectional map mismatch!");
389    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
390    DOUT << "PhysReg " << MRI->getName(PhysReg)
391         << " copied, it is available for use but can no longer be modified\n";
392  }
393}
394
395/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
396/// stackslot register and its aliases. The register and its aliases may
397/// still available but is no longer allowed to be modifed.
398void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
399  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
400    disallowClobberPhysRegOnly(*AS);
401  disallowClobberPhysRegOnly(PhysReg);
402}
403
404/// ClobberPhysRegOnly - This is called when the specified physreg changes
405/// value.  We use this to invalidate any info about stuff we thing lives in it.
406void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
407  std::multimap<unsigned, int>::iterator I =
408    PhysRegsAvailable.lower_bound(PhysReg);
409  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
410    int SlotOrReMat = I->second;
411    PhysRegsAvailable.erase(I++);
412    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
413           "Bidirectional map mismatch!");
414    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
415    DOUT << "PhysReg " << MRI->getName(PhysReg)
416         << " clobbered, invalidating ";
417    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
418      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
419    else
420      DOUT << "SS#" << SlotOrReMat << "\n";
421  }
422}
423
424/// ClobberPhysReg - This is called when the specified physreg changes
425/// value.  We use this to invalidate any info about stuff we thing lives in
426/// it and any of its aliases.
427void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
428  for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
429    ClobberPhysRegOnly(*AS);
430  ClobberPhysRegOnly(PhysReg);
431}
432
433/// ModifyStackSlotOrReMat - This method is called when the value in a stack
434/// slot changes.  This removes information about which register the previous
435/// value for this slot lives in (as the previous value is dead now).
436void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
437  std::map<int, unsigned>::iterator It =
438    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
439  if (It == SpillSlotsOrReMatsAvailable.end()) return;
440  unsigned Reg = It->second >> 1;
441  SpillSlotsOrReMatsAvailable.erase(It);
442
443  // This register may hold the value of multiple stack slots, only remove this
444  // stack slot from the set of values the register contains.
445  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
446  for (; ; ++I) {
447    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
448           "Map inverse broken!");
449    if (I->second == SlotOrReMat) break;
450  }
451  PhysRegsAvailable.erase(I);
452}
453
454
455
456/// InvalidateKills - MI is going to be deleted. If any of its operands are
457/// marked kill, then invalidate the information.
458static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
459                            std::vector<MachineOperand*> &KillOps,
460                            SmallVector<unsigned, 2> *KillRegs = NULL) {
461  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
462    MachineOperand &MO = MI.getOperand(i);
463    if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
464      continue;
465    unsigned Reg = MO.getReg();
466    if (KillRegs)
467      KillRegs->push_back(Reg);
468    if (KillOps[Reg] == &MO) {
469      RegKills.reset(Reg);
470      KillOps[Reg] = NULL;
471    }
472  }
473}
474
475/// InvalidateRegDef - If the def operand of the specified def MI is now dead
476/// (since it's spill instruction is removed), mark it isDead. Also checks if
477/// the def MI has other definition operands that are not dead. Returns it by
478/// reference.
479static bool InvalidateRegDef(MachineBasicBlock::iterator I,
480                             MachineInstr &NewDef, unsigned Reg,
481                             bool &HasLiveDef) {
482  // Due to remat, it's possible this reg isn't being reused. That is,
483  // the def of this reg (by prev MI) is now dead.
484  MachineInstr *DefMI = I;
485  MachineOperand *DefOp = NULL;
486  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
487    MachineOperand &MO = DefMI->getOperand(i);
488    if (MO.isRegister() && MO.isDef()) {
489      if (MO.getReg() == Reg)
490        DefOp = &MO;
491      else if (!MO.isDead())
492        HasLiveDef = true;
493    }
494  }
495  if (!DefOp)
496    return false;
497
498  bool FoundUse = false, Done = false;
499  MachineBasicBlock::iterator E = NewDef;
500  ++I; ++E;
501  for (; !Done && I != E; ++I) {
502    MachineInstr *NMI = I;
503    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
504      MachineOperand &MO = NMI->getOperand(j);
505      if (!MO.isRegister() || MO.getReg() != Reg)
506        continue;
507      if (MO.isUse())
508        FoundUse = true;
509      Done = true; // Stop after scanning all the operands of this MI.
510    }
511  }
512  if (!FoundUse) {
513    // Def is dead!
514    DefOp->setIsDead();
515    return true;
516  }
517  return false;
518}
519
520/// UpdateKills - Track and update kill info. If a MI reads a register that is
521/// marked kill, then it must be due to register reuse. Transfer the kill info
522/// over.
523static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
524                        std::vector<MachineOperand*> &KillOps) {
525  const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
526  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
527    MachineOperand &MO = MI.getOperand(i);
528    if (!MO.isRegister() || !MO.isUse())
529      continue;
530    unsigned Reg = MO.getReg();
531    if (Reg == 0)
532      continue;
533
534    if (RegKills[Reg]) {
535      // That can't be right. Register is killed but not re-defined and it's
536      // being reused. Let's fix that.
537      KillOps[Reg]->unsetIsKill();
538      if (i < TID->numOperands &&
539          TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
540        // Unless it's a two-address operand, this is the new kill.
541        MO.setIsKill();
542    }
543
544    if (MO.isKill()) {
545      RegKills.set(Reg);
546      KillOps[Reg] = &MO;
547    }
548  }
549
550  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
551    const MachineOperand &MO = MI.getOperand(i);
552    if (!MO.isRegister() || !MO.isDef())
553      continue;
554    unsigned Reg = MO.getReg();
555    RegKills.reset(Reg);
556    KillOps[Reg] = NULL;
557  }
558}
559
560
561// ReusedOp - For each reused operand, we keep track of a bit of information, in
562// case we need to rollback upon processing a new operand.  See comments below.
563namespace {
564  struct ReusedOp {
565    // The MachineInstr operand that reused an available value.
566    unsigned Operand;
567
568    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
569    unsigned StackSlotOrReMat;
570
571    // PhysRegReused - The physical register the value was available in.
572    unsigned PhysRegReused;
573
574    // AssignedPhysReg - The physreg that was assigned for use by the reload.
575    unsigned AssignedPhysReg;
576
577    // VirtReg - The virtual register itself.
578    unsigned VirtReg;
579
580    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
581             unsigned vreg)
582      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
583        AssignedPhysReg(apr), VirtReg(vreg) {}
584  };
585
586  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
587  /// is reused instead of reloaded.
588  class VISIBILITY_HIDDEN ReuseInfo {
589    MachineInstr &MI;
590    std::vector<ReusedOp> Reuses;
591    BitVector PhysRegsClobbered;
592  public:
593    ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
594      PhysRegsClobbered.resize(mri->getNumRegs());
595    }
596
597    bool hasReuses() const {
598      return !Reuses.empty();
599    }
600
601    /// addReuse - If we choose to reuse a virtual register that is already
602    /// available instead of reloading it, remember that we did so.
603    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
604                  unsigned PhysRegReused, unsigned AssignedPhysReg,
605                  unsigned VirtReg) {
606      // If the reload is to the assigned register anyway, no undo will be
607      // required.
608      if (PhysRegReused == AssignedPhysReg) return;
609
610      // Otherwise, remember this.
611      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
612                                AssignedPhysReg, VirtReg));
613    }
614
615    void markClobbered(unsigned PhysReg) {
616      PhysRegsClobbered.set(PhysReg);
617    }
618
619    bool isClobbered(unsigned PhysReg) const {
620      return PhysRegsClobbered.test(PhysReg);
621    }
622
623    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
624    /// is some other operand that is using the specified register, either pick
625    /// a new register to use, or evict the previous reload and use this reg.
626    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
627                             AvailableSpills &Spills,
628                             std::vector<MachineInstr*> &MaybeDeadStores,
629                             SmallSet<unsigned, 8> &Rejected,
630                             BitVector &RegKills,
631                             std::vector<MachineOperand*> &KillOps,
632                             VirtRegMap &VRM) {
633      if (Reuses.empty()) return PhysReg;  // This is most often empty.
634
635      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
636        ReusedOp &Op = Reuses[ro];
637        // If we find some other reuse that was supposed to use this register
638        // exactly for its reload, we can change this reload to use ITS reload
639        // register. That is, unless its reload register has already been
640        // considered and subsequently rejected because it has also been reused
641        // by another operand.
642        if (Op.PhysRegReused == PhysReg &&
643            Rejected.count(Op.AssignedPhysReg) == 0) {
644          // Yup, use the reload register that we didn't use before.
645          unsigned NewReg = Op.AssignedPhysReg;
646          Rejected.insert(PhysReg);
647          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
648                                 RegKills, KillOps, VRM);
649        } else {
650          // Otherwise, we might also have a problem if a previously reused
651          // value aliases the new register.  If so, codegen the previous reload
652          // and use this one.
653          unsigned PRRU = Op.PhysRegReused;
654          const MRegisterInfo *MRI = Spills.getRegInfo();
655          if (MRI->areAliases(PRRU, PhysReg)) {
656            // Okay, we found out that an alias of a reused register
657            // was used.  This isn't good because it means we have
658            // to undo a previous reuse.
659            MachineBasicBlock *MBB = MI->getParent();
660            const TargetRegisterClass *AliasRC =
661              MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
662
663            // Copy Op out of the vector and remove it, we're going to insert an
664            // explicit load for it.
665            ReusedOp NewOp = Op;
666            Reuses.erase(Reuses.begin()+ro);
667
668            // Ok, we're going to try to reload the assigned physreg into the
669            // slot that we were supposed to in the first place.  However, that
670            // register could hold a reuse.  Check to see if it conflicts or
671            // would prefer us to use a different register.
672            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
673                                                  MI, Spills, MaybeDeadStores,
674                                              Rejected, RegKills, KillOps, VRM);
675
676            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
677              MRI->reMaterialize(*MBB, MI, NewPhysReg,
678                                 VRM.getReMaterializedMI(NewOp.VirtReg));
679              ++NumReMats;
680            } else {
681              MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
682                                        NewOp.StackSlotOrReMat, AliasRC);
683              // Any stores to this stack slot are not dead anymore.
684              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
685              ++NumLoads;
686            }
687            Spills.ClobberPhysReg(NewPhysReg);
688            Spills.ClobberPhysReg(NewOp.PhysRegReused);
689
690            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
691
692            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
693            MachineBasicBlock::iterator MII = MI;
694            --MII;
695            UpdateKills(*MII, RegKills, KillOps);
696            DOUT << '\t' << *MII;
697
698            DOUT << "Reuse undone!\n";
699            --NumReused;
700
701            // Finally, PhysReg is now available, go ahead and use it.
702            return PhysReg;
703          }
704        }
705      }
706      return PhysReg;
707    }
708
709    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
710    /// 'Rejected' set to remember which registers have been considered and
711    /// rejected for the reload. This avoids infinite looping in case like
712    /// this:
713    /// t1 := op t2, t3
714    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
715    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
716    /// t1 <- desires r1
717    ///       sees r1 is taken by t2, tries t2's reload register r0
718    ///       sees r0 is taken by t3, tries t3's reload register r1
719    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
720    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
721                             AvailableSpills &Spills,
722                             std::vector<MachineInstr*> &MaybeDeadStores,
723                             BitVector &RegKills,
724                             std::vector<MachineOperand*> &KillOps,
725                             VirtRegMap &VRM) {
726      SmallSet<unsigned, 8> Rejected;
727      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
728                             RegKills, KillOps, VRM);
729    }
730  };
731}
732
733/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
734/// instruction. e.g.
735///     xorl  %edi, %eax
736///     movl  %eax, -32(%ebp)
737///     movl  -36(%ebp), %eax
738///	orl   %eax, -32(%ebp)
739/// ==>
740///     xorl  %edi, %eax
741///     orl   -36(%ebp), %eax
742///     mov   %eax, -32(%ebp)
743/// This enables unfolding optimization for a subsequent instruction which will
744/// also eliminate the newly introduced store instruction.
745bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
746                                     MachineBasicBlock::iterator &MII,
747                                    std::vector<MachineInstr*> &MaybeDeadStores,
748                                     AvailableSpills &Spills,
749                                     BitVector &RegKills,
750                                     std::vector<MachineOperand*> &KillOps,
751                                     VirtRegMap &VRM) {
752  MachineFunction &MF = *MBB.getParent();
753  MachineInstr &MI = *MII;
754  unsigned UnfoldedOpc = 0;
755  unsigned UnfoldPR = 0;
756  unsigned UnfoldVR = 0;
757  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
758  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
759  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
760    // Only transform a MI that folds a single register.
761    if (UnfoldedOpc)
762      return false;
763    UnfoldVR = I->second.first;
764    VirtRegMap::ModRef MR = I->second.second;
765    if (VRM.isAssignedReg(UnfoldVR))
766      continue;
767    // If this reference is not a use, any previous store is now dead.
768    // Otherwise, the store to this stack slot is not dead anymore.
769    FoldedSS = VRM.getStackSlot(UnfoldVR);
770    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
771    if (DeadStore && (MR & VirtRegMap::isModRef)) {
772      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
773      if (!PhysReg ||
774          DeadStore->findRegisterUseOperandIdx(PhysReg, true) == -1)
775        continue;
776      UnfoldPR = PhysReg;
777      UnfoldedOpc = MRI->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
778                                                    false, true);
779    }
780  }
781
782  if (!UnfoldedOpc)
783    return false;
784
785  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
786    MachineOperand &MO = MI.getOperand(i);
787    if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
788      continue;
789    unsigned VirtReg = MO.getReg();
790    if (MRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
791      continue;
792    if (VRM.isAssignedReg(VirtReg)) {
793      unsigned PhysReg = VRM.getPhys(VirtReg);
794      if (PhysReg && MRI->regsOverlap(PhysReg, UnfoldPR))
795        return false;
796    } else if (VRM.isReMaterialized(VirtReg))
797      continue;
798    int SS = VRM.getStackSlot(VirtReg);
799    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
800    if (PhysReg) {
801      if (MRI->regsOverlap(PhysReg, UnfoldPR))
802        return false;
803      continue;
804    }
805    PhysReg = VRM.getPhys(VirtReg);
806    if (!MRI->regsOverlap(PhysReg, UnfoldPR))
807      continue;
808
809    // Ok, we'll need to reload the value into a register which makes
810    // it impossible to perform the store unfolding optimization later.
811    // Let's see if it is possible to fold the load if the store is
812    // unfolded. This allows us to perform the store unfolding
813    // optimization.
814    SmallVector<MachineInstr*, 4> NewMIs;
815    if (MRI->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
816      assert(NewMIs.size() == 1);
817      MachineInstr *NewMI = NewMIs.back();
818      NewMIs.clear();
819      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg);
820      assert(Idx != -1);
821      SmallVector<unsigned, 2> Ops;
822      Ops.push_back(Idx);
823      MachineInstr *FoldedMI = MRI->foldMemoryOperand(NewMI, Ops, SS);
824      if (FoldedMI) {
825        if (!VRM.hasPhys(UnfoldVR))
826          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
827        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
828        MII = MBB.insert(MII, FoldedMI);
829        VRM.RemoveMachineInstrFromMaps(&MI);
830        MBB.erase(&MI);
831        return true;
832      }
833      delete NewMI;
834    }
835  }
836  return false;
837}
838
839/// findSuperReg - Find the SubReg's super-register of given register class
840/// where its SubIdx sub-register is SubReg.
841static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
842                             unsigned SubIdx, const MRegisterInfo *MRI) {
843  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
844       I != E; ++I) {
845    unsigned Reg = *I;
846    if (MRI->getSubReg(Reg, SubIdx) == SubReg)
847      return Reg;
848  }
849  return 0;
850}
851
852/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
853/// the last store to the same slot is now dead. If so, remove the last store.
854void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
855                                  MachineBasicBlock::iterator &MII,
856                                  int Idx, unsigned PhysReg, int StackSlot,
857                                  const TargetRegisterClass *RC,
858                                  MachineInstr *&LastStore,
859                                  AvailableSpills &Spills,
860                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
861                                  BitVector &RegKills,
862                                  std::vector<MachineOperand*> &KillOps,
863                                  VirtRegMap &VRM) {
864  MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
865  DOUT << "Store:\t" << *next(MII);
866
867  // If there is a dead store to this stack slot, nuke it now.
868  if (LastStore) {
869    DOUT << "Removed dead store:\t" << *LastStore;
870    ++NumDSE;
871    SmallVector<unsigned, 2> KillRegs;
872    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
873    MachineBasicBlock::iterator PrevMII = LastStore;
874    bool CheckDef = PrevMII != MBB.begin();
875    if (CheckDef)
876      --PrevMII;
877    MBB.erase(LastStore);
878    VRM.RemoveMachineInstrFromMaps(LastStore);
879    if (CheckDef) {
880      // Look at defs of killed registers on the store. Mark the defs
881      // as dead since the store has been deleted and they aren't
882      // being reused.
883      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
884        bool HasOtherDef = false;
885        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
886          MachineInstr *DeadDef = PrevMII;
887          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
888            // FIXME: This assumes a remat def does not have side
889            // effects.
890            MBB.erase(DeadDef);
891            VRM.RemoveMachineInstrFromMaps(DeadDef);
892            ++NumDRM;
893          }
894        }
895      }
896    }
897  }
898
899  LastStore = next(MII);
900
901  // If the stack slot value was previously available in some other
902  // register, change it now.  Otherwise, make the register available,
903  // in PhysReg.
904  Spills.ModifyStackSlotOrReMat(StackSlot);
905  Spills.ClobberPhysReg(PhysReg);
906  Spills.addAvailable(StackSlot, LastStore, PhysReg);
907  ++NumStores;
908}
909
910/// rewriteMBB - Keep track of which spills are available even after the
911/// register allocator is done with them.  If possible, avid reloading vregs.
912void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
913  DOUT << MBB.getBasicBlock()->getName() << ":\n";
914
915  MachineFunction &MF = *MBB.getParent();
916
917  // Spills - Keep track of which spilled values are available in physregs so
918  // that we can choose to reuse the physregs instead of emitting reloads.
919  AvailableSpills Spills(MRI, TII);
920
921  // MaybeDeadStores - When we need to write a value back into a stack slot,
922  // keep track of the inserted store.  If the stack slot value is never read
923  // (because the value was used from some available register, for example), and
924  // subsequently stored to, the original store is dead.  This map keeps track
925  // of inserted stores that are not used.  If we see a subsequent store to the
926  // same stack slot, the original store is deleted.
927  std::vector<MachineInstr*> MaybeDeadStores;
928  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
929
930  // ReMatDefs - These are rematerializable def MIs which are not deleted.
931  SmallSet<MachineInstr*, 4> ReMatDefs;
932
933  // Keep track of kill information.
934  BitVector RegKills(MRI->getNumRegs());
935  std::vector<MachineOperand*>  KillOps;
936  KillOps.resize(MRI->getNumRegs(), NULL);
937
938  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
939       MII != E; ) {
940    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
941
942    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
943    bool Erased = false;
944    bool BackTracked = false;
945    if (PrepForUnfoldOpti(MBB, MII,
946                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
947      NextMII = next(MII);
948
949    MachineInstr &MI = *MII;
950    const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
951
952    // Insert restores here if asked to.
953    if (VRM.isRestorePt(&MI)) {
954      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
955      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
956        unsigned VirtReg = RestoreRegs[i];
957        if (!VRM.getPreSplitReg(VirtReg))
958          continue; // Split interval spilled again.
959        unsigned Phys = VRM.getPhys(VirtReg);
960        MF.setPhysRegUsed(Phys);
961        if (VRM.isReMaterialized(VirtReg)) {
962          MRI->reMaterialize(MBB, &MI, Phys,
963                             VRM.getReMaterializedMI(VirtReg));
964          ++NumReMats;
965        } else {
966          const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
967          MRI->loadRegFromStackSlot(MBB, &MI, Phys, VRM.getStackSlot(VirtReg), RC);
968          ++NumLoads;
969        }
970        // This invalidates Phys.
971        Spills.ClobberPhysReg(Phys);
972        UpdateKills(*prior(MII), RegKills, KillOps);
973        DOUT << '\t' << *prior(MII);
974      }
975    }
976
977    // Insert spills here if asked to.
978    if (VRM.isSpillPt(&MI)) {
979      std::vector<unsigned> &SpillRegs = VRM.getSpillPtSpills(&MI);
980      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
981        unsigned VirtReg = SpillRegs[i];
982        if (!VRM.getPreSplitReg(VirtReg))
983          continue; // Split interval spilled again.
984        const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
985        unsigned Phys = VRM.getPhys(VirtReg);
986        int StackSlot = VRM.getStackSlot(VirtReg);
987        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
988        SpillRegToStackSlot(MBB, MII, i, Phys, StackSlot, RC,
989                            LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
990      }
991    }
992
993    /// ReusedOperands - Keep track of operand reuse in case we need to undo
994    /// reuse.
995    ReuseInfo ReusedOperands(MI, MRI);
996    // Process all of the spilled uses and all non spilled reg references.
997    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
998      MachineOperand &MO = MI.getOperand(i);
999      if (!MO.isRegister() || MO.getReg() == 0)
1000        continue;   // Ignore non-register operands.
1001
1002      unsigned VirtReg = MO.getReg();
1003      if (MRegisterInfo::isPhysicalRegister(VirtReg)) {
1004        // Ignore physregs for spilling, but remember that it is used by this
1005        // function.
1006        MF.setPhysRegUsed(VirtReg);
1007        continue;
1008      }
1009
1010      assert(MRegisterInfo::isVirtualRegister(VirtReg) &&
1011             "Not a virtual or a physical register?");
1012
1013      unsigned SubIdx = MO.getSubReg();
1014      if (VRM.isAssignedReg(VirtReg)) {
1015        // This virtual register was assigned a physreg!
1016        unsigned Phys = VRM.getPhys(VirtReg);
1017        MF.setPhysRegUsed(Phys);
1018        if (MO.isDef())
1019          ReusedOperands.markClobbered(Phys);
1020        unsigned RReg = SubIdx ? MRI->getSubReg(Phys, SubIdx) : Phys;
1021        MI.getOperand(i).setReg(RReg);
1022        continue;
1023      }
1024
1025      // This virtual register is now known to be a spilled value.
1026      if (!MO.isUse())
1027        continue;  // Handle defs in the loop below (handle use&def here though)
1028
1029      bool DoReMat = VRM.isReMaterialized(VirtReg);
1030      int SSorRMId = DoReMat
1031        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1032      int ReuseSlot = SSorRMId;
1033
1034      // Check to see if this stack slot is available.
1035      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1036      if (!PhysReg && DoReMat) {
1037        // This use is rematerializable. But perhaps the value is available in
1038        // a register if the definition is not deleted. If so, check if we can
1039        // reuse the value.
1040        ReuseSlot = VRM.getStackSlot(VirtReg);
1041        if (ReuseSlot != VirtRegMap::NO_STACK_SLOT)
1042          PhysReg = Spills.getSpillSlotOrReMatPhysReg(ReuseSlot);
1043      }
1044
1045      // If this is a sub-register use, make sure the reuse register is in the
1046      // right register class. For example, for x86 not all of the 32-bit
1047      // registers have accessible sub-registers.
1048      // Similarly so for EXTRACT_SUBREG. Consider this:
1049      // EDI = op
1050      // MOV32_mr fi#1, EDI
1051      // ...
1052      //       = EXTRACT_SUBREG fi#1
1053      // fi#1 is available in EDI, but it cannot be reused because it's not in
1054      // the right register file.
1055      if (PhysReg &&
1056          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1057        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
1058        if (!RC->contains(PhysReg))
1059          PhysReg = 0;
1060      }
1061
1062      if (PhysReg) {
1063        // This spilled operand might be part of a two-address operand.  If this
1064        // is the case, then changing it will necessarily require changing the
1065        // def part of the instruction as well.  However, in some cases, we
1066        // aren't allowed to modify the reused register.  If none of these cases
1067        // apply, reuse it.
1068        bool CanReuse = true;
1069        int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
1070        if (ti != -1 &&
1071            MI.getOperand(ti).isRegister() &&
1072            MI.getOperand(ti).getReg() == VirtReg) {
1073          // Okay, we have a two address operand.  We can reuse this physreg as
1074          // long as we are allowed to clobber the value and there isn't an
1075          // earlier def that has already clobbered the physreg.
1076          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1077            !ReusedOperands.isClobbered(PhysReg);
1078        }
1079
1080        if (CanReuse) {
1081          // If this stack slot value is already available, reuse it!
1082          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1083            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1084          else
1085            DOUT << "Reusing SS#" << ReuseSlot;
1086          DOUT << " from physreg "
1087               << MRI->getName(PhysReg) << " for vreg"
1088               << VirtReg <<" instead of reloading into physreg "
1089               << MRI->getName(VRM.getPhys(VirtReg)) << "\n";
1090          unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1091          MI.getOperand(i).setReg(RReg);
1092
1093          // The only technical detail we have is that we don't know that
1094          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1095          // later in the instruction.  In particular, consider 'op V1, V2'.
1096          // If V1 is available in physreg R0, we would choose to reuse it
1097          // here, instead of reloading it into the register the allocator
1098          // indicated (say R1).  However, V2 might have to be reloaded
1099          // later, and it might indicate that it needs to live in R0.  When
1100          // this occurs, we need to have information available that
1101          // indicates it is safe to use R1 for the reload instead of R0.
1102          //
1103          // To further complicate matters, we might conflict with an alias,
1104          // or R0 and R1 might not be compatible with each other.  In this
1105          // case, we actually insert a reload for V1 in R1, ensuring that
1106          // we can get at R0 or its alias.
1107          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1108                                  VRM.getPhys(VirtReg), VirtReg);
1109          if (ti != -1)
1110            // Only mark it clobbered if this is a use&def operand.
1111            ReusedOperands.markClobbered(PhysReg);
1112          ++NumReused;
1113
1114          if (MI.getOperand(i).isKill() &&
1115              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1116            // This was the last use and the spilled value is still available
1117            // for reuse. That means the spill was unnecessary!
1118            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1119            if (DeadStore) {
1120              DOUT << "Removed dead store:\t" << *DeadStore;
1121              InvalidateKills(*DeadStore, RegKills, KillOps);
1122              VRM.RemoveMachineInstrFromMaps(DeadStore);
1123              MBB.erase(DeadStore);
1124              MaybeDeadStores[ReuseSlot] = NULL;
1125              ++NumDSE;
1126            }
1127          }
1128          continue;
1129        }  // CanReuse
1130
1131        // Otherwise we have a situation where we have a two-address instruction
1132        // whose mod/ref operand needs to be reloaded.  This reload is already
1133        // available in some register "PhysReg", but if we used PhysReg as the
1134        // operand to our 2-addr instruction, the instruction would modify
1135        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1136        // to get its initial value.
1137        //
1138        // To avoid this problem, and to avoid doing a load right after a store,
1139        // we emit a copy from PhysReg into the designated register for this
1140        // operand.
1141        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1142        assert(DesignatedReg && "Must map virtreg to physreg!");
1143
1144        // Note that, if we reused a register for a previous operand, the
1145        // register we want to reload into might not actually be
1146        // available.  If this occurs, use the register indicated by the
1147        // reuser.
1148        if (ReusedOperands.hasReuses())
1149          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1150                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1151
1152        // If the mapped designated register is actually the physreg we have
1153        // incoming, we don't need to inserted a dead copy.
1154        if (DesignatedReg == PhysReg) {
1155          // If this stack slot value is already available, reuse it!
1156          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1157            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1158          else
1159            DOUT << "Reusing SS#" << ReuseSlot;
1160          DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
1161               << VirtReg
1162               << " instead of reloading into same physreg.\n";
1163          unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1164          MI.getOperand(i).setReg(RReg);
1165          ReusedOperands.markClobbered(RReg);
1166          ++NumReused;
1167          continue;
1168        }
1169
1170        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
1171        MF.setPhysRegUsed(DesignatedReg);
1172        ReusedOperands.markClobbered(DesignatedReg);
1173        MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1174
1175        MachineInstr *CopyMI = prior(MII);
1176        UpdateKills(*CopyMI, RegKills, KillOps);
1177
1178        // This invalidates DesignatedReg.
1179        Spills.ClobberPhysReg(DesignatedReg);
1180
1181        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1182        unsigned RReg =
1183          SubIdx ? MRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1184        MI.getOperand(i).setReg(RReg);
1185        DOUT << '\t' << *prior(MII);
1186        ++NumReused;
1187        continue;
1188      } // if (PhysReg)
1189
1190      // Otherwise, reload it and remember that we have it.
1191      PhysReg = VRM.getPhys(VirtReg);
1192      assert(PhysReg && "Must map virtreg to physreg!");
1193
1194      // Note that, if we reused a register for a previous operand, the
1195      // register we want to reload into might not actually be
1196      // available.  If this occurs, use the register indicated by the
1197      // reuser.
1198      if (ReusedOperands.hasReuses())
1199        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1200                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1201
1202      MF.setPhysRegUsed(PhysReg);
1203      ReusedOperands.markClobbered(PhysReg);
1204      if (DoReMat) {
1205        MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
1206        ++NumReMats;
1207      } else {
1208        const TargetRegisterClass* RC = RegMap->getRegClass(VirtReg);
1209        MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1210        ++NumLoads;
1211      }
1212      // This invalidates PhysReg.
1213      Spills.ClobberPhysReg(PhysReg);
1214
1215      // Any stores to this stack slot are not dead anymore.
1216      if (!DoReMat)
1217        MaybeDeadStores[SSorRMId] = NULL;
1218      Spills.addAvailable(SSorRMId, &MI, PhysReg);
1219      // Assumes this is the last use. IsKill will be unset if reg is reused
1220      // unless it's a two-address operand.
1221      if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
1222        MI.getOperand(i).setIsKill();
1223      unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1224      MI.getOperand(i).setReg(RReg);
1225      UpdateKills(*prior(MII), RegKills, KillOps);
1226      DOUT << '\t' << *prior(MII);
1227    }
1228
1229    DOUT << '\t' << MI;
1230
1231
1232    // If we have folded references to memory operands, make sure we clear all
1233    // physical registers that may contain the value of the spilled virtual
1234    // register
1235    SmallSet<int, 2> FoldedSS;
1236    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
1237      unsigned VirtReg = I->second.first;
1238      VirtRegMap::ModRef MR = I->second.second;
1239      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1240
1241      int SS = VRM.getStackSlot(VirtReg);
1242      if (SS == VirtRegMap::NO_STACK_SLOT)
1243        continue;
1244      FoldedSS.insert(SS);
1245      DOUT << " - StackSlot: " << SS << "\n";
1246
1247      // If this folded instruction is just a use, check to see if it's a
1248      // straight load from the virt reg slot.
1249      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1250        int FrameIdx;
1251        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1252        if (DestReg && FrameIdx == SS) {
1253          // If this spill slot is available, turn it into a copy (or nothing)
1254          // instead of leaving it as a load!
1255          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1256            DOUT << "Promoted Load To Copy: " << MI;
1257            if (DestReg != InReg) {
1258              const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
1259              MRI->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1260              // Revisit the copy so we make sure to notice the effects of the
1261              // operation on the destreg (either needing to RA it if it's
1262              // virtual or needing to clobber any values if it's physical).
1263              NextMII = &MI;
1264              --NextMII;  // backtrack to the copy.
1265              BackTracked = true;
1266            } else
1267              DOUT << "Removing now-noop copy: " << MI;
1268
1269            VRM.RemoveMachineInstrFromMaps(&MI);
1270            MBB.erase(&MI);
1271            Erased = true;
1272            goto ProcessNextInst;
1273          }
1274        } else {
1275          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1276          SmallVector<MachineInstr*, 4> NewMIs;
1277          if (PhysReg &&
1278              MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1279            MBB.insert(MII, NewMIs[0]);
1280            VRM.RemoveMachineInstrFromMaps(&MI);
1281            MBB.erase(&MI);
1282            Erased = true;
1283            --NextMII;  // backtrack to the unfolded instruction.
1284            BackTracked = true;
1285            goto ProcessNextInst;
1286          }
1287        }
1288      }
1289
1290      // If this reference is not a use, any previous store is now dead.
1291      // Otherwise, the store to this stack slot is not dead anymore.
1292      MachineInstr* DeadStore = MaybeDeadStores[SS];
1293      if (DeadStore) {
1294        bool isDead = !(MR & VirtRegMap::isRef);
1295        MachineInstr *NewStore = NULL;
1296        if (MR & VirtRegMap::isModRef) {
1297          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1298          SmallVector<MachineInstr*, 4> NewMIs;
1299          if (PhysReg &&
1300              DeadStore->findRegisterUseOperandIdx(PhysReg, true) != -1 &&
1301              MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, true, NewMIs)) {
1302            MBB.insert(MII, NewMIs[0]);
1303            NewStore = NewMIs[1];
1304            MBB.insert(MII, NewStore);
1305            VRM.RemoveMachineInstrFromMaps(&MI);
1306            MBB.erase(&MI);
1307            Erased = true;
1308            --NextMII;
1309            --NextMII;  // backtrack to the unfolded instruction.
1310            BackTracked = true;
1311            isDead = true;
1312          }
1313        }
1314
1315        if (isDead) {  // Previous store is dead.
1316          // If we get here, the store is dead, nuke it now.
1317          DOUT << "Removed dead store:\t" << *DeadStore;
1318          InvalidateKills(*DeadStore, RegKills, KillOps);
1319          VRM.RemoveMachineInstrFromMaps(DeadStore);
1320          MBB.erase(DeadStore);
1321          if (!NewStore)
1322            ++NumDSE;
1323        }
1324
1325        MaybeDeadStores[SS] = NULL;
1326        if (NewStore) {
1327          // Treat this store as a spill merged into a copy. That makes the
1328          // stack slot value available.
1329          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1330          goto ProcessNextInst;
1331        }
1332      }
1333
1334      // If the spill slot value is available, and this is a new definition of
1335      // the value, the value is not available anymore.
1336      if (MR & VirtRegMap::isMod) {
1337        // Notice that the value in this stack slot has been modified.
1338        Spills.ModifyStackSlotOrReMat(SS);
1339
1340        // If this is *just* a mod of the value, check to see if this is just a
1341        // store to the spill slot (i.e. the spill got merged into the copy). If
1342        // so, realize that the vreg is available now, and add the store to the
1343        // MaybeDeadStore info.
1344        int StackSlot;
1345        if (!(MR & VirtRegMap::isRef)) {
1346          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1347            assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
1348                   "Src hasn't been allocated yet?");
1349            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1350            // this as a potentially dead store in case there is a subsequent
1351            // store into the stack slot without a read from it.
1352            MaybeDeadStores[StackSlot] = &MI;
1353
1354            // If the stack slot value was previously available in some other
1355            // register, change it now.  Otherwise, make the register available,
1356            // in PhysReg.
1357            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
1358          }
1359        }
1360      }
1361    }
1362
1363    // Process all of the spilled defs.
1364    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1365      MachineOperand &MO = MI.getOperand(i);
1366      if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
1367        continue;
1368
1369      unsigned VirtReg = MO.getReg();
1370      if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
1371        // Check to see if this is a noop copy.  If so, eliminate the
1372        // instruction before considering the dest reg to be changed.
1373        unsigned Src, Dst;
1374        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1375          ++NumDCE;
1376          DOUT << "Removing now-noop copy: " << MI;
1377          MBB.erase(&MI);
1378          Erased = true;
1379          VRM.RemoveMachineInstrFromMaps(&MI);
1380          Spills.disallowClobberPhysReg(VirtReg);
1381          goto ProcessNextInst;
1382        }
1383
1384        // If it's not a no-op copy, it clobbers the value in the destreg.
1385        Spills.ClobberPhysReg(VirtReg);
1386        ReusedOperands.markClobbered(VirtReg);
1387
1388        // Check to see if this instruction is a load from a stack slot into
1389        // a register.  If so, this provides the stack slot value in the reg.
1390        int FrameIdx;
1391        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1392          assert(DestReg == VirtReg && "Unknown load situation!");
1393
1394          // If it is a folded reference, then it's not safe to clobber.
1395          bool Folded = FoldedSS.count(FrameIdx);
1396          // Otherwise, if it wasn't available, remember that it is now!
1397          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1398          goto ProcessNextInst;
1399        }
1400
1401        continue;
1402      }
1403
1404      unsigned SubIdx = MO.getSubReg();
1405      bool DoReMat = VRM.isReMaterialized(VirtReg);
1406      if (DoReMat)
1407        ReMatDefs.insert(&MI);
1408
1409      // The only vregs left are stack slot definitions.
1410      int StackSlot = VRM.getStackSlot(VirtReg);
1411      const TargetRegisterClass *RC = RegMap->getRegClass(VirtReg);
1412
1413      // If this def is part of a two-address operand, make sure to execute
1414      // the store from the correct physical register.
1415      unsigned PhysReg;
1416      int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
1417      if (TiedOp != -1) {
1418        PhysReg = MI.getOperand(TiedOp).getReg();
1419        if (SubIdx) {
1420          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, MRI);
1421          assert(SuperReg && MRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1422                 "Can't find corresponding super-register!");
1423          PhysReg = SuperReg;
1424        }
1425      } else {
1426        PhysReg = VRM.getPhys(VirtReg);
1427        if (ReusedOperands.isClobbered(PhysReg)) {
1428          // Another def has taken the assigned physreg. It must have been a
1429          // use&def which got it due to reuse. Undo the reuse!
1430          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1431                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1432        }
1433      }
1434
1435      MF.setPhysRegUsed(PhysReg);
1436      unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1437      ReusedOperands.markClobbered(RReg);
1438      MI.getOperand(i).setReg(RReg);
1439
1440      if (!MO.isDead()) {
1441        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1442        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, LastStore,
1443                            Spills, ReMatDefs, RegKills, KillOps, VRM);
1444
1445        // Check to see if this is a noop copy.  If so, eliminate the
1446        // instruction before considering the dest reg to be changed.
1447        {
1448          unsigned Src, Dst;
1449          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1450            ++NumDCE;
1451            DOUT << "Removing now-noop copy: " << MI;
1452            MBB.erase(&MI);
1453            Erased = true;
1454            VRM.RemoveMachineInstrFromMaps(&MI);
1455            UpdateKills(*LastStore, RegKills, KillOps);
1456            goto ProcessNextInst;
1457          }
1458        }
1459      }
1460    }
1461  ProcessNextInst:
1462    if (!Erased && !BackTracked)
1463      for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II)
1464        UpdateKills(*II, RegKills, KillOps);
1465    MII = NextMII;
1466  }
1467}
1468
1469llvm::Spiller* llvm::createSpiller() {
1470  switch (SpillerOpt) {
1471  default: assert(0 && "Unreachable!");
1472  case local:
1473    return new LocalSpiller();
1474  case simple:
1475    return new SimpleSpiller();
1476  }
1477}
1478