VirtRegMap.cpp revision ecb9ad5742b5dba1c834e0c79eff2214454e3193
1//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the VirtRegMap class.
11//
12// It also contains implementations of the the Spiller interface, which, given a
13// virtual register map and a machine function, eliminates all virtual
14// references by replacing them with physical register references - adding spill
15// code as necessary.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "spiller"
20#include "VirtRegMap.h"
21#include "llvm/Function.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/ADT/BitVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallSet.h"
34#include <algorithm>
35using namespace llvm;
36
37STATISTIC(NumSpills, "Number of register spills");
38STATISTIC(NumPSpills,"Number of physical register spills");
39STATISTIC(NumReMats, "Number of re-materialization");
40STATISTIC(NumDRM   , "Number of re-materializable defs elided");
41STATISTIC(NumStores, "Number of stores added");
42STATISTIC(NumLoads , "Number of loads added");
43STATISTIC(NumReused, "Number of values reused");
44STATISTIC(NumDSE   , "Number of dead stores elided");
45STATISTIC(NumDCE   , "Number of copies elided");
46STATISTIC(NumDSS   , "Number of dead spill slots removed");
47
48namespace {
49  enum SpillerName { simple, local };
50
51  static cl::opt<SpillerName>
52  SpillerOpt("spiller",
53             cl::desc("Spiller to use: (default: local)"),
54             cl::Prefix,
55             cl::values(clEnumVal(simple, "  simple spiller"),
56                        clEnumVal(local,  "  local spiller"),
57                        clEnumValEnd),
58             cl::init(local));
59}
60
61//===----------------------------------------------------------------------===//
62//  VirtRegMap implementation
63//===----------------------------------------------------------------------===//
64
65VirtRegMap::VirtRegMap(MachineFunction &mf)
66  : TII(*mf.getTarget().getInstrInfo()), MF(mf),
67    Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
68    Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
69    Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1),
70    LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) {
71  SpillSlotToUsesMap.resize(8);
72  grow();
73}
74
75void VirtRegMap::grow() {
76  unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
77  Virt2PhysMap.grow(LastVirtReg);
78  Virt2StackSlotMap.grow(LastVirtReg);
79  Virt2ReMatIdMap.grow(LastVirtReg);
80  Virt2SplitMap.grow(LastVirtReg);
81  Virt2SplitKillMap.grow(LastVirtReg);
82  ReMatMap.grow(LastVirtReg);
83}
84
85int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
86  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
87  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
88         "attempt to assign stack slot to already spilled register");
89  const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
90  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
91                                                RC->getAlignment());
92  if (LowSpillSlot == NO_STACK_SLOT)
93    LowSpillSlot = SS;
94  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
95    HighSpillSlot = SS;
96  unsigned Idx = SS-LowSpillSlot;
97  while (Idx >= SpillSlotToUsesMap.size())
98    SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2);
99  Virt2StackSlotMap[virtReg] = SS;
100  ++NumSpills;
101  return SS;
102}
103
104void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
105  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
106  assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
107         "attempt to assign stack slot to already spilled register");
108  assert((SS >= 0 ||
109          (SS >= MF.getFrameInfo()->getObjectIndexBegin())) &&
110         "illegal fixed frame index");
111  Virt2StackSlotMap[virtReg] = SS;
112}
113
114int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
115  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
116  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
117         "attempt to assign re-mat id to already spilled register");
118  Virt2ReMatIdMap[virtReg] = ReMatId;
119  return ReMatId++;
120}
121
122void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
123  assert(TargetRegisterInfo::isVirtualRegister(virtReg));
124  assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
125         "attempt to assign re-mat id to already spilled register");
126  Virt2ReMatIdMap[virtReg] = id;
127}
128
129int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
130  std::map<const TargetRegisterClass*, int>::iterator I =
131    EmergencySpillSlots.find(RC);
132  if (I != EmergencySpillSlots.end())
133    return I->second;
134  int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
135                                                RC->getAlignment());
136  if (LowSpillSlot == NO_STACK_SLOT)
137    LowSpillSlot = SS;
138  if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
139    HighSpillSlot = SS;
140  I->second = SS;
141  return SS;
142}
143
144void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
145  if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) {
146    assert(FI >= 0 && "Spill slot index should not be negative!");
147    SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI);
148  }
149}
150
151void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
152                            MachineInstr *NewMI, ModRef MRInfo) {
153  // Move previous memory references folded to new instruction.
154  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
155  for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
156         E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
157    MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
158    MI2VirtMap.erase(I++);
159  }
160
161  // add new memory reference
162  MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
163}
164
165void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
166  MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
167  MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
168}
169
170void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
171  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
172    MachineOperand &MO = MI->getOperand(i);
173    if (!MO.isFrameIndex())
174      continue;
175    int FI = MO.getIndex();
176    if (MF.getFrameInfo()->isFixedObjectIndex(FI))
177      continue;
178    SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
179  }
180  MI2VirtMap.erase(MI);
181  SpillPt2VirtMap.erase(MI);
182  RestorePt2VirtMap.erase(MI);
183  EmergencySpillMap.erase(MI);
184}
185
186void VirtRegMap::print(std::ostream &OS) const {
187  const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
188
189  OS << "********** REGISTER MAP **********\n";
190  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
191         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
192    if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
193      OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i])
194         << "]\n";
195  }
196
197  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
198         e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
199    if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
200      OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
201  OS << '\n';
202}
203
204void VirtRegMap::dump() const {
205  print(cerr);
206}
207
208
209//===----------------------------------------------------------------------===//
210// Simple Spiller Implementation
211//===----------------------------------------------------------------------===//
212
213Spiller::~Spiller() {}
214
215namespace {
216  struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
217    bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
218  };
219}
220
221bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
222  DOUT << "********** REWRITE MACHINE CODE **********\n";
223  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
224  const TargetMachine &TM = MF.getTarget();
225  const TargetInstrInfo &TII = *TM.getInstrInfo();
226
227
228  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
229  // each vreg once (in the case where a spilled vreg is used by multiple
230  // operands).  This is always smaller than the number of operands to the
231  // current machine instr, so it should be small.
232  std::vector<unsigned> LoadedRegs;
233
234  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
235       MBBI != E; ++MBBI) {
236    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
237    MachineBasicBlock &MBB = *MBBI;
238    for (MachineBasicBlock::iterator MII = MBB.begin(),
239           E = MBB.end(); MII != E; ++MII) {
240      MachineInstr &MI = *MII;
241      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
242        MachineOperand &MO = MI.getOperand(i);
243        if (MO.isRegister() && MO.getReg()) {
244          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
245            unsigned VirtReg = MO.getReg();
246            unsigned PhysReg = VRM.getPhys(VirtReg);
247            if (!VRM.isAssignedReg(VirtReg)) {
248              int StackSlot = VRM.getStackSlot(VirtReg);
249              const TargetRegisterClass* RC =
250                MF.getRegInfo().getRegClass(VirtReg);
251
252              if (MO.isUse() &&
253                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
254                  == LoadedRegs.end()) {
255                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
256                MachineInstr *LoadMI = prior(MII);
257                VRM.addSpillSlotUse(StackSlot, LoadMI);
258                LoadedRegs.push_back(VirtReg);
259                ++NumLoads;
260                DOUT << '\t' << *LoadMI;
261              }
262
263              if (MO.isDef()) {
264                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
265                                        StackSlot, RC);
266                MachineInstr *StoreMI = next(MII);
267                VRM.addSpillSlotUse(StackSlot, StoreMI);
268                ++NumStores;
269              }
270            }
271            MF.getRegInfo().setPhysRegUsed(PhysReg);
272            MI.getOperand(i).setReg(PhysReg);
273          } else {
274            MF.getRegInfo().setPhysRegUsed(MO.getReg());
275          }
276        }
277      }
278
279      DOUT << '\t' << MI;
280      LoadedRegs.clear();
281    }
282  }
283  return true;
284}
285
286//===----------------------------------------------------------------------===//
287//  Local Spiller Implementation
288//===----------------------------------------------------------------------===//
289
290namespace {
291  class AvailableSpills;
292
293  /// LocalSpiller - This spiller does a simple pass over the machine basic
294  /// block to attempt to keep spills in registers as much as possible for
295  /// blocks that have low register pressure (the vreg may be spilled due to
296  /// register pressure in other blocks).
297  class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
298    MachineRegisterInfo *RegInfo;
299    const TargetRegisterInfo *TRI;
300    const TargetInstrInfo *TII;
301  public:
302    bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
303      RegInfo = &MF.getRegInfo();
304      TRI = MF.getTarget().getRegisterInfo();
305      TII = MF.getTarget().getInstrInfo();
306      DOUT << "\n**** Local spiller rewriting function '"
307           << MF.getFunction()->getName() << "':\n";
308      DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
309              " ****\n";
310      DEBUG(MF.dump());
311
312      for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
313           MBB != E; ++MBB)
314        RewriteMBB(*MBB, VRM);
315
316      // Mark unused spill slots.
317      MachineFrameInfo *MFI = MF.getFrameInfo();
318      int SS = VRM.getLowSpillSlot();
319      if (SS != VirtRegMap::NO_STACK_SLOT)
320        for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
321          if (!VRM.isSpillSlotUsed(SS)) {
322            MFI->RemoveStackObject(SS);
323            ++NumDSS;
324          }
325
326      DOUT << "**** Post Machine Instrs ****\n";
327      DEBUG(MF.dump());
328
329      return true;
330    }
331  private:
332    bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
333                           MachineBasicBlock::iterator &MII,
334                           std::vector<MachineInstr*> &MaybeDeadStores,
335                           AvailableSpills &Spills, BitVector &RegKills,
336                           std::vector<MachineOperand*> &KillOps,
337                           VirtRegMap &VRM);
338    void SpillRegToStackSlot(MachineBasicBlock &MBB,
339                             MachineBasicBlock::iterator &MII,
340                             int Idx, unsigned PhysReg, int StackSlot,
341                             const TargetRegisterClass *RC,
342                             bool isAvailable, MachineInstr *&LastStore,
343                             AvailableSpills &Spills,
344                             SmallSet<MachineInstr*, 4> &ReMatDefs,
345                             BitVector &RegKills,
346                             std::vector<MachineOperand*> &KillOps,
347                             VirtRegMap &VRM);
348    void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
349  };
350}
351
352/// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
353/// top down, keep track of which spills slots or remat are available in each
354/// register.
355///
356/// Note that not all physregs are created equal here.  In particular, some
357/// physregs are reloads that we are allowed to clobber or ignore at any time.
358/// Other physregs are values that the register allocated program is using that
359/// we cannot CHANGE, but we can read if we like.  We keep track of this on a
360/// per-stack-slot / remat id basis as the low bit in the value of the
361/// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
362/// this bit and addAvailable sets it if.
363namespace {
364class VISIBILITY_HIDDEN AvailableSpills {
365  const TargetRegisterInfo *TRI;
366  const TargetInstrInfo *TII;
367
368  // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
369  // or remat'ed virtual register values that are still available, due to being
370  // loaded or stored to, but not invalidated yet.
371  std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
372
373  // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
374  // indicating which stack slot values are currently held by a physreg.  This
375  // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
376  // physreg is modified.
377  std::multimap<unsigned, int> PhysRegsAvailable;
378
379  void disallowClobberPhysRegOnly(unsigned PhysReg);
380
381  void ClobberPhysRegOnly(unsigned PhysReg);
382public:
383  AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
384    : TRI(tri), TII(tii) {
385  }
386
387  const TargetRegisterInfo *getRegInfo() const { return TRI; }
388
389  /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
390  /// available in a  physical register, return that PhysReg, otherwise
391  /// return 0.
392  unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
393    std::map<int, unsigned>::const_iterator I =
394      SpillSlotsOrReMatsAvailable.find(Slot);
395    if (I != SpillSlotsOrReMatsAvailable.end()) {
396      return I->second >> 1;  // Remove the CanClobber bit.
397    }
398    return 0;
399  }
400
401  /// addAvailable - Mark that the specified stack slot / remat is available in
402  /// the specified physreg.  If CanClobber is true, the physreg can be modified
403  /// at any time without changing the semantics of the program.
404  void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
405                    bool CanClobber = true) {
406    // If this stack slot is thought to be available in some other physreg,
407    // remove its record.
408    ModifyStackSlotOrReMat(SlotOrReMat);
409
410    PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
411    SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
412
413    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
414      DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
415    else
416      DOUT << "Remembering SS#" << SlotOrReMat;
417    DOUT << " in physreg " << TRI->getName(Reg) << "\n";
418  }
419
420  /// canClobberPhysReg - Return true if the spiller is allowed to change the
421  /// value of the specified stackslot register if it desires.  The specified
422  /// stack slot must be available in a physreg for this query to make sense.
423  bool canClobberPhysReg(int SlotOrReMat) const {
424    assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
425           "Value not available!");
426    return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
427  }
428
429  /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
430  /// stackslot register. The register is still available but is no longer
431  /// allowed to be modifed.
432  void disallowClobberPhysReg(unsigned PhysReg);
433
434  /// ClobberPhysReg - This is called when the specified physreg changes
435  /// value.  We use this to invalidate any info about stuff that lives in
436  /// it and any of its aliases.
437  void ClobberPhysReg(unsigned PhysReg);
438
439  /// ModifyStackSlotOrReMat - This method is called when the value in a stack
440  /// slot changes.  This removes information about which register the previous
441  /// value for this slot lives in (as the previous value is dead now).
442  void ModifyStackSlotOrReMat(int SlotOrReMat);
443};
444}
445
446/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
447/// stackslot register. The register is still available but is no longer
448/// allowed to be modifed.
449void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
450  std::multimap<unsigned, int>::iterator I =
451    PhysRegsAvailable.lower_bound(PhysReg);
452  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
453    int SlotOrReMat = I->second;
454    I++;
455    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
456           "Bidirectional map mismatch!");
457    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
458    DOUT << "PhysReg " << TRI->getName(PhysReg)
459         << " copied, it is available for use but can no longer be modified\n";
460  }
461}
462
463/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
464/// stackslot register and its aliases. The register and its aliases may
465/// still available but is no longer allowed to be modifed.
466void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
467  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
468    disallowClobberPhysRegOnly(*AS);
469  disallowClobberPhysRegOnly(PhysReg);
470}
471
472/// ClobberPhysRegOnly - This is called when the specified physreg changes
473/// value.  We use this to invalidate any info about stuff we thing lives in it.
474void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
475  std::multimap<unsigned, int>::iterator I =
476    PhysRegsAvailable.lower_bound(PhysReg);
477  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
478    int SlotOrReMat = I->second;
479    PhysRegsAvailable.erase(I++);
480    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
481           "Bidirectional map mismatch!");
482    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
483    DOUT << "PhysReg " << TRI->getName(PhysReg)
484         << " clobbered, invalidating ";
485    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
486      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
487    else
488      DOUT << "SS#" << SlotOrReMat << "\n";
489  }
490}
491
492/// ClobberPhysReg - This is called when the specified physreg changes
493/// value.  We use this to invalidate any info about stuff we thing lives in
494/// it and any of its aliases.
495void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
496  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
497    ClobberPhysRegOnly(*AS);
498  ClobberPhysRegOnly(PhysReg);
499}
500
501/// ModifyStackSlotOrReMat - This method is called when the value in a stack
502/// slot changes.  This removes information about which register the previous
503/// value for this slot lives in (as the previous value is dead now).
504void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
505  std::map<int, unsigned>::iterator It =
506    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
507  if (It == SpillSlotsOrReMatsAvailable.end()) return;
508  unsigned Reg = It->second >> 1;
509  SpillSlotsOrReMatsAvailable.erase(It);
510
511  // This register may hold the value of multiple stack slots, only remove this
512  // stack slot from the set of values the register contains.
513  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
514  for (; ; ++I) {
515    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
516           "Map inverse broken!");
517    if (I->second == SlotOrReMat) break;
518  }
519  PhysRegsAvailable.erase(I);
520}
521
522
523
524/// InvalidateKills - MI is going to be deleted. If any of its operands are
525/// marked kill, then invalidate the information.
526static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
527                            std::vector<MachineOperand*> &KillOps,
528                            SmallVector<unsigned, 2> *KillRegs = NULL) {
529  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
530    MachineOperand &MO = MI.getOperand(i);
531    if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
532      continue;
533    unsigned Reg = MO.getReg();
534    if (KillRegs)
535      KillRegs->push_back(Reg);
536    if (KillOps[Reg] == &MO) {
537      RegKills.reset(Reg);
538      KillOps[Reg] = NULL;
539    }
540  }
541}
542
543/// InvalidateKill - A MI that defines the specified register is being deleted,
544/// invalidate the register kill information.
545static void InvalidateKill(unsigned Reg, BitVector &RegKills,
546                           std::vector<MachineOperand*> &KillOps) {
547  if (RegKills[Reg]) {
548    KillOps[Reg]->setIsKill(false);
549    KillOps[Reg] = NULL;
550    RegKills.reset(Reg);
551  }
552}
553
554/// InvalidateRegDef - If the def operand of the specified def MI is now dead
555/// (since it's spill instruction is removed), mark it isDead. Also checks if
556/// the def MI has other definition operands that are not dead. Returns it by
557/// reference.
558static bool InvalidateRegDef(MachineBasicBlock::iterator I,
559                             MachineInstr &NewDef, unsigned Reg,
560                             bool &HasLiveDef) {
561  // Due to remat, it's possible this reg isn't being reused. That is,
562  // the def of this reg (by prev MI) is now dead.
563  MachineInstr *DefMI = I;
564  MachineOperand *DefOp = NULL;
565  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
566    MachineOperand &MO = DefMI->getOperand(i);
567    if (MO.isRegister() && MO.isDef()) {
568      if (MO.getReg() == Reg)
569        DefOp = &MO;
570      else if (!MO.isDead())
571        HasLiveDef = true;
572    }
573  }
574  if (!DefOp)
575    return false;
576
577  bool FoundUse = false, Done = false;
578  MachineBasicBlock::iterator E = NewDef;
579  ++I; ++E;
580  for (; !Done && I != E; ++I) {
581    MachineInstr *NMI = I;
582    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
583      MachineOperand &MO = NMI->getOperand(j);
584      if (!MO.isRegister() || MO.getReg() != Reg)
585        continue;
586      if (MO.isUse())
587        FoundUse = true;
588      Done = true; // Stop after scanning all the operands of this MI.
589    }
590  }
591  if (!FoundUse) {
592    // Def is dead!
593    DefOp->setIsDead();
594    return true;
595  }
596  return false;
597}
598
599/// UpdateKills - Track and update kill info. If a MI reads a register that is
600/// marked kill, then it must be due to register reuse. Transfer the kill info
601/// over.
602static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
603                        std::vector<MachineOperand*> &KillOps) {
604  const TargetInstrDesc &TID = MI.getDesc();
605  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
606    MachineOperand &MO = MI.getOperand(i);
607    if (!MO.isRegister() || !MO.isUse())
608      continue;
609    unsigned Reg = MO.getReg();
610    if (Reg == 0)
611      continue;
612
613    if (RegKills[Reg]) {
614      // That can't be right. Register is killed but not re-defined and it's
615      // being reused. Let's fix that.
616      KillOps[Reg]->setIsKill(false);
617      KillOps[Reg] = NULL;
618      RegKills.reset(Reg);
619      if (i < TID.getNumOperands() &&
620          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
621        // Unless it's a two-address operand, this is the new kill.
622        MO.setIsKill();
623    }
624    if (MO.isKill()) {
625      RegKills.set(Reg);
626      KillOps[Reg] = &MO;
627    }
628  }
629
630  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
631    const MachineOperand &MO = MI.getOperand(i);
632    if (!MO.isRegister() || !MO.isDef())
633      continue;
634    unsigned Reg = MO.getReg();
635    RegKills.reset(Reg);
636    KillOps[Reg] = NULL;
637  }
638}
639
640/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
641///
642static void ReMaterialize(MachineBasicBlock &MBB,
643                          MachineBasicBlock::iterator &MII,
644                          unsigned DestReg, unsigned Reg,
645                          const TargetRegisterInfo *TRI,
646                          VirtRegMap &VRM) {
647  TRI->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
648  MachineInstr *NewMI = prior(MII);
649  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
650    MachineOperand &MO = NewMI->getOperand(i);
651    if (!MO.isRegister() || MO.getReg() == 0)
652      continue;
653    unsigned VirtReg = MO.getReg();
654    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
655      continue;
656    assert(MO.isUse());
657    unsigned SubIdx = MO.getSubReg();
658    unsigned Phys = VRM.getPhys(VirtReg);
659    assert(Phys);
660    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
661    MO.setReg(RReg);
662  }
663  ++NumReMats;
664}
665
666
667// ReusedOp - For each reused operand, we keep track of a bit of information, in
668// case we need to rollback upon processing a new operand.  See comments below.
669namespace {
670  struct ReusedOp {
671    // The MachineInstr operand that reused an available value.
672    unsigned Operand;
673
674    // StackSlotOrReMat - The spill slot or remat id of the value being reused.
675    unsigned StackSlotOrReMat;
676
677    // PhysRegReused - The physical register the value was available in.
678    unsigned PhysRegReused;
679
680    // AssignedPhysReg - The physreg that was assigned for use by the reload.
681    unsigned AssignedPhysReg;
682
683    // VirtReg - The virtual register itself.
684    unsigned VirtReg;
685
686    ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
687             unsigned vreg)
688      : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
689        AssignedPhysReg(apr), VirtReg(vreg) {}
690  };
691
692  /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
693  /// is reused instead of reloaded.
694  class VISIBILITY_HIDDEN ReuseInfo {
695    MachineInstr &MI;
696    std::vector<ReusedOp> Reuses;
697    BitVector PhysRegsClobbered;
698  public:
699    ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
700      PhysRegsClobbered.resize(tri->getNumRegs());
701    }
702
703    bool hasReuses() const {
704      return !Reuses.empty();
705    }
706
707    /// addReuse - If we choose to reuse a virtual register that is already
708    /// available instead of reloading it, remember that we did so.
709    void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
710                  unsigned PhysRegReused, unsigned AssignedPhysReg,
711                  unsigned VirtReg) {
712      // If the reload is to the assigned register anyway, no undo will be
713      // required.
714      if (PhysRegReused == AssignedPhysReg) return;
715
716      // Otherwise, remember this.
717      Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
718                                AssignedPhysReg, VirtReg));
719    }
720
721    void markClobbered(unsigned PhysReg) {
722      PhysRegsClobbered.set(PhysReg);
723    }
724
725    bool isClobbered(unsigned PhysReg) const {
726      return PhysRegsClobbered.test(PhysReg);
727    }
728
729    /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
730    /// is some other operand that is using the specified register, either pick
731    /// a new register to use, or evict the previous reload and use this reg.
732    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
733                             AvailableSpills &Spills,
734                             std::vector<MachineInstr*> &MaybeDeadStores,
735                             SmallSet<unsigned, 8> &Rejected,
736                             BitVector &RegKills,
737                             std::vector<MachineOperand*> &KillOps,
738                             VirtRegMap &VRM) {
739      const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
740                                   .getInstrInfo();
741
742      if (Reuses.empty()) return PhysReg;  // This is most often empty.
743
744      for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
745        ReusedOp &Op = Reuses[ro];
746        // If we find some other reuse that was supposed to use this register
747        // exactly for its reload, we can change this reload to use ITS reload
748        // register. That is, unless its reload register has already been
749        // considered and subsequently rejected because it has also been reused
750        // by another operand.
751        if (Op.PhysRegReused == PhysReg &&
752            Rejected.count(Op.AssignedPhysReg) == 0) {
753          // Yup, use the reload register that we didn't use before.
754          unsigned NewReg = Op.AssignedPhysReg;
755          Rejected.insert(PhysReg);
756          return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
757                                 RegKills, KillOps, VRM);
758        } else {
759          // Otherwise, we might also have a problem if a previously reused
760          // value aliases the new register.  If so, codegen the previous reload
761          // and use this one.
762          unsigned PRRU = Op.PhysRegReused;
763          const TargetRegisterInfo *TRI = Spills.getRegInfo();
764          if (TRI->areAliases(PRRU, PhysReg)) {
765            // Okay, we found out that an alias of a reused register
766            // was used.  This isn't good because it means we have
767            // to undo a previous reuse.
768            MachineBasicBlock *MBB = MI->getParent();
769            const TargetRegisterClass *AliasRC =
770              MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
771
772            // Copy Op out of the vector and remove it, we're going to insert an
773            // explicit load for it.
774            ReusedOp NewOp = Op;
775            Reuses.erase(Reuses.begin()+ro);
776
777            // Ok, we're going to try to reload the assigned physreg into the
778            // slot that we were supposed to in the first place.  However, that
779            // register could hold a reuse.  Check to see if it conflicts or
780            // would prefer us to use a different register.
781            unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
782                                                  MI, Spills, MaybeDeadStores,
783                                              Rejected, RegKills, KillOps, VRM);
784
785            MachineBasicBlock::iterator MII = MI;
786            if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
787              ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TRI, VRM);
788            } else {
789              TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
790                                        NewOp.StackSlotOrReMat, AliasRC);
791              MachineInstr *LoadMI = prior(MII);
792              VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
793              // Any stores to this stack slot are not dead anymore.
794              MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
795              ++NumLoads;
796            }
797            Spills.ClobberPhysReg(NewPhysReg);
798            Spills.ClobberPhysReg(NewOp.PhysRegReused);
799
800            MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
801
802            Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
803            --MII;
804            UpdateKills(*MII, RegKills, KillOps);
805            DOUT << '\t' << *MII;
806
807            DOUT << "Reuse undone!\n";
808            --NumReused;
809
810            // Finally, PhysReg is now available, go ahead and use it.
811            return PhysReg;
812          }
813        }
814      }
815      return PhysReg;
816    }
817
818    /// GetRegForReload - Helper for the above GetRegForReload(). Add a
819    /// 'Rejected' set to remember which registers have been considered and
820    /// rejected for the reload. This avoids infinite looping in case like
821    /// this:
822    /// t1 := op t2, t3
823    /// t2 <- assigned r0 for use by the reload but ended up reuse r1
824    /// t3 <- assigned r1 for use by the reload but ended up reuse r0
825    /// t1 <- desires r1
826    ///       sees r1 is taken by t2, tries t2's reload register r0
827    ///       sees r0 is taken by t3, tries t3's reload register r1
828    ///       sees r1 is taken by t2, tries t2's reload register r0 ...
829    unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
830                             AvailableSpills &Spills,
831                             std::vector<MachineInstr*> &MaybeDeadStores,
832                             BitVector &RegKills,
833                             std::vector<MachineOperand*> &KillOps,
834                             VirtRegMap &VRM) {
835      SmallSet<unsigned, 8> Rejected;
836      return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
837                             RegKills, KillOps, VRM);
838    }
839  };
840}
841
842/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
843/// instruction. e.g.
844///     xorl  %edi, %eax
845///     movl  %eax, -32(%ebp)
846///     movl  -36(%ebp), %eax
847///     orl   %eax, -32(%ebp)
848/// ==>
849///     xorl  %edi, %eax
850///     orl   -36(%ebp), %eax
851///     mov   %eax, -32(%ebp)
852/// This enables unfolding optimization for a subsequent instruction which will
853/// also eliminate the newly introduced store instruction.
854bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
855                                     MachineBasicBlock::iterator &MII,
856                                    std::vector<MachineInstr*> &MaybeDeadStores,
857                                     AvailableSpills &Spills,
858                                     BitVector &RegKills,
859                                     std::vector<MachineOperand*> &KillOps,
860                                     VirtRegMap &VRM) {
861  MachineFunction &MF = *MBB.getParent();
862  MachineInstr &MI = *MII;
863  unsigned UnfoldedOpc = 0;
864  unsigned UnfoldPR = 0;
865  unsigned UnfoldVR = 0;
866  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
867  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
868  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
869    // Only transform a MI that folds a single register.
870    if (UnfoldedOpc)
871      return false;
872    UnfoldVR = I->second.first;
873    VirtRegMap::ModRef MR = I->second.second;
874    if (VRM.isAssignedReg(UnfoldVR))
875      continue;
876    // If this reference is not a use, any previous store is now dead.
877    // Otherwise, the store to this stack slot is not dead anymore.
878    FoldedSS = VRM.getStackSlot(UnfoldVR);
879    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
880    if (DeadStore && (MR & VirtRegMap::isModRef)) {
881      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
882      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
883        continue;
884      UnfoldPR = PhysReg;
885      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
886                                                    false, true);
887    }
888  }
889
890  if (!UnfoldedOpc)
891    return false;
892
893  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
894    MachineOperand &MO = MI.getOperand(i);
895    if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
896      continue;
897    unsigned VirtReg = MO.getReg();
898    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
899      continue;
900    if (VRM.isAssignedReg(VirtReg)) {
901      unsigned PhysReg = VRM.getPhys(VirtReg);
902      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
903        return false;
904    } else if (VRM.isReMaterialized(VirtReg))
905      continue;
906    int SS = VRM.getStackSlot(VirtReg);
907    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
908    if (PhysReg) {
909      if (TRI->regsOverlap(PhysReg, UnfoldPR))
910        return false;
911      continue;
912    }
913    PhysReg = VRM.getPhys(VirtReg);
914    if (!TRI->regsOverlap(PhysReg, UnfoldPR))
915      continue;
916
917    // Ok, we'll need to reload the value into a register which makes
918    // it impossible to perform the store unfolding optimization later.
919    // Let's see if it is possible to fold the load if the store is
920    // unfolded. This allows us to perform the store unfolding
921    // optimization.
922    SmallVector<MachineInstr*, 4> NewMIs;
923    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
924      assert(NewMIs.size() == 1);
925      MachineInstr *NewMI = NewMIs.back();
926      NewMIs.clear();
927      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
928      assert(Idx != -1);
929      SmallVector<unsigned, 2> Ops;
930      Ops.push_back(Idx);
931      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
932      if (FoldedMI) {
933        VRM.addSpillSlotUse(SS, FoldedMI);
934        if (!VRM.hasPhys(UnfoldVR))
935          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
936        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
937        MII = MBB.insert(MII, FoldedMI);
938        VRM.RemoveMachineInstrFromMaps(&MI);
939        MBB.erase(&MI);
940        return true;
941      }
942      delete NewMI;
943    }
944  }
945  return false;
946}
947
948/// findSuperReg - Find the SubReg's super-register of given register class
949/// where its SubIdx sub-register is SubReg.
950static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
951                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
952  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
953       I != E; ++I) {
954    unsigned Reg = *I;
955    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
956      return Reg;
957  }
958  return 0;
959}
960
961/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
962/// the last store to the same slot is now dead. If so, remove the last store.
963void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
964                                  MachineBasicBlock::iterator &MII,
965                                  int Idx, unsigned PhysReg, int StackSlot,
966                                  const TargetRegisterClass *RC,
967                                  bool isAvailable, MachineInstr *&LastStore,
968                                  AvailableSpills &Spills,
969                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
970                                  BitVector &RegKills,
971                                  std::vector<MachineOperand*> &KillOps,
972                                  VirtRegMap &VRM) {
973  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
974  MachineInstr *StoreMI = next(MII);
975  VRM.addSpillSlotUse(StackSlot, StoreMI);
976  DOUT << "Store:\t" << *StoreMI;
977
978  // If there is a dead store to this stack slot, nuke it now.
979  if (LastStore) {
980    DOUT << "Removed dead store:\t" << *LastStore;
981    ++NumDSE;
982    SmallVector<unsigned, 2> KillRegs;
983    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
984    MachineBasicBlock::iterator PrevMII = LastStore;
985    bool CheckDef = PrevMII != MBB.begin();
986    if (CheckDef)
987      --PrevMII;
988    VRM.RemoveMachineInstrFromMaps(LastStore);
989    MBB.erase(LastStore);
990    if (CheckDef) {
991      // Look at defs of killed registers on the store. Mark the defs
992      // as dead since the store has been deleted and they aren't
993      // being reused.
994      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
995        bool HasOtherDef = false;
996        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
997          MachineInstr *DeadDef = PrevMII;
998          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
999            // FIXME: This assumes a remat def does not have side
1000            // effects.
1001            VRM.RemoveMachineInstrFromMaps(DeadDef);
1002            MBB.erase(DeadDef);
1003            ++NumDRM;
1004          }
1005        }
1006      }
1007    }
1008  }
1009
1010  LastStore = next(MII);
1011
1012  // If the stack slot value was previously available in some other
1013  // register, change it now.  Otherwise, make the register available,
1014  // in PhysReg.
1015  Spills.ModifyStackSlotOrReMat(StackSlot);
1016  Spills.ClobberPhysReg(PhysReg);
1017  Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
1018  ++NumStores;
1019}
1020
1021/// rewriteMBB - Keep track of which spills are available even after the
1022/// register allocator is done with them.  If possible, avid reloading vregs.
1023void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
1024  DOUT << MBB.getBasicBlock()->getName() << ":\n";
1025
1026  MachineFunction &MF = *MBB.getParent();
1027
1028  // Spills - Keep track of which spilled values are available in physregs so
1029  // that we can choose to reuse the physregs instead of emitting reloads.
1030  AvailableSpills Spills(TRI, TII);
1031
1032  // MaybeDeadStores - When we need to write a value back into a stack slot,
1033  // keep track of the inserted store.  If the stack slot value is never read
1034  // (because the value was used from some available register, for example), and
1035  // subsequently stored to, the original store is dead.  This map keeps track
1036  // of inserted stores that are not used.  If we see a subsequent store to the
1037  // same stack slot, the original store is deleted.
1038  std::vector<MachineInstr*> MaybeDeadStores;
1039  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1040
1041  // ReMatDefs - These are rematerializable def MIs which are not deleted.
1042  SmallSet<MachineInstr*, 4> ReMatDefs;
1043
1044  // Keep track of kill information.
1045  BitVector RegKills(TRI->getNumRegs());
1046  std::vector<MachineOperand*>  KillOps;
1047  KillOps.resize(TRI->getNumRegs(), NULL);
1048
1049  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1050       MII != E; ) {
1051    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
1052
1053    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1054    bool Erased = false;
1055    bool BackTracked = false;
1056    if (PrepForUnfoldOpti(MBB, MII,
1057                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1058      NextMII = next(MII);
1059
1060    MachineInstr &MI = *MII;
1061    const TargetInstrDesc &TID = MI.getDesc();
1062
1063    if (VRM.hasEmergencySpills(&MI)) {
1064      // Spill physical register(s) in the rare case the allocator has run out
1065      // of registers to allocate.
1066      SmallSet<int, 4> UsedSS;
1067      std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1068      for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1069        unsigned PhysReg = EmSpills[i];
1070        const TargetRegisterClass *RC =
1071          TRI->getPhysicalRegisterRegClass(PhysReg);
1072        assert(RC && "Unable to determine register class!");
1073        int SS = VRM.getEmergencySpillSlot(RC);
1074        if (UsedSS.count(SS))
1075          assert(0 && "Need to spill more than one physical registers!");
1076        UsedSS.insert(SS);
1077        TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1078        MachineInstr *StoreMI = prior(MII);
1079        VRM.addSpillSlotUse(SS, StoreMI);
1080        TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1081        MachineInstr *LoadMI = next(MII);
1082        VRM.addSpillSlotUse(SS, LoadMI);
1083        ++NumPSpills;
1084      }
1085      NextMII = next(MII);
1086    }
1087
1088    // Insert restores here if asked to.
1089    if (VRM.isRestorePt(&MI)) {
1090      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1091      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1092        unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
1093        if (!VRM.getPreSplitReg(VirtReg))
1094          continue; // Split interval spilled again.
1095        unsigned Phys = VRM.getPhys(VirtReg);
1096        RegInfo->setPhysRegUsed(Phys);
1097        if (VRM.isReMaterialized(VirtReg)) {
1098          ReMaterialize(MBB, MII, Phys, VirtReg, TRI, VRM);
1099        } else {
1100          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1101          int SS = VRM.getStackSlot(VirtReg);
1102          TII->loadRegFromStackSlot(MBB, &MI, Phys, SS, RC);
1103          MachineInstr *LoadMI = prior(MII);
1104          VRM.addSpillSlotUse(SS, LoadMI);
1105          ++NumLoads;
1106        }
1107        // This invalidates Phys.
1108        Spills.ClobberPhysReg(Phys);
1109        UpdateKills(*prior(MII), RegKills, KillOps);
1110        DOUT << '\t' << *prior(MII);
1111      }
1112    }
1113
1114    // Insert spills here if asked to.
1115    if (VRM.isSpillPt(&MI)) {
1116      std::vector<std::pair<unsigned,bool> > &SpillRegs =
1117        VRM.getSpillPtSpills(&MI);
1118      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1119        unsigned VirtReg = SpillRegs[i].first;
1120        bool isKill = SpillRegs[i].second;
1121        if (!VRM.getPreSplitReg(VirtReg))
1122          continue; // Split interval spilled again.
1123        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1124        unsigned Phys = VRM.getPhys(VirtReg);
1125        int StackSlot = VRM.getStackSlot(VirtReg);
1126        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1127        MachineInstr *StoreMI = next(MII);
1128        VRM.addSpillSlotUse(StackSlot, StoreMI);
1129        DOUT << "Store:\t" << *StoreMI;
1130        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1131      }
1132      NextMII = next(MII);
1133    }
1134
1135    /// ReusedOperands - Keep track of operand reuse in case we need to undo
1136    /// reuse.
1137    ReuseInfo ReusedOperands(MI, TRI);
1138    SmallVector<unsigned, 4> VirtUseOps;
1139    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1140      MachineOperand &MO = MI.getOperand(i);
1141      if (!MO.isRegister() || MO.getReg() == 0)
1142        continue;   // Ignore non-register operands.
1143
1144      unsigned VirtReg = MO.getReg();
1145      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1146        // Ignore physregs for spilling, but remember that it is used by this
1147        // function.
1148        RegInfo->setPhysRegUsed(VirtReg);
1149        continue;
1150      }
1151
1152      // We want to process implicit virtual register uses first.
1153      if (MO.isImplicit())
1154        VirtUseOps.insert(VirtUseOps.begin(), i);
1155      else
1156        VirtUseOps.push_back(i);
1157    }
1158
1159    // Process all of the spilled uses and all non spilled reg references.
1160    for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1161      unsigned i = VirtUseOps[j];
1162      MachineOperand &MO = MI.getOperand(i);
1163      unsigned VirtReg = MO.getReg();
1164      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1165             "Not a virtual register?");
1166
1167      unsigned SubIdx = MO.getSubReg();
1168      if (VRM.isAssignedReg(VirtReg)) {
1169        // This virtual register was assigned a physreg!
1170        unsigned Phys = VRM.getPhys(VirtReg);
1171        RegInfo->setPhysRegUsed(Phys);
1172        if (MO.isDef())
1173          ReusedOperands.markClobbered(Phys);
1174        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1175        MI.getOperand(i).setReg(RReg);
1176        continue;
1177      }
1178
1179      // This virtual register is now known to be a spilled value.
1180      if (!MO.isUse())
1181        continue;  // Handle defs in the loop below (handle use&def here though)
1182
1183      bool DoReMat = VRM.isReMaterialized(VirtReg);
1184      int SSorRMId = DoReMat
1185        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1186      int ReuseSlot = SSorRMId;
1187
1188      // Check to see if this stack slot is available.
1189      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1190
1191      // If this is a sub-register use, make sure the reuse register is in the
1192      // right register class. For example, for x86 not all of the 32-bit
1193      // registers have accessible sub-registers.
1194      // Similarly so for EXTRACT_SUBREG. Consider this:
1195      // EDI = op
1196      // MOV32_mr fi#1, EDI
1197      // ...
1198      //       = EXTRACT_SUBREG fi#1
1199      // fi#1 is available in EDI, but it cannot be reused because it's not in
1200      // the right register file.
1201      if (PhysReg &&
1202          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1203        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1204        if (!RC->contains(PhysReg))
1205          PhysReg = 0;
1206      }
1207
1208      if (PhysReg) {
1209        // This spilled operand might be part of a two-address operand.  If this
1210        // is the case, then changing it will necessarily require changing the
1211        // def part of the instruction as well.  However, in some cases, we
1212        // aren't allowed to modify the reused register.  If none of these cases
1213        // apply, reuse it.
1214        bool CanReuse = true;
1215        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
1216        if (ti != -1 &&
1217            MI.getOperand(ti).isRegister() &&
1218            MI.getOperand(ti).getReg() == VirtReg) {
1219          // Okay, we have a two address operand.  We can reuse this physreg as
1220          // long as we are allowed to clobber the value and there isn't an
1221          // earlier def that has already clobbered the physreg.
1222          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1223            !ReusedOperands.isClobbered(PhysReg);
1224        }
1225
1226        if (CanReuse) {
1227          // If this stack slot value is already available, reuse it!
1228          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1229            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1230          else
1231            DOUT << "Reusing SS#" << ReuseSlot;
1232          DOUT << " from physreg "
1233               << TRI->getName(PhysReg) << " for vreg"
1234               << VirtReg <<" instead of reloading into physreg "
1235               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1236          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1237          MI.getOperand(i).setReg(RReg);
1238
1239          // The only technical detail we have is that we don't know that
1240          // PhysReg won't be clobbered by a reloaded stack slot that occurs
1241          // later in the instruction.  In particular, consider 'op V1, V2'.
1242          // If V1 is available in physreg R0, we would choose to reuse it
1243          // here, instead of reloading it into the register the allocator
1244          // indicated (say R1).  However, V2 might have to be reloaded
1245          // later, and it might indicate that it needs to live in R0.  When
1246          // this occurs, we need to have information available that
1247          // indicates it is safe to use R1 for the reload instead of R0.
1248          //
1249          // To further complicate matters, we might conflict with an alias,
1250          // or R0 and R1 might not be compatible with each other.  In this
1251          // case, we actually insert a reload for V1 in R1, ensuring that
1252          // we can get at R0 or its alias.
1253          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1254                                  VRM.getPhys(VirtReg), VirtReg);
1255          if (ti != -1)
1256            // Only mark it clobbered if this is a use&def operand.
1257            ReusedOperands.markClobbered(PhysReg);
1258          ++NumReused;
1259
1260          if (MI.getOperand(i).isKill() &&
1261              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1262            // This was the last use and the spilled value is still available
1263            // for reuse. That means the spill was unnecessary!
1264            MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1265            if (DeadStore) {
1266              DOUT << "Removed dead store:\t" << *DeadStore;
1267              InvalidateKills(*DeadStore, RegKills, KillOps);
1268              VRM.RemoveMachineInstrFromMaps(DeadStore);
1269              MBB.erase(DeadStore);
1270              MaybeDeadStores[ReuseSlot] = NULL;
1271              ++NumDSE;
1272            }
1273          }
1274          continue;
1275        }  // CanReuse
1276
1277        // Otherwise we have a situation where we have a two-address instruction
1278        // whose mod/ref operand needs to be reloaded.  This reload is already
1279        // available in some register "PhysReg", but if we used PhysReg as the
1280        // operand to our 2-addr instruction, the instruction would modify
1281        // PhysReg.  This isn't cool if something later uses PhysReg and expects
1282        // to get its initial value.
1283        //
1284        // To avoid this problem, and to avoid doing a load right after a store,
1285        // we emit a copy from PhysReg into the designated register for this
1286        // operand.
1287        unsigned DesignatedReg = VRM.getPhys(VirtReg);
1288        assert(DesignatedReg && "Must map virtreg to physreg!");
1289
1290        // Note that, if we reused a register for a previous operand, the
1291        // register we want to reload into might not actually be
1292        // available.  If this occurs, use the register indicated by the
1293        // reuser.
1294        if (ReusedOperands.hasReuses())
1295          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1296                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1297
1298        // If the mapped designated register is actually the physreg we have
1299        // incoming, we don't need to inserted a dead copy.
1300        if (DesignatedReg == PhysReg) {
1301          // If this stack slot value is already available, reuse it!
1302          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1303            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1304          else
1305            DOUT << "Reusing SS#" << ReuseSlot;
1306          DOUT << " from physreg " << TRI->getName(PhysReg)
1307               << " for vreg" << VirtReg
1308               << " instead of reloading into same physreg.\n";
1309          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1310          MI.getOperand(i).setReg(RReg);
1311          ReusedOperands.markClobbered(RReg);
1312          ++NumReused;
1313          continue;
1314        }
1315
1316        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1317        RegInfo->setPhysRegUsed(DesignatedReg);
1318        ReusedOperands.markClobbered(DesignatedReg);
1319        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1320
1321        MachineInstr *CopyMI = prior(MII);
1322        UpdateKills(*CopyMI, RegKills, KillOps);
1323
1324        // This invalidates DesignatedReg.
1325        Spills.ClobberPhysReg(DesignatedReg);
1326
1327        Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1328        unsigned RReg =
1329          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1330        MI.getOperand(i).setReg(RReg);
1331        DOUT << '\t' << *prior(MII);
1332        ++NumReused;
1333        continue;
1334      } // if (PhysReg)
1335
1336      // Otherwise, reload it and remember that we have it.
1337      PhysReg = VRM.getPhys(VirtReg);
1338      assert(PhysReg && "Must map virtreg to physreg!");
1339
1340      // Note that, if we reused a register for a previous operand, the
1341      // register we want to reload into might not actually be
1342      // available.  If this occurs, use the register indicated by the
1343      // reuser.
1344      if (ReusedOperands.hasReuses())
1345        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1346                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1347
1348      RegInfo->setPhysRegUsed(PhysReg);
1349      ReusedOperands.markClobbered(PhysReg);
1350      if (DoReMat) {
1351        ReMaterialize(MBB, MII, PhysReg, VirtReg, TRI, VRM);
1352      } else {
1353        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1354        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1355        MachineInstr *LoadMI = prior(MII);
1356        VRM.addSpillSlotUse(SSorRMId, LoadMI);
1357        ++NumLoads;
1358      }
1359      // This invalidates PhysReg.
1360      Spills.ClobberPhysReg(PhysReg);
1361
1362      // Any stores to this stack slot are not dead anymore.
1363      if (!DoReMat)
1364        MaybeDeadStores[SSorRMId] = NULL;
1365      Spills.addAvailable(SSorRMId, &MI, PhysReg);
1366      // Assumes this is the last use. IsKill will be unset if reg is reused
1367      // unless it's a two-address operand.
1368      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
1369        MI.getOperand(i).setIsKill();
1370      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1371      MI.getOperand(i).setReg(RReg);
1372      UpdateKills(*prior(MII), RegKills, KillOps);
1373      DOUT << '\t' << *prior(MII);
1374    }
1375
1376    DOUT << '\t' << MI;
1377
1378
1379    // If we have folded references to memory operands, make sure we clear all
1380    // physical registers that may contain the value of the spilled virtual
1381    // register
1382    SmallSet<int, 2> FoldedSS;
1383    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
1384      unsigned VirtReg = I->second.first;
1385      VirtRegMap::ModRef MR = I->second.second;
1386      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
1387
1388      int SS = VRM.getStackSlot(VirtReg);
1389      if (SS == VirtRegMap::NO_STACK_SLOT)
1390        continue;
1391      FoldedSS.insert(SS);
1392      DOUT << " - StackSlot: " << SS << "\n";
1393
1394      // If this folded instruction is just a use, check to see if it's a
1395      // straight load from the virt reg slot.
1396      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1397        int FrameIdx;
1398        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1399        if (DestReg && FrameIdx == SS) {
1400          // If this spill slot is available, turn it into a copy (or nothing)
1401          // instead of leaving it as a load!
1402          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1403            DOUT << "Promoted Load To Copy: " << MI;
1404            if (DestReg != InReg) {
1405              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1406              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1407              // Revisit the copy so we make sure to notice the effects of the
1408              // operation on the destreg (either needing to RA it if it's
1409              // virtual or needing to clobber any values if it's physical).
1410              NextMII = &MI;
1411              --NextMII;  // backtrack to the copy.
1412              BackTracked = true;
1413            } else {
1414              DOUT << "Removing now-noop copy: " << MI;
1415              // Unset last kill since it's being reused.
1416              InvalidateKill(InReg, RegKills, KillOps);
1417            }
1418
1419            VRM.RemoveMachineInstrFromMaps(&MI);
1420            MBB.erase(&MI);
1421            Erased = true;
1422            goto ProcessNextInst;
1423          }
1424        } else {
1425          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1426          SmallVector<MachineInstr*, 4> NewMIs;
1427          if (PhysReg &&
1428              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1429            MBB.insert(MII, NewMIs[0]);
1430            VRM.RemoveMachineInstrFromMaps(&MI);
1431            MBB.erase(&MI);
1432            Erased = true;
1433            --NextMII;  // backtrack to the unfolded instruction.
1434            BackTracked = true;
1435            goto ProcessNextInst;
1436          }
1437        }
1438      }
1439
1440      // If this reference is not a use, any previous store is now dead.
1441      // Otherwise, the store to this stack slot is not dead anymore.
1442      MachineInstr* DeadStore = MaybeDeadStores[SS];
1443      if (DeadStore) {
1444        bool isDead = !(MR & VirtRegMap::isRef);
1445        MachineInstr *NewStore = NULL;
1446        if (MR & VirtRegMap::isModRef) {
1447          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1448          SmallVector<MachineInstr*, 4> NewMIs;
1449          // We can reuse this physreg as long as we are allowed to clobber
1450          // the value and there isn't an earlier def that has already clobbered
1451          // the physreg.
1452          if (PhysReg &&
1453              !TII->isStoreToStackSlot(&MI, SS) && // Not profitable!
1454              DeadStore->killsRegister(PhysReg) &&
1455              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true, NewMIs)) {
1456            MBB.insert(MII, NewMIs[0]);
1457            NewStore = NewMIs[1];
1458            MBB.insert(MII, NewStore);
1459            VRM.addSpillSlotUse(SS, NewStore);
1460            VRM.RemoveMachineInstrFromMaps(&MI);
1461            MBB.erase(&MI);
1462            Erased = true;
1463            --NextMII;
1464            --NextMII;  // backtrack to the unfolded instruction.
1465            BackTracked = true;
1466            isDead = true;
1467          }
1468        }
1469
1470        if (isDead) {  // Previous store is dead.
1471          // If we get here, the store is dead, nuke it now.
1472          DOUT << "Removed dead store:\t" << *DeadStore;
1473          InvalidateKills(*DeadStore, RegKills, KillOps);
1474          VRM.RemoveMachineInstrFromMaps(DeadStore);
1475          MBB.erase(DeadStore);
1476          if (!NewStore)
1477            ++NumDSE;
1478        }
1479
1480        MaybeDeadStores[SS] = NULL;
1481        if (NewStore) {
1482          // Treat this store as a spill merged into a copy. That makes the
1483          // stack slot value available.
1484          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1485          goto ProcessNextInst;
1486        }
1487      }
1488
1489      // If the spill slot value is available, and this is a new definition of
1490      // the value, the value is not available anymore.
1491      if (MR & VirtRegMap::isMod) {
1492        // Notice that the value in this stack slot has been modified.
1493        Spills.ModifyStackSlotOrReMat(SS);
1494
1495        // If this is *just* a mod of the value, check to see if this is just a
1496        // store to the spill slot (i.e. the spill got merged into the copy). If
1497        // so, realize that the vreg is available now, and add the store to the
1498        // MaybeDeadStore info.
1499        int StackSlot;
1500        if (!(MR & VirtRegMap::isRef)) {
1501          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1502            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1503                   "Src hasn't been allocated yet?");
1504            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
1505            // this as a potentially dead store in case there is a subsequent
1506            // store into the stack slot without a read from it.
1507            MaybeDeadStores[StackSlot] = &MI;
1508
1509            // If the stack slot value was previously available in some other
1510            // register, change it now.  Otherwise, make the register available,
1511            // in PhysReg.
1512            Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
1513          }
1514        }
1515      }
1516    }
1517
1518    // Process all of the spilled defs.
1519    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1520      MachineOperand &MO = MI.getOperand(i);
1521      if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
1522        continue;
1523
1524      unsigned VirtReg = MO.getReg();
1525      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
1526        // Check to see if this is a noop copy.  If so, eliminate the
1527        // instruction before considering the dest reg to be changed.
1528        unsigned Src, Dst;
1529        if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1530          ++NumDCE;
1531          DOUT << "Removing now-noop copy: " << MI;
1532          VRM.RemoveMachineInstrFromMaps(&MI);
1533          MBB.erase(&MI);
1534          Erased = true;
1535          Spills.disallowClobberPhysReg(VirtReg);
1536          goto ProcessNextInst;
1537        }
1538
1539        // If it's not a no-op copy, it clobbers the value in the destreg.
1540        Spills.ClobberPhysReg(VirtReg);
1541        ReusedOperands.markClobbered(VirtReg);
1542
1543        // Check to see if this instruction is a load from a stack slot into
1544        // a register.  If so, this provides the stack slot value in the reg.
1545        int FrameIdx;
1546        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1547          assert(DestReg == VirtReg && "Unknown load situation!");
1548
1549          // If it is a folded reference, then it's not safe to clobber.
1550          bool Folded = FoldedSS.count(FrameIdx);
1551          // Otherwise, if it wasn't available, remember that it is now!
1552          Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1553          goto ProcessNextInst;
1554        }
1555
1556        continue;
1557      }
1558
1559      unsigned SubIdx = MO.getSubReg();
1560      bool DoReMat = VRM.isReMaterialized(VirtReg);
1561      if (DoReMat)
1562        ReMatDefs.insert(&MI);
1563
1564      // The only vregs left are stack slot definitions.
1565      int StackSlot = VRM.getStackSlot(VirtReg);
1566      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1567
1568      // If this def is part of a two-address operand, make sure to execute
1569      // the store from the correct physical register.
1570      unsigned PhysReg;
1571      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
1572      if (TiedOp != -1) {
1573        PhysReg = MI.getOperand(TiedOp).getReg();
1574        if (SubIdx) {
1575          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
1576          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1577                 "Can't find corresponding super-register!");
1578          PhysReg = SuperReg;
1579        }
1580      } else {
1581        PhysReg = VRM.getPhys(VirtReg);
1582        if (ReusedOperands.isClobbered(PhysReg)) {
1583          // Another def has taken the assigned physreg. It must have been a
1584          // use&def which got it due to reuse. Undo the reuse!
1585          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1586                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1587        }
1588      }
1589
1590      RegInfo->setPhysRegUsed(PhysReg);
1591      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1592      ReusedOperands.markClobbered(RReg);
1593      MI.getOperand(i).setReg(RReg);
1594
1595      if (!MO.isDead()) {
1596        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1597        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1598                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1599        NextMII = next(MII);
1600
1601        // Check to see if this is a noop copy.  If so, eliminate the
1602        // instruction before considering the dest reg to be changed.
1603        {
1604          unsigned Src, Dst;
1605          if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1606            ++NumDCE;
1607            DOUT << "Removing now-noop copy: " << MI;
1608            VRM.RemoveMachineInstrFromMaps(&MI);
1609            MBB.erase(&MI);
1610            Erased = true;
1611            UpdateKills(*LastStore, RegKills, KillOps);
1612            goto ProcessNextInst;
1613          }
1614        }
1615      }
1616    }
1617  ProcessNextInst:
1618    if (!Erased && !BackTracked) {
1619      for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II)
1620        UpdateKills(*II, RegKills, KillOps);
1621    }
1622    MII = NextMII;
1623  }
1624}
1625
1626llvm::Spiller* llvm::createSpiller() {
1627  switch (SpillerOpt) {
1628  default: assert(0 && "Unreachable!");
1629  case local:
1630    return new LocalSpiller();
1631  case simple:
1632    return new SimpleSpiller();
1633  }
1634}
1635