VirtRegMap.cpp revision c7e737e1ce677ae43da7767cbecddfca4df32eca
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/SmallSet.h"
36#include <algorithm>
37using namespace llvm;
38
39STATISTIC(NumSpills  , "Number of register spills");
40STATISTIC(NumPSpills , "Number of physical register spills");
41STATISTIC(NumReMats  , "Number of re-materialization");
42STATISTIC(NumDRM     , "Number of re-materializable defs elided");
43STATISTIC(NumStores  , "Number of stores added");
44STATISTIC(NumLoads   , "Number of loads added");
45STATISTIC(NumReused  , "Number of values reused");
46STATISTIC(NumDSE     , "Number of dead stores elided");
47STATISTIC(NumDCE     , "Number of copies elided");
48STATISTIC(NumDSS     , "Number of dead spill slots removed");
49STATISTIC(NumCommutes, "Number of instructions commuted");
50
51namespace {
52  enum SpillerName { simple, local };
53}
54
55static cl::opt<SpillerName>
56SpillerOpt("spiller",
57           cl::desc("Spiller to use: (default: local)"),
58           cl::Prefix,
59           cl::values(clEnumVal(simple, "  simple spiller"),
60                      clEnumVal(local,  "  local spiller"),
61                      clEnumValEnd),
62           cl::init(local));
63
64//===----------------------------------------------------------------------===//
65//  VirtRegMap implementation
66//===----------------------------------------------------------------------===//
67
68VirtRegMap::VirtRegMap(MachineFunction &mf)
69  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
70    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
71    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
72    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1),
73    LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) {
74  SpillSlotToUsesMap.resize(8);
75  ImplicitDefed.resize(MF.getRegInfo().getLastVirtReg()+1-
76                       TargetRegisterInfo::FirstVirtualRegister);
77  grow();
78}
79
80void VirtRegMap::grow() {
81  unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
82  Virt2PhysMap.grow(LastVirtReg);
83  Virt2StackSlotMap.grow(LastVirtReg);
84  Virt2ReMatIdMap.grow(LastVirtReg);
85  Virt2SplitMap.grow(LastVirtReg);
86  Virt2SplitKillMap.grow(LastVirtReg);
87  ReMatMap.grow(LastVirtReg);
88  ImplicitDefed.resize(LastVirtReg-TargetRegisterInfo::FirstVirtualRegister+1);
89}
90
91int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
92  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
93  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
94         "attempt to assign stack slot to already spilled register");
95  const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
96  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
97                                                RC->getAlignment());
98  if (LowSpillSlot == NO_STACK_SLOT)
99    LowSpillSlot = SS;
100  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
101    HighSpillSlot = SS;
102  unsigned Idx = SS-LowSpillSlot;
103  while (Idx >= SpillSlotToUsesMap.size())
104    SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2);
105  Virt2StackSlotMap[virtReg] = SS;
106  ++NumSpills;
107  return SS;
108}
109
110void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
111  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
112  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
113         "attempt to assign stack slot to already spilled register");
114  assert((SS >= 0 ||
115          (SS >= MF.getFrameInfo()->getObjectIndexBegin())) &&
116         "illegal fixed frame index");
117  Virt2StackSlotMap[virtReg] = SS;
118}
119
120int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
121  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
122  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
123         "attempt to assign re-mat id to already spilled register");
124  Virt2ReMatIdMap[virtReg] = ReMatId;
125  return ReMatId++;
126}
127
128void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
129  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
130  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
131         "attempt to assign re-mat id to already spilled register");
132  Virt2ReMatIdMap[virtReg] = id;
133}
134
135int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
136  std::map<const TargetRegisterClass*, int>::iterator I =
137    EmergencySpillSlots.find(RC);
138  if (I != EmergencySpillSlots.end())
139    return I->second;
140  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
141                                                RC->getAlignment());
142  if (LowSpillSlot == NO_STACK_SLOT)
143    LowSpillSlot = SS;
144  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
145    HighSpillSlot = SS;
146  I->second = SS;
147  return SS;
148}
149
150void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
151  if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) {
152    // If FI < LowSpillSlot, this stack reference was produced by
153    // instruction selection and is not a spill
154    if (FI >= LowSpillSlot) {
155      assert(FI >= 0 && "Spill slot index should not be negative!");
156      assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
157             && "Invalid spill slot");
158      SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI);
159    }
160  }
161}
162
163void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
164                            MachineInstr *NewMI, ModRef MRInfo) {
165  // Move previous memory references folded to new instruction.
166  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
167  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
168         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
169    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
170    MI2VirtMap.erase(I++);
171  }
172
173  // add new memory reference
174  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
175}
176
177void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
178  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
179  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
180}
181
182void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
183  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
184    MachineOperand &MO = MI->getOperand(i);
185    if (!MO.isFrameIndex())
186      continue;
187    int FI = MO.getIndex();
188    if (MF.getFrameInfo()->isFixedObjectIndex(FI))
189      continue;
190    // This stack reference was produced by instruction selection and
191    // is not a spill
192    if (FI < LowSpillSlot)
193      continue;
194    assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
195           && "Invalid spill slot");
196    SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
197  }
198  MI2VirtMap.erase(MI);
199  SpillPt2VirtMap.erase(MI);
200  RestorePt2VirtMap.erase(MI);
201  EmergencySpillMap.erase(MI);
202}
203
204void VirtRegMap::print(std::ostream &OS) const {
205  const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
206
207  OS << "********** REGISTER MAP **********\n";
208  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
209         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
210    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
211      OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i])
212         << "]\n";
213  }
214
215  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
216         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
217    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
218      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
219  OS << '\n';
220}
221
222void VirtRegMap::dump() const {
223  print(cerr);
224}
225
226
227//===----------------------------------------------------------------------===//
228// Simple Spiller Implementation
229//===----------------------------------------------------------------------===//
230
231Spiller::~Spiller() {}
232
233namespace {
234  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
235    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
236  };
237}
238
239bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
240  DOUT << "********** REWRITE MACHINE CODE **********\n";
241  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
242  const TargetMachine &TM = MF.getTarget();
243  const TargetInstrInfo &TII = *TM.getInstrInfo();
244  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
245
246
247  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
248  // each vreg once (in the case where a spilled vreg is used by multiple
249  // operands).  This is always smaller than the number of operands to the
250  // current machine instr, so it should be small.
251  std::vector<unsigned> LoadedRegs;
252
253  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
254       MBBI != E; ++MBBI) {
255    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
256    MachineBasicBlock &MBB = *MBBI;
257    for (MachineBasicBlock::iterator MII = MBB.begin(),
258           E = MBB.end(); MII != E; ++MII) {
259      MachineInstr &MI = *MII;
260      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
261        MachineOperand &MO = MI.getOperand(i);
262        if (MO.isRegister() && MO.getReg()) {
263          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
264            unsigned VirtReg = MO.getReg();
265            unsigned SubIdx = MO.getSubReg();
266            unsigned PhysReg = VRM.getPhys(VirtReg);
267            unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
268            if (!VRM.isAssignedReg(VirtReg)) {
269              int StackSlot = VRM.getStackSlot(VirtReg);
270              const TargetRegisterClass* RC =
271                MF.getRegInfo().getRegClass(VirtReg);
272
273              if (MO.isUse() &&
274                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
275                  == LoadedRegs.end()) {
276                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
277                MachineInstr *LoadMI = prior(MII);
278                VRM.addSpillSlotUse(StackSlot, LoadMI);
279                LoadedRegs.push_back(VirtReg);
280                ++NumLoads;
281                DOUT << '\t' << *LoadMI;
282              }
283
284              if (MO.isDef()) {
285                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
286                                        StackSlot, RC);
287                MachineInstr *StoreMI = next(MII);
288                VRM.addSpillSlotUse(StackSlot, StoreMI);
289                ++NumStores;
290              }
291            }
292            MF.getRegInfo().setPhysRegUsed(RReg);
293            MI.getOperand(i).setReg(RReg);
294          } else {
295            MF.getRegInfo().setPhysRegUsed(MO.getReg());
296          }
297        }
298      }
299
300      DOUT << '\t' << MI;
301      LoadedRegs.clear();
302    }
303  }
304  return true;
305}
306
307//===----------------------------------------------------------------------===//
308//  Local Spiller Implementation
309//===----------------------------------------------------------------------===//
310
311namespace {
312  class AvailableSpills;
313
314  /// LocalSpiller - This spiller does a simple pass over the machine basic
315  /// block to attempt to keep spills in registers as much as possible for
316  /// blocks that have low register pressure (the vreg may be spilled due to
317  /// register pressure in other blocks).
318  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
319    MachineRegisterInfo *RegInfo;
320    const TargetRegisterInfo *TRI;
321    const TargetInstrInfo *TII;
322    DenseMap<MachineInstr*, unsigned> DistanceMap;
323  public:
324    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
325      RegInfo = &MF.getRegInfo();
326      TRI = MF.getTarget().getRegisterInfo();
327      TII = MF.getTarget().getInstrInfo();
328      DOUT << "\n**** Local spiller rewriting function '"
329           << MF.getFunction()->getName() << "':\n";
330      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
331              " ****\n";
332      DEBUG(MF.dump());
333
334      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
335           MBB != E; ++MBB)
336        RewriteMBB(*MBB, VRM);
337
338      // Mark unused spill slots.
339      MachineFrameInfo *MFI = MF.getFrameInfo();
340      int SS = VRM.getLowSpillSlot();
341      if (SS != VirtRegMap::NO_STACK_SLOT)
342        for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
343          if (!VRM.isSpillSlotUsed(SS)) {
344            MFI->RemoveStackObject(SS);
345            ++NumDSS;
346          }
347
348      DOUT << "**** Post Machine Instrs ****\n";
349      DEBUG(MF.dump());
350
351      return true;
352    }
353  private:
354    void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
355                          unsigned Reg, BitVector &RegKills,
356                          std::vector<MachineOperand*> &KillOps);
357    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
358                           MachineBasicBlock::iterator &MII,
359                           std::vector<MachineInstr*> &MaybeDeadStores,
360                           AvailableSpills &Spills, BitVector &RegKills,
361                           std::vector<MachineOperand*> &KillOps,
362                           VirtRegMap &VRM);
363    bool CommuteToFoldReload(MachineBasicBlock &MBB,
364                             MachineBasicBlock::iterator &MII,
365                             unsigned VirtReg, unsigned SrcReg, int SS,
366                             BitVector &RegKills,
367                             std::vector<MachineOperand*> &KillOps,
368                             const TargetRegisterInfo *TRI,
369                             VirtRegMap &VRM);
370    void SpillRegToStackSlot(MachineBasicBlock &MBB,
371                             MachineBasicBlock::iterator &MII,
372                             int Idx, unsigned PhysReg, int StackSlot,
373                             const TargetRegisterClass *RC,
374                             bool isAvailable, MachineInstr *&LastStore,
375                             AvailableSpills &Spills,
376                             SmallSet<MachineInstr*, 4> &ReMatDefs,
377                             BitVector &RegKills,
378                             std::vector<MachineOperand*> &KillOps,
379                             VirtRegMap &VRM);
380    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
381  };
382}
383
384/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
385/// top down, keep track of which spills slots or remat are available in each
386/// register.
387///
388/// Note that not all physregs are created equal here.  In particular, some
389/// physregs are reloads that we are allowed to clobber or ignore at any time.
390/// Other physregs are values that the register allocated program is using that
391/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
392/// per-stack-slot / remat id basis as the low bit in the value of the
393/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
394/// this bit and addAvailable sets it if.
395namespace {
396class VISIBILITY_HIDDEN AvailableSpills {
397  const TargetRegisterInfo *TRI;
398  const TargetInstrInfo *TII;
399
400  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
401  // or remat'ed virtual register values that are still available, due to being
402  // loaded or stored to, but not invalidated yet.
403  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
404
405  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
406  // indicating which stack slot values are currently held by a physreg.  This
407  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
408  // physreg is modified.
409  std::multimap<unsigned, int> PhysRegsAvailable;
410
411  void disallowClobberPhysRegOnly(unsigned PhysReg);
412
413  void ClobberPhysRegOnly(unsigned PhysReg);
414public:
415  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
416    : TRI(tri), TII(tii) {
417  }
418
419  const TargetRegisterInfo *getRegInfo() const { return TRI; }
420
421  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
422  /// available in a  physical register, return that PhysReg, otherwise
423  /// return 0.
424  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
425    std::map<int, unsigned>::const_iterator I =
426      SpillSlotsOrReMatsAvailable.find(Slot);
427    if (I != SpillSlotsOrReMatsAvailable.end()) {
428      return I->second >> 1;  // Remove the CanClobber bit.
429    }
430    return 0;
431  }
432
433  /// addAvailable - Mark that the specified stack slot / remat is available in
434  /// the specified physreg.  If CanClobber is true, the physreg can be modified
435  /// at any time without changing the semantics of the program.
436  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
437                    bool CanClobber = true) {
438    // If this stack slot is thought to be available in some other physreg,
439    // remove its record.
440    ModifyStackSlotOrReMat(SlotOrReMat);
441
442    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
443    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
444
445    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
446      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
447    else
448      DOUT << "Remembering SS#" << SlotOrReMat;
449    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
450  }
451
452  /// canClobberPhysReg - Return true if the spiller is allowed to change the
453  /// value of the specified stackslot register if it desires.  The specified
454  /// stack slot must be available in a physreg for this query to make sense.
455  bool canClobberPhysReg(int SlotOrReMat) const {
456    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
457           "Value not available!");
458    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
459  }
460
461  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
462  /// stackslot register. The register is still available but is no longer
463  /// allowed to be modifed.
464  void disallowClobberPhysReg(unsigned PhysReg);
465
466  /// ClobberPhysReg - This is called when the specified physreg changes
467  /// value.  We use this to invalidate any info about stuff that lives in
468  /// it and any of its aliases.
469  void ClobberPhysReg(unsigned PhysReg);
470
471  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
472  /// slot changes.  This removes information about which register the previous
473  /// value for this slot lives in (as the previous value is dead now).
474  void ModifyStackSlotOrReMat(int SlotOrReMat);
475};
476}
477
478/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
479/// stackslot register. The register is still available but is no longer
480/// allowed to be modifed.
481void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
482  std::multimap<unsigned, int>::iterator I =
483    PhysRegsAvailable.lower_bound(PhysReg);
484  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
485    int SlotOrReMat = I->second;
486    I++;
487    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
488           "Bidirectional map mismatch!");
489    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
490    DOUT << "PhysReg " << TRI->getName(PhysReg)
491         << " copied, it is available for use but can no longer be modified\n";
492  }
493}
494
495/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
496/// stackslot register and its aliases. The register and its aliases may
497/// still available but is no longer allowed to be modifed.
498void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
499  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
500    disallowClobberPhysRegOnly(*AS);
501  disallowClobberPhysRegOnly(PhysReg);
502}
503
504/// ClobberPhysRegOnly - This is called when the specified physreg changes
505/// value.  We use this to invalidate any info about stuff we thing lives in it.
506void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
507  std::multimap<unsigned, int>::iterator I =
508    PhysRegsAvailable.lower_bound(PhysReg);
509  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
510    int SlotOrReMat = I->second;
511    PhysRegsAvailable.erase(I++);
512    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
513           "Bidirectional map mismatch!");
514    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
515    DOUT << "PhysReg " << TRI->getName(PhysReg)
516         << " clobbered, invalidating ";
517    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
518      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
519    else
520      DOUT << "SS#" << SlotOrReMat << "\n";
521  }
522}
523
524/// ClobberPhysReg - This is called when the specified physreg changes
525/// value.  We use this to invalidate any info about stuff we thing lives in
526/// it and any of its aliases.
527void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
528  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
529    ClobberPhysRegOnly(*AS);
530  ClobberPhysRegOnly(PhysReg);
531}
532
533/// ModifyStackSlotOrReMat - This method is called when the value in a stack
534/// slot changes.  This removes information about which register the previous
535/// value for this slot lives in (as the previous value is dead now).
536void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
537  std::map<int, unsigned>::iterator It =
538    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
539  if (It == SpillSlotsOrReMatsAvailable.end()) return;
540  unsigned Reg = It->second >> 1;
541  SpillSlotsOrReMatsAvailable.erase(It);
542
543  // This register may hold the value of multiple stack slots, only remove this
544  // stack slot from the set of values the register contains.
545  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
546  for (; ; ++I) {
547    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
548           "Map inverse broken!");
549    if (I->second == SlotOrReMat) break;
550  }
551  PhysRegsAvailable.erase(I);
552}
553
554
555
556/// InvalidateKills - MI is going to be deleted. If any of its operands are
557/// marked kill, then invalidate the information.
558static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
559                            std::vector<MachineOperand*> &KillOps,
560                            SmallVector<unsigned, 2> *KillRegs = NULL) {
561  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
562    MachineOperand &MO = MI.getOperand(i);
563    if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
564      continue;
565    unsigned Reg = MO.getReg();
566    if (TargetRegisterInfo::isVirtualRegister(Reg))
567      continue;
568    if (KillRegs)
569      KillRegs->push_back(Reg);
570    assert(Reg < KillOps.size());
571    if (KillOps[Reg] == &MO) {
572      RegKills.reset(Reg);
573      KillOps[Reg] = NULL;
574    }
575  }
576}
577
578/// InvalidateKill - A MI that defines the specified register is being deleted,
579/// invalidate the register kill information.
580static void InvalidateKill(unsigned Reg, BitVector &RegKills,
581                           std::vector<MachineOperand*> &KillOps) {
582  if (RegKills[Reg]) {
583    KillOps[Reg]->setIsKill(false);
584    KillOps[Reg] = NULL;
585    RegKills.reset(Reg);
586  }
587}
588
589/// InvalidateRegDef - If the def operand of the specified def MI is now dead
590/// (since it's spill instruction is removed), mark it isDead. Also checks if
591/// the def MI has other definition operands that are not dead. Returns it by
592/// reference.
593static bool InvalidateRegDef(MachineBasicBlock::iterator I,
594                             MachineInstr &NewDef, unsigned Reg,
595                             bool &HasLiveDef) {
596  // Due to remat, it's possible this reg isn't being reused. That is,
597  // the def of this reg (by prev MI) is now dead.
598  MachineInstr *DefMI = I;
599  MachineOperand *DefOp = NULL;
600  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
601    MachineOperand &MO = DefMI->getOperand(i);
602    if (MO.isRegister() && MO.isDef()) {
603      if (MO.getReg() == Reg)
604        DefOp = &MO;
605      else if (!MO.isDead())
606        HasLiveDef = true;
607    }
608  }
609  if (!DefOp)
610    return false;
611
612  bool FoundUse = false, Done = false;
613  MachineBasicBlock::iterator E = &NewDef;
614  ++I; ++E;
615  for (; !Done && I != E; ++I) {
616    MachineInstr *NMI = I;
617    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
618      MachineOperand &MO = NMI->getOperand(j);
619      if (!MO.isRegister() || MO.getReg() != Reg)
620        continue;
621      if (MO.isUse())
622        FoundUse = true;
623      Done = true; // Stop after scanning all the operands of this MI.
624    }
625  }
626  if (!FoundUse) {
627    // Def is dead!
628    DefOp->setIsDead();
629    return true;
630  }
631  return false;
632}
633
634/// UpdateKills - Track and update kill info. If a MI reads a register that is
635/// marked kill, then it must be due to register reuse. Transfer the kill info
636/// over.
637static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
638                        std::vector<MachineOperand*> &KillOps) {
639  const TargetInstrDesc &TID = MI.getDesc();
640  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
641    MachineOperand &MO = MI.getOperand(i);
642    if (!MO.isRegister() || !MO.isUse())
643      continue;
644    unsigned Reg = MO.getReg();
645    if (Reg == 0)
646      continue;
647
648    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
649      // That can't be right. Register is killed but not re-defined and it's
650      // being reused. Let's fix that.
651      KillOps[Reg]->setIsKill(false);
652      KillOps[Reg] = NULL;
653      RegKills.reset(Reg);
654      if (i < TID.getNumOperands() &&
655          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
656        // Unless it's a two-address operand, this is the new kill.
657        MO.setIsKill();
658    }
659    if (MO.isKill()) {
660      RegKills.set(Reg);
661      KillOps[Reg] = &MO;
662    }
663  }
664
665  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
666    const MachineOperand &MO = MI.getOperand(i);
667    if (!MO.isRegister() || !MO.isDef())
668      continue;
669    unsigned Reg = MO.getReg();
670    RegKills.reset(Reg);
671    KillOps[Reg] = NULL;
672  }
673}
674
675/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
676///
677static void ReMaterialize(MachineBasicBlock &MBB,
678                          MachineBasicBlock::iterator &MII,
679                          unsigned DestReg, unsigned Reg,
680                          const TargetInstrInfo *TII,
681                          const TargetRegisterInfo *TRI,
682                          VirtRegMap &VRM) {
683  TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
684  MachineInstr *NewMI = prior(MII);
685  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
686    MachineOperand &MO = NewMI->getOperand(i);
687    if (!MO.isRegister() || MO.getReg() == 0)
688      continue;
689    unsigned VirtReg = MO.getReg();
690    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
691      continue;
692    assert(MO.isUse());
693    unsigned SubIdx = MO.getSubReg();
694    unsigned Phys = VRM.getPhys(VirtReg);
695    assert(Phys);
696    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
697    MO.setReg(RReg);
698  }
699  ++NumReMats;
700}
701
702
703// ReusedOp - For each reused operand, we keep track of a bit of information, in
704// case we need to rollback upon processing a new operand.  See comments below.
705namespace {
706  struct ReusedOp {
707    // The MachineInstr operand that reused an available value.
708    unsigned Operand;
709
710    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
711    unsigned StackSlotOrReMat;
712
713    // PhysRegReused - The physical register the value was available in.
714    unsigned PhysRegReused;
715
716    // AssignedPhysReg - The physreg that was assigned for use by the reload.
717    unsigned AssignedPhysReg;
718
719    // VirtReg - The virtual register itself.
720    unsigned VirtReg;
721
722    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
723             unsigned vreg)
724      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
725        AssignedPhysReg(apr), VirtReg(vreg) {}
726  };
727
728  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
729  /// is reused instead of reloaded.
730  class VISIBILITY_HIDDEN ReuseInfo {
731    MachineInstr &MI;
732    std::vector<ReusedOp> Reuses;
733    BitVector PhysRegsClobbered;
734  public:
735    ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
736      PhysRegsClobbered.resize(tri->getNumRegs());
737    }
738
739    bool hasReuses() const {
740      return !Reuses.empty();
741    }
742
743    /// addReuse - If we choose to reuse a virtual register that is already
744    /// available instead of reloading it, remember that we did so.
745    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
746                  unsigned PhysRegReused, unsigned AssignedPhysReg,
747                  unsigned VirtReg) {
748      // If the reload is to the assigned register anyway, no undo will be
749      // required.
750      if (PhysRegReused == AssignedPhysReg) return;
751
752      // Otherwise, remember this.
753      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
754                                AssignedPhysReg, VirtReg));
755    }
756
757    void markClobbered(unsigned PhysReg) {
758      PhysRegsClobbered.set(PhysReg);
759    }
760
761    bool isClobbered(unsigned PhysReg) const {
762      return PhysRegsClobbered.test(PhysReg);
763    }
764
765    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
766    /// is some other operand that is using the specified register, either pick
767    /// a new register to use, or evict the previous reload and use this reg.
768    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
769                             AvailableSpills &Spills,
770                             std::vector<MachineInstr*> &MaybeDeadStores,
771                             SmallSet<unsigned, 8> &Rejected,
772                             BitVector &RegKills,
773                             std::vector<MachineOperand*> &KillOps,
774                             VirtRegMap &VRM) {
775      const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
776                                   .getInstrInfo();
777
778      if (Reuses.empty()) return PhysReg;  // This is most often empty.
779
780      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
781        ReusedOp &Op = Reuses[ro];
782        // If we find some other reuse that was supposed to use this register
783        // exactly for its reload, we can change this reload to use ITS reload
784        // register. That is, unless its reload register has already been
785        // considered and subsequently rejected because it has also been reused
786        // by another operand.
787        if (Op.PhysRegReused == PhysReg &&
788            Rejected.count(Op.AssignedPhysReg) == 0) {
789          // Yup, use the reload register that we didn't use before.
790          unsigned NewReg = Op.AssignedPhysReg;
791          Rejected.insert(PhysReg);
792          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
793                                 RegKills, KillOps, VRM);
794        } else {
795          // Otherwise, we might also have a problem if a previously reused
796          // value aliases the new register.  If so, codegen the previous reload
797          // and use this one.
798          unsigned PRRU = Op.PhysRegReused;
799          const TargetRegisterInfo *TRI = Spills.getRegInfo();
800          if (TRI->areAliases(PRRU, PhysReg)) {
801            // Okay, we found out that an alias of a reused register
802            // was used.  This isn't good because it means we have
803            // to undo a previous reuse.
804            MachineBasicBlock *MBB = MI->getParent();
805            const TargetRegisterClass *AliasRC =
806              MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
807
808            // Copy Op out of the vector and remove it, we're going to insert an
809            // explicit load for it.
810            ReusedOp NewOp = Op;
811            Reuses.erase(Reuses.begin()+ro);
812
813            // Ok, we're going to try to reload the assigned physreg into the
814            // slot that we were supposed to in the first place.  However, that
815            // register could hold a reuse.  Check to see if it conflicts or
816            // would prefer us to use a different register.
817            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
818                                                  MI, Spills, MaybeDeadStores,
819                                              Rejected, RegKills, KillOps, VRM);
820
821            MachineBasicBlock::iterator MII = MI;
822            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
823              ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
824            } else {
825              TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
826                                        NewOp.StackSlotOrReMat, AliasRC);
827              MachineInstr *LoadMI = prior(MII);
828              VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
829              // Any stores to this stack slot are not dead anymore.
830              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
831              ++NumLoads;
832            }
833            Spills.ClobberPhysReg(NewPhysReg);
834            Spills.ClobberPhysReg(NewOp.PhysRegReused);
835
836            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
837
838            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
839            --MII;
840            UpdateKills(*MII, RegKills, KillOps);
841            DOUT << '\t' << *MII;
842
843            DOUT << "Reuse undone!\n";
844            --NumReused;
845
846            // Finally, PhysReg is now available, go ahead and use it.
847            return PhysReg;
848          }
849        }
850      }
851      return PhysReg;
852    }
853
854    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
855    /// 'Rejected' set to remember which registers have been considered and
856    /// rejected for the reload. This avoids infinite looping in case like
857    /// this:
858    /// t1 := op t2, t3
859    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
860    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
861    /// t1 <- desires r1
862    ///       sees r1 is taken by t2, tries t2's reload register r0
863    ///       sees r0 is taken by t3, tries t3's reload register r1
864    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
865    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
866                             AvailableSpills &Spills,
867                             std::vector<MachineInstr*> &MaybeDeadStores,
868                             BitVector &RegKills,
869                             std::vector<MachineOperand*> &KillOps,
870                             VirtRegMap &VRM) {
871      SmallSet<unsigned, 8> Rejected;
872      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
873                             RegKills, KillOps, VRM);
874    }
875  };
876}
877
878/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
879/// instruction. e.g.
880///     xorl  %edi, %eax
881///     movl  %eax, -32(%ebp)
882///     movl  -36(%ebp), %eax
883///     orl   %eax, -32(%ebp)
884/// ==>
885///     xorl  %edi, %eax
886///     orl   -36(%ebp), %eax
887///     mov   %eax, -32(%ebp)
888/// This enables unfolding optimization for a subsequent instruction which will
889/// also eliminate the newly introduced store instruction.
890bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
891                                    MachineBasicBlock::iterator &MII,
892                                    std::vector<MachineInstr*> &MaybeDeadStores,
893                                    AvailableSpills &Spills,
894                                    BitVector &RegKills,
895                                    std::vector<MachineOperand*> &KillOps,
896                                    VirtRegMap &VRM) {
897  MachineFunction &MF = *MBB.getParent();
898  MachineInstr &MI = *MII;
899  unsigned UnfoldedOpc = 0;
900  unsigned UnfoldPR = 0;
901  unsigned UnfoldVR = 0;
902  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
903  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
904  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
905    // Only transform a MI that folds a single register.
906    if (UnfoldedOpc)
907      return false;
908    UnfoldVR = I->second.first;
909    VirtRegMap::ModRef MR = I->second.second;
910    // MI2VirtMap be can updated which invalidate the iterator.
911    // Increment the iterator first.
912    ++I;
913    if (VRM.isAssignedReg(UnfoldVR))
914      continue;
915    // If this reference is not a use, any previous store is now dead.
916    // Otherwise, the store to this stack slot is not dead anymore.
917    FoldedSS = VRM.getStackSlot(UnfoldVR);
918    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
919    if (DeadStore && (MR & VirtRegMap::isModRef)) {
920      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
921      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
922        continue;
923      UnfoldPR = PhysReg;
924      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
925                                                    false, true);
926    }
927  }
928
929  if (!UnfoldedOpc)
930    return false;
931
932  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
933    MachineOperand &MO = MI.getOperand(i);
934    if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
935      continue;
936    unsigned VirtReg = MO.getReg();
937    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
938      continue;
939    if (VRM.isAssignedReg(VirtReg)) {
940      unsigned PhysReg = VRM.getPhys(VirtReg);
941      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
942        return false;
943    } else if (VRM.isReMaterialized(VirtReg))
944      continue;
945    int SS = VRM.getStackSlot(VirtReg);
946    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
947    if (PhysReg) {
948      if (TRI->regsOverlap(PhysReg, UnfoldPR))
949        return false;
950      continue;
951    }
952    if (VRM.hasPhys(VirtReg)) {
953      PhysReg = VRM.getPhys(VirtReg);
954      if (!TRI->regsOverlap(PhysReg, UnfoldPR))
955        continue;
956    }
957
958    // Ok, we'll need to reload the value into a register which makes
959    // it impossible to perform the store unfolding optimization later.
960    // Let's see if it is possible to fold the load if the store is
961    // unfolded. This allows us to perform the store unfolding
962    // optimization.
963    SmallVector<MachineInstr*, 4> NewMIs;
964    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
965      assert(NewMIs.size() == 1);
966      MachineInstr *NewMI = NewMIs.back();
967      NewMIs.clear();
968      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
969      assert(Idx != -1);
970      SmallVector<unsigned, 2> Ops;
971      Ops.push_back(Idx);
972      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
973      if (FoldedMI) {
974        VRM.addSpillSlotUse(SS, FoldedMI);
975        if (!VRM.hasPhys(UnfoldVR))
976          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
977        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
978        MII = MBB.insert(MII, FoldedMI);
979        InvalidateKills(MI, RegKills, KillOps);
980        VRM.RemoveMachineInstrFromMaps(&MI);
981        MBB.erase(&MI);
982        MF.DeleteMachineInstr(NewMI);
983        return true;
984      }
985      MF.DeleteMachineInstr(NewMI);
986    }
987  }
988  return false;
989}
990
991/// CommuteToFoldReload -
992/// Look for
993/// r1 = load fi#1
994/// r1 = op r1, r2<kill>
995/// store r1, fi#1
996///
997/// If op is commutable and r2 is killed, then we can xform these to
998/// r2 = op r2, fi#1
999/// store r2, fi#1
1000bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
1001                                    MachineBasicBlock::iterator &MII,
1002                                    unsigned VirtReg, unsigned SrcReg, int SS,
1003                                    BitVector &RegKills,
1004                                    std::vector<MachineOperand*> &KillOps,
1005                                    const TargetRegisterInfo *TRI,
1006                                    VirtRegMap &VRM) {
1007  if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1008    return false;
1009
1010  MachineFunction &MF = *MBB.getParent();
1011  MachineInstr &MI = *MII;
1012  MachineBasicBlock::iterator DefMII = prior(MII);
1013  MachineInstr *DefMI = DefMII;
1014  const TargetInstrDesc &TID = DefMI->getDesc();
1015  unsigned NewDstIdx;
1016  if (DefMII != MBB.begin() &&
1017      TID.isCommutable() &&
1018      TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
1019    MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1020    unsigned NewReg = NewDstMO.getReg();
1021    if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1022      return false;
1023    MachineInstr *ReloadMI = prior(DefMII);
1024    int FrameIdx;
1025    unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1026    if (DestReg != SrcReg || FrameIdx != SS)
1027      return false;
1028    int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1029    if (UseIdx == -1)
1030      return false;
1031    int DefIdx = TID.getOperandConstraint(UseIdx, TOI::TIED_TO);
1032    if (DefIdx == -1)
1033      return false;
1034    assert(DefMI->getOperand(DefIdx).isRegister() &&
1035           DefMI->getOperand(DefIdx).getReg() == SrcReg);
1036
1037    // Now commute def instruction.
1038    MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1039    if (!CommutedMI)
1040      return false;
1041    SmallVector<unsigned, 2> Ops;
1042    Ops.push_back(NewDstIdx);
1043    MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1044    // Not needed since foldMemoryOperand returns new MI.
1045    MF.DeleteMachineInstr(CommutedMI);
1046    if (!FoldedMI)
1047      return false;
1048
1049    VRM.addSpillSlotUse(SS, FoldedMI);
1050    VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1051    // Insert new def MI and spill MI.
1052    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
1053    TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1054    MII = prior(MII);
1055    MachineInstr *StoreMI = MII;
1056    VRM.addSpillSlotUse(SS, StoreMI);
1057    VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1058    MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.
1059
1060    // Delete all 3 old instructions.
1061    InvalidateKills(*ReloadMI, RegKills, KillOps);
1062    VRM.RemoveMachineInstrFromMaps(ReloadMI);
1063    MBB.erase(ReloadMI);
1064    InvalidateKills(*DefMI, RegKills, KillOps);
1065    VRM.RemoveMachineInstrFromMaps(DefMI);
1066    MBB.erase(DefMI);
1067    InvalidateKills(MI, RegKills, KillOps);
1068    VRM.RemoveMachineInstrFromMaps(&MI);
1069    MBB.erase(&MI);
1070
1071    ++NumCommutes;
1072    return true;
1073  }
1074
1075  return false;
1076}
1077
1078/// findSuperReg - Find the SubReg's super-register of given register class
1079/// where its SubIdx sub-register is SubReg.
1080static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
1081                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
1082  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1083       I != E; ++I) {
1084    unsigned Reg = *I;
1085    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
1086      return Reg;
1087  }
1088  return 0;
1089}
1090
1091/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1092/// the last store to the same slot is now dead. If so, remove the last store.
1093void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
1094                                  MachineBasicBlock::iterator &MII,
1095                                  int Idx, unsigned PhysReg, int StackSlot,
1096                                  const TargetRegisterClass *RC,
1097                                  bool isAvailable, MachineInstr *&LastStore,
1098                                  AvailableSpills &Spills,
1099                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
1100                                  BitVector &RegKills,
1101                                  std::vector<MachineOperand*> &KillOps,
1102                                  VirtRegMap &VRM) {
1103  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1104  MachineInstr *StoreMI = next(MII);
1105  VRM.addSpillSlotUse(StackSlot, StoreMI);
1106  DOUT << "Store:\t" << *StoreMI;
1107
1108  // If there is a dead store to this stack slot, nuke it now.
1109  if (LastStore) {
1110    DOUT << "Removed dead store:\t" << *LastStore;
1111    ++NumDSE;
1112    SmallVector<unsigned, 2> KillRegs;
1113    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
1114    MachineBasicBlock::iterator PrevMII = LastStore;
1115    bool CheckDef = PrevMII != MBB.begin();
1116    if (CheckDef)
1117      --PrevMII;
1118    VRM.RemoveMachineInstrFromMaps(LastStore);
1119    MBB.erase(LastStore);
1120    if (CheckDef) {
1121      // Look at defs of killed registers on the store. Mark the defs
1122      // as dead since the store has been deleted and they aren't
1123      // being reused.
1124      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1125        bool HasOtherDef = false;
1126        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1127          MachineInstr *DeadDef = PrevMII;
1128          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1129            // FIXME: This assumes a remat def does not have side
1130            // effects.
1131            VRM.RemoveMachineInstrFromMaps(DeadDef);
1132            MBB.erase(DeadDef);
1133            ++NumDRM;
1134          }
1135        }
1136      }
1137    }
1138  }
1139
1140  LastStore = next(MII);
1141
1142  // If the stack slot value was previously available in some other
1143  // register, change it now.  Otherwise, make the register available,
1144  // in PhysReg.
1145  Spills.ModifyStackSlotOrReMat(StackSlot);
1146  Spills.ClobberPhysReg(PhysReg);
1147  Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
1148  ++NumStores;
1149}
1150
1151/// TransferDeadness - A identity copy definition is dead and it's being
1152/// removed. Find the last def or use and mark it as dead / kill.
1153void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1154                                    unsigned Reg, BitVector &RegKills,
1155                                    std::vector<MachineOperand*> &KillOps) {
1156  int LastUDDist = -1;
1157  MachineInstr *LastUDMI = NULL;
1158  for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1159         RE = RegInfo->reg_end(); RI != RE; ++RI) {
1160    MachineInstr *UDMI = &*RI;
1161    if (UDMI->getParent() != MBB)
1162      continue;
1163    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1164    if (DI == DistanceMap.end() || DI->second > CurDist)
1165      continue;
1166    if ((int)DI->second < LastUDDist)
1167      continue;
1168    LastUDDist = DI->second;
1169    LastUDMI = UDMI;
1170  }
1171
1172  if (LastUDMI) {
1173    const TargetInstrDesc &TID = LastUDMI->getDesc();
1174    MachineOperand *LastUD = NULL;
1175    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1176      MachineOperand &MO = LastUDMI->getOperand(i);
1177      if (!MO.isRegister() || MO.getReg() != Reg)
1178        continue;
1179      if (!LastUD || (LastUD->isUse() && MO.isDef()))
1180        LastUD = &MO;
1181      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
1182        return;
1183    }
1184    if (LastUD->isDef())
1185      LastUD->setIsDead();
1186    else {
1187      LastUD->setIsKill();
1188      RegKills.set(Reg);
1189      KillOps[Reg] = LastUD;
1190    }
1191  }
1192}
1193
1194/// rewriteMBB - Keep track of which spills are available even after the
1195/// register allocator is done with them.  If possible, avid reloading vregs.
1196void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
1197  DOUT << MBB.getBasicBlock()->getName() << ":\n";
1198
1199  MachineFunction &MF = *MBB.getParent();
1200
1201  // Spills - Keep track of which spilled values are available in physregs so
1202  // that we can choose to reuse the physregs instead of emitting reloads.
1203  AvailableSpills Spills(TRI, TII);
1204
1205  // MaybeDeadStores - When we need to write a value back into a stack slot,
1206  // keep track of the inserted store.  If the stack slot value is never read
1207  // (because the value was used from some available register, for example), and
1208  // subsequently stored to, the original store is dead.  This map keeps track
1209  // of inserted stores that are not used.  If we see a subsequent store to the
1210  // same stack slot, the original store is deleted.
1211  std::vector<MachineInstr*> MaybeDeadStores;
1212  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1213
1214  // ReMatDefs - These are rematerializable def MIs which are not deleted.
1215  SmallSet<MachineInstr*, 4> ReMatDefs;
1216
1217  // Keep track of kill information.
1218  BitVector RegKills(TRI->getNumRegs());
1219  std::vector<MachineOperand*>  KillOps;
1220  KillOps.resize(TRI->getNumRegs(), NULL);
1221
1222  unsigned Dist = 0;
1223  DistanceMap.clear();
1224  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1225       MII != E; ) {
1226    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
1227
1228    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1229    bool Erased = false;
1230    bool BackTracked = false;
1231    if (PrepForUnfoldOpti(MBB, MII,
1232                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1233      NextMII = next(MII);
1234
1235    MachineInstr &MI = *MII;
1236    const TargetInstrDesc &TID = MI.getDesc();
1237
1238    if (VRM.hasEmergencySpills(&MI)) {
1239      // Spill physical register(s) in the rare case the allocator has run out
1240      // of registers to allocate.
1241      SmallSet<int, 4> UsedSS;
1242      std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1243      for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1244        unsigned PhysReg = EmSpills[i];
1245        const TargetRegisterClass *RC =
1246          TRI->getPhysicalRegisterRegClass(PhysReg);
1247        assert(RC && "Unable to determine register class!");
1248        int SS = VRM.getEmergencySpillSlot(RC);
1249        if (UsedSS.count(SS))
1250          assert(0 && "Need to spill more than one physical registers!");
1251        UsedSS.insert(SS);
1252        TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1253        MachineInstr *StoreMI = prior(MII);
1254        VRM.addSpillSlotUse(SS, StoreMI);
1255        TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1256        MachineInstr *LoadMI = next(MII);
1257        VRM.addSpillSlotUse(SS, LoadMI);
1258        ++NumPSpills;
1259      }
1260      NextMII = next(MII);
1261    }
1262
1263    // Insert restores here if asked to.
1264    if (VRM.isRestorePt(&MI)) {
1265      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1266      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1267        unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
1268        if (!VRM.getPreSplitReg(VirtReg))
1269          continue; // Split interval spilled again.
1270        unsigned Phys = VRM.getPhys(VirtReg);
1271        RegInfo->setPhysRegUsed(Phys);
1272        if (VRM.isReMaterialized(VirtReg)) {
1273          ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1274        } else {
1275          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1276          int SS = VRM.getStackSlot(VirtReg);
1277          TII->loadRegFromStackSlot(MBB, &MI, Phys, SS, RC);
1278          MachineInstr *LoadMI = prior(MII);
1279          VRM.addSpillSlotUse(SS, LoadMI);
1280          ++NumLoads;
1281        }
1282        // This invalidates Phys.
1283        Spills.ClobberPhysReg(Phys);
1284        UpdateKills(*prior(MII), RegKills, KillOps);
1285        DOUT << '\t' << *prior(MII);
1286      }
1287    }
1288
1289    // Insert spills here if asked to.
1290    if (VRM.isSpillPt(&MI)) {
1291      std::vector<std::pair<unsigned,bool> > &SpillRegs =
1292        VRM.getSpillPtSpills(&MI);
1293      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1294        unsigned VirtReg = SpillRegs[i].first;
1295        bool isKill = SpillRegs[i].second;
1296        if (!VRM.getPreSplitReg(VirtReg))
1297          continue; // Split interval spilled again.
1298        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1299        unsigned Phys = VRM.getPhys(VirtReg);
1300        int StackSlot = VRM.getStackSlot(VirtReg);
1301        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1302        MachineInstr *StoreMI = next(MII);
1303        VRM.addSpillSlotUse(StackSlot, StoreMI);
1304        DOUT << "Store:\t" << *StoreMI;
1305        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1306      }
1307      NextMII = next(MII);
1308    }
1309
1310    /// ReusedOperands - Keep track of operand reuse in case we need to undo
1311    /// reuse.
1312    ReuseInfo ReusedOperands(MI, TRI);
1313    SmallVector<unsigned, 4> VirtUseOps;
1314    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1315      MachineOperand &MO = MI.getOperand(i);
1316      if (!MO.isRegister() || MO.getReg() == 0)
1317        continue;   // Ignore non-register operands.
1318
1319      unsigned VirtReg = MO.getReg();
1320      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1321        // Ignore physregs for spilling, but remember that it is used by this
1322        // function.
1323        RegInfo->setPhysRegUsed(VirtReg);
1324        continue;
1325      }
1326
1327      // We want to process implicit virtual register uses first.
1328      if (MO.isImplicit())
1329        // If the virtual register is implicitly defined, emit a implicit_def
1330        // before so scavenger knows it's "defined".
1331        VirtUseOps.insert(VirtUseOps.begin(), i);
1332      else
1333        VirtUseOps.push_back(i);
1334    }
1335
1336    // Process all of the spilled uses and all non spilled reg references.
1337    for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1338      unsigned i = VirtUseOps[j];
1339      MachineOperand &MO = MI.getOperand(i);
1340      unsigned VirtReg = MO.getReg();
1341      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1342             "Not a virtual register?");
1343
1344      unsigned SubIdx = MO.getSubReg();
1345      if (VRM.isAssignedReg(VirtReg)) {
1346        // This virtual register was assigned a physreg!
1347        unsigned Phys = VRM.getPhys(VirtReg);
1348        RegInfo->setPhysRegUsed(Phys);
1349        if (MO.isDef())
1350          ReusedOperands.markClobbered(Phys);
1351        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1352        MI.getOperand(i).setReg(RReg);
1353        if (VRM.isImplicitlyDefined(VirtReg))
1354          BuildMI(MBB, &MI, TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1355        continue;
1356      }
1357
1358      // This virtual register is now known to be a spilled value.
1359      if (!MO.isUse())
1360        continue;  // Handle defs in the loop below (handle use&def here though)
1361
1362      bool DoReMat = VRM.isReMaterialized(VirtReg);
1363      int SSorRMId = DoReMat
1364        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1365      int ReuseSlot = SSorRMId;
1366
1367      // Check to see if this stack slot is available.
1368      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1369
1370      // If this is a sub-register use, make sure the reuse register is in the
1371      // right register class. For example, for x86 not all of the 32-bit
1372      // registers have accessible sub-registers.
1373      // Similarly so for EXTRACT_SUBREG. Consider this:
1374      // EDI = op
1375      // MOV32_mr fi#1, EDI
1376      // ...
1377      //       = EXTRACT_SUBREG fi#1
1378      // fi#1 is available in EDI, but it cannot be reused because it's not in
1379      // the right register file.
1380      if (PhysReg &&
1381          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1382        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1383        if (!RC->contains(PhysReg))
1384          PhysReg = 0;
1385      }
1386
1387      if (PhysReg) {
1388        // This spilled operand might be part of a two-address operand.  If this
1389        // is the case, then changing it will necessarily require changing the
1390        // def part of the instruction as well.  However, in some cases, we
1391        // aren't allowed to modify the reused register.  If none of these cases
1392        // apply, reuse it.
1393        bool CanReuse = true;
1394        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1395        if (ti != -1 &&
1396            MI.getOperand(ti).isRegister() &&
1397            MI.getOperand(ti).getReg() == VirtReg) {
1398          // Okay, we have a two address operand.  We can reuse this physreg as
1399          // long as we are allowed to clobber the value and there isn't an
1400          // earlier def that has already clobbered the physreg.
1401          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1402            !ReusedOperands.isClobbered(PhysReg);
1403        }
1404
1405        if (CanReuse) {
1406          // If this stack slot value is already available, reuse it!
1407          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1408            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1409          else
1410            DOUT << "Reusing SS#" << ReuseSlot;
1411          DOUT << " from physreg "
1412               << TRI->getName(PhysReg) << " for vreg"
1413               << VirtReg <<" instead of reloading into physreg "
1414               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1415          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1416          MI.getOperand(i).setReg(RReg);
1417
1418          // The only technical detail we have is that we don't know that
1419          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1420          // later in the instruction.  In particular, consider 'op V1, V2'.
1421          // If V1 is available in physreg R0, we would choose to reuse it
1422          // here, instead of reloading it into the register the allocator
1423          // indicated (say R1).  However, V2 might have to be reloaded
1424          // later, and it might indicate that it needs to live in R0.  When
1425          // this occurs, we need to have information available that
1426          // indicates it is safe to use R1 for the reload instead of R0.
1427          //
1428          // To further complicate matters, we might conflict with an alias,
1429          // or R0 and R1 might not be compatible with each other.  In this
1430          // case, we actually insert a reload for V1 in R1, ensuring that
1431          // we can get at R0 or its alias.
1432          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1433                                  VRM.getPhys(VirtReg), VirtReg);
1434          if (ti != -1)
1435            // Only mark it clobbered if this is a use&def operand.
1436            ReusedOperands.markClobbered(PhysReg);
1437          ++NumReused;
1438
1439          if (MI.getOperand(i).isKill() &&
1440              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1441            // This was the last use and the spilled value is still available
1442            // for reuse. That means the spill was unnecessary!
1443            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1444            if (DeadStore) {
1445              DOUT << "Removed dead store:\t" << *DeadStore;
1446              InvalidateKills(*DeadStore, RegKills, KillOps);
1447              VRM.RemoveMachineInstrFromMaps(DeadStore);
1448              MBB.erase(DeadStore);
1449              MaybeDeadStores[ReuseSlot] = NULL;
1450              ++NumDSE;
1451            }
1452          }
1453          continue;
1454        }  // CanReuse
1455
1456        // Otherwise we have a situation where we have a two-address instruction
1457        // whose mod/ref operand needs to be reloaded.  This reload is already
1458        // available in some register "PhysReg", but if we used PhysReg as the
1459        // operand to our 2-addr instruction, the instruction would modify
1460        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1461        // to get its initial value.
1462        //
1463        // To avoid this problem, and to avoid doing a load right after a store,
1464        // we emit a copy from PhysReg into the designated register for this
1465        // operand.
1466        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1467        assert(DesignatedReg && "Must map virtreg to physreg!");
1468
1469        // Note that, if we reused a register for a previous operand, the
1470        // register we want to reload into might not actually be
1471        // available.  If this occurs, use the register indicated by the
1472        // reuser.
1473        if (ReusedOperands.hasReuses())
1474          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1475                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1476
1477        // If the mapped designated register is actually the physreg we have
1478        // incoming, we don't need to inserted a dead copy.
1479        if (DesignatedReg == PhysReg) {
1480          // If this stack slot value is already available, reuse it!
1481          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1482            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1483          else
1484            DOUT << "Reusing SS#" << ReuseSlot;
1485          DOUT << " from physreg " << TRI->getName(PhysReg)
1486               << " for vreg" << VirtReg
1487               << " instead of reloading into same physreg.\n";
1488          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1489          MI.getOperand(i).setReg(RReg);
1490          ReusedOperands.markClobbered(RReg);
1491          ++NumReused;
1492          continue;
1493        }
1494
1495        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1496        RegInfo->setPhysRegUsed(DesignatedReg);
1497        ReusedOperands.markClobbered(DesignatedReg);
1498        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1499
1500        MachineInstr *CopyMI = prior(MII);
1501        UpdateKills(*CopyMI, RegKills, KillOps);
1502
1503        // This invalidates DesignatedReg.
1504        Spills.ClobberPhysReg(DesignatedReg);
1505
1506        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1507        unsigned RReg =
1508          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1509        MI.getOperand(i).setReg(RReg);
1510        DOUT << '\t' << *prior(MII);
1511        ++NumReused;
1512        continue;
1513      } // if (PhysReg)
1514
1515      // Otherwise, reload it and remember that we have it.
1516      PhysReg = VRM.getPhys(VirtReg);
1517      assert(PhysReg && "Must map virtreg to physreg!");
1518
1519      // Note that, if we reused a register for a previous operand, the
1520      // register we want to reload into might not actually be
1521      // available.  If this occurs, use the register indicated by the
1522      // reuser.
1523      if (ReusedOperands.hasReuses())
1524        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1525                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1526
1527      RegInfo->setPhysRegUsed(PhysReg);
1528      ReusedOperands.markClobbered(PhysReg);
1529      if (DoReMat) {
1530        ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1531      } else {
1532        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1533        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1534        MachineInstr *LoadMI = prior(MII);
1535        VRM.addSpillSlotUse(SSorRMId, LoadMI);
1536        ++NumLoads;
1537      }
1538      // This invalidates PhysReg.
1539      Spills.ClobberPhysReg(PhysReg);
1540
1541      // Any stores to this stack slot are not dead anymore.
1542      if (!DoReMat)
1543        MaybeDeadStores[SSorRMId] = NULL;
1544      Spills.addAvailable(SSorRMId, &MI, PhysReg);
1545      // Assumes this is the last use. IsKill will be unset if reg is reused
1546      // unless it's a two-address operand.
1547      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
1548        MI.getOperand(i).setIsKill();
1549      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1550      MI.getOperand(i).setReg(RReg);
1551      UpdateKills(*prior(MII), RegKills, KillOps);
1552      DOUT << '\t' << *prior(MII);
1553    }
1554
1555    DOUT << '\t' << MI;
1556
1557
1558    // If we have folded references to memory operands, make sure we clear all
1559    // physical registers that may contain the value of the spilled virtual
1560    // register
1561    SmallSet<int, 2> FoldedSS;
1562    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1563      unsigned VirtReg = I->second.first;
1564      VirtRegMap::ModRef MR = I->second.second;
1565      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1566
1567      // MI2VirtMap be can updated which invalidate the iterator.
1568      // Increment the iterator first.
1569      ++I;
1570      int SS = VRM.getStackSlot(VirtReg);
1571      if (SS == VirtRegMap::NO_STACK_SLOT)
1572        continue;
1573      FoldedSS.insert(SS);
1574      DOUT << " - StackSlot: " << SS << "\n";
1575
1576      // If this folded instruction is just a use, check to see if it's a
1577      // straight load from the virt reg slot.
1578      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1579        int FrameIdx;
1580        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1581        if (DestReg && FrameIdx == SS) {
1582          // If this spill slot is available, turn it into a copy (or nothing)
1583          // instead of leaving it as a load!
1584          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1585            DOUT << "Promoted Load To Copy: " << MI;
1586            if (DestReg != InReg) {
1587              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1588              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1589              // Revisit the copy so we make sure to notice the effects of the
1590              // operation on the destreg (either needing to RA it if it's
1591              // virtual or needing to clobber any values if it's physical).
1592              NextMII = &MI;
1593              --NextMII;  // backtrack to the copy.
1594              BackTracked = true;
1595            } else {
1596              DOUT << "Removing now-noop copy: " << MI;
1597              // Unset last kill since it's being reused.
1598              InvalidateKill(InReg, RegKills, KillOps);
1599            }
1600
1601            InvalidateKills(MI, RegKills, KillOps);
1602            VRM.RemoveMachineInstrFromMaps(&MI);
1603            MBB.erase(&MI);
1604            Erased = true;
1605            goto ProcessNextInst;
1606          }
1607        } else {
1608          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1609          SmallVector<MachineInstr*, 4> NewMIs;
1610          if (PhysReg &&
1611              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1612            MBB.insert(MII, NewMIs[0]);
1613            InvalidateKills(MI, RegKills, KillOps);
1614            VRM.RemoveMachineInstrFromMaps(&MI);
1615            MBB.erase(&MI);
1616            Erased = true;
1617            --NextMII;  // backtrack to the unfolded instruction.
1618            BackTracked = true;
1619            goto ProcessNextInst;
1620          }
1621        }
1622      }
1623
1624      // If this reference is not a use, any previous store is now dead.
1625      // Otherwise, the store to this stack slot is not dead anymore.
1626      MachineInstr* DeadStore = MaybeDeadStores[SS];
1627      if (DeadStore) {
1628        bool isDead = !(MR & VirtRegMap::isRef);
1629        MachineInstr *NewStore = NULL;
1630        if (MR & VirtRegMap::isModRef) {
1631          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1632          SmallVector<MachineInstr*, 4> NewMIs;
1633          // We can reuse this physreg as long as we are allowed to clobber
1634          // the value and there isn't an earlier def that has already clobbered
1635          // the physreg.
1636          if (PhysReg &&
1637              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1638            MachineOperand *KillOpnd =
1639              DeadStore->findRegisterUseOperand(PhysReg, true);
1640            // Note, if the store is storing a sub-register, it's possible the
1641            // super-register is needed below.
1642            if (KillOpnd && !KillOpnd->getSubReg() &&
1643                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1644              MBB.insert(MII, NewMIs[0]);
1645              NewStore = NewMIs[1];
1646              MBB.insert(MII, NewStore);
1647              VRM.addSpillSlotUse(SS, NewStore);
1648              InvalidateKills(MI, RegKills, KillOps);
1649              VRM.RemoveMachineInstrFromMaps(&MI);
1650              MBB.erase(&MI);
1651              Erased = true;
1652              --NextMII;
1653              --NextMII;  // backtrack to the unfolded instruction.
1654              BackTracked = true;
1655              isDead = true;
1656            }
1657          }
1658        }
1659
1660        if (isDead) {  // Previous store is dead.
1661          // If we get here, the store is dead, nuke it now.
1662          DOUT << "Removed dead store:\t" << *DeadStore;
1663          InvalidateKills(*DeadStore, RegKills, KillOps);
1664          VRM.RemoveMachineInstrFromMaps(DeadStore);
1665          MBB.erase(DeadStore);
1666          if (!NewStore)
1667            ++NumDSE;
1668        }
1669
1670        MaybeDeadStores[SS] = NULL;
1671        if (NewStore) {
1672          // Treat this store as a spill merged into a copy. That makes the
1673          // stack slot value available.
1674          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1675          goto ProcessNextInst;
1676        }
1677      }
1678
1679      // If the spill slot value is available, and this is a new definition of
1680      // the value, the value is not available anymore.
1681      if (MR & VirtRegMap::isMod) {
1682        // Notice that the value in this stack slot has been modified.
1683        Spills.ModifyStackSlotOrReMat(SS);
1684
1685        // If this is *just* a mod of the value, check to see if this is just a
1686        // store to the spill slot (i.e. the spill got merged into the copy). If
1687        // so, realize that the vreg is available now, and add the store to the
1688        // MaybeDeadStore info.
1689        int StackSlot;
1690        if (!(MR & VirtRegMap::isRef)) {
1691          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1692            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1693                   "Src hasn't been allocated yet?");
1694
1695            if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
1696                                    RegKills, KillOps, TRI, VRM)) {
1697              NextMII = next(MII);
1698              BackTracked = true;
1699              goto ProcessNextInst;
1700            }
1701
1702            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1703            // this as a potentially dead store in case there is a subsequent
1704            // store into the stack slot without a read from it.
1705            MaybeDeadStores[StackSlot] = &MI;
1706
1707            // If the stack slot value was previously available in some other
1708            // register, change it now.  Otherwise, make the register
1709            // available in PhysReg.
1710            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*!clobber*/);
1711          }
1712        }
1713      }
1714    }
1715
1716    // Process all of the spilled defs.
1717    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1718      MachineOperand &MO = MI.getOperand(i);
1719      if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
1720        continue;
1721
1722      unsigned VirtReg = MO.getReg();
1723      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1724        // Check to see if this is a noop copy.  If so, eliminate the
1725        // instruction before considering the dest reg to be changed.
1726        unsigned Src, Dst;
1727        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1728          ++NumDCE;
1729          DOUT << "Removing now-noop copy: " << MI;
1730          SmallVector<unsigned, 2> KillRegs;
1731          InvalidateKills(MI, RegKills, KillOps, &KillRegs);
1732          if (MO.isDead() && !KillRegs.empty()) {
1733            // Source register or an implicit super-register use is killed.
1734            assert(KillRegs[0] == Dst || TRI->isSubRegister(KillRegs[0], Dst));
1735            // Last def is now dead.
1736            TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
1737          }
1738          VRM.RemoveMachineInstrFromMaps(&MI);
1739          MBB.erase(&MI);
1740          Erased = true;
1741          Spills.disallowClobberPhysReg(VirtReg);
1742          goto ProcessNextInst;
1743        }
1744
1745        // If it's not a no-op copy, it clobbers the value in the destreg.
1746        Spills.ClobberPhysReg(VirtReg);
1747        ReusedOperands.markClobbered(VirtReg);
1748
1749        // Check to see if this instruction is a load from a stack slot into
1750        // a register.  If so, this provides the stack slot value in the reg.
1751        int FrameIdx;
1752        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1753          assert(DestReg == VirtReg && "Unknown load situation!");
1754
1755          // If it is a folded reference, then it's not safe to clobber.
1756          bool Folded = FoldedSS.count(FrameIdx);
1757          // Otherwise, if it wasn't available, remember that it is now!
1758          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1759          goto ProcessNextInst;
1760        }
1761
1762        continue;
1763      }
1764
1765      unsigned SubIdx = MO.getSubReg();
1766      bool DoReMat = VRM.isReMaterialized(VirtReg);
1767      if (DoReMat)
1768        ReMatDefs.insert(&MI);
1769
1770      // The only vregs left are stack slot definitions.
1771      int StackSlot = VRM.getStackSlot(VirtReg);
1772      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1773
1774      // If this def is part of a two-address operand, make sure to execute
1775      // the store from the correct physical register.
1776      unsigned PhysReg;
1777      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
1778      if (TiedOp != -1) {
1779        PhysReg = MI.getOperand(TiedOp).getReg();
1780        if (SubIdx) {
1781          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1782          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1783                 "Can't find corresponding super-register!");
1784          PhysReg = SuperReg;
1785        }
1786      } else {
1787        PhysReg = VRM.getPhys(VirtReg);
1788        if (ReusedOperands.isClobbered(PhysReg)) {
1789          // Another def has taken the assigned physreg. It must have been a
1790          // use&def which got it due to reuse. Undo the reuse!
1791          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1792                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1793        }
1794      }
1795
1796      assert(PhysReg && "VR not assigned a physical register?");
1797      RegInfo->setPhysRegUsed(PhysReg);
1798      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1799      ReusedOperands.markClobbered(RReg);
1800      MI.getOperand(i).setReg(RReg);
1801
1802      if (!MO.isDead()) {
1803        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1804        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1805                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1806        NextMII = next(MII);
1807
1808        // Check to see if this is a noop copy.  If so, eliminate the
1809        // instruction before considering the dest reg to be changed.
1810        {
1811          unsigned Src, Dst;
1812          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1813            ++NumDCE;
1814            DOUT << "Removing now-noop copy: " << MI;
1815            InvalidateKills(MI, RegKills, KillOps);
1816            VRM.RemoveMachineInstrFromMaps(&MI);
1817            MBB.erase(&MI);
1818            Erased = true;
1819            UpdateKills(*LastStore, RegKills, KillOps);
1820            goto ProcessNextInst;
1821          }
1822        }
1823      }
1824    }
1825  ProcessNextInst:
1826    DistanceMap.insert(std::make_pair(&MI, Dist++));
1827    if (!Erased && !BackTracked) {
1828      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
1829        UpdateKills(*II, RegKills, KillOps);
1830    }
1831    MII = NextMII;
1832  }
1833}
1834
1835llvm::Spiller* llvm::createSpiller() {
1836  switch (SpillerOpt) {
1837  default: assert(0 && "Unreachable!");
1838  case local:
1839    return new LocalSpiller();
1840  case simple:
1841    return new SimpleSpiller();
1842  }
1843}
1844