APInt.cpp revision 31d16b039adbb65d36722d8efd29a6c329d4b20a
1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Sheng Zhou and Reid Spencer and is distributed
6// under the // University of Illinois Open Source License. See LICENSE.TXT
7// for details.
8//
9//===----------------------------------------------------------------------===//
10//
11// This file implements a class to represent arbitrary precision integral
12// constant values.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "apint"
17#include "llvm/ADT/APInt.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/MathExtras.h"
21#include <cstring>
22#include <cstdlib>
23#ifndef NDEBUG
24#include <iomanip>
25#endif
26
27using namespace llvm;
28
29// A utility function for allocating memory, checking for allocation failures,
30// and ensuring the contents are zeroed.
31inline static uint64_t* getClearedMemory(uint32_t numWords) {
32  uint64_t * result = new uint64_t[numWords];
33  assert(result && "APInt memory allocation fails!");
34  memset(result, 0, numWords * sizeof(uint64_t));
35  return result;
36}
37
38// A utility function for allocating memory and checking for allocation failure.
39// The content is not zero'd
40inline static uint64_t* getMemory(uint32_t numWords) {
41  uint64_t * result = new uint64_t[numWords];
42  assert(result && "APInt memory allocation fails!");
43  return result;
44}
45
46APInt::APInt(uint32_t numBits, uint64_t val)
47  : BitWidth(numBits), VAL(0) {
48  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
49  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
50  if (isSingleWord())
51    VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
52  else {
53    pVal = getClearedMemory(getNumWords());
54    pVal[0] = val;
55  }
56}
57
58APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
59  : BitWidth(numBits), VAL(0)  {
60  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
61  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
62  assert(bigVal && "Null pointer detected!");
63  if (isSingleWord())
64    VAL = bigVal[0];
65  else {
66    // Get memory, cleared to 0
67    pVal = getClearedMemory(getNumWords());
68    // Calculate the number of words to copy
69    uint32_t words = std::min<uint32_t>(numWords, getNumWords());
70    // Copy the words from bigVal to pVal
71    memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
72  }
73  // Make sure unused high bits are cleared
74  clearUnusedBits();
75}
76
77APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
78             uint8_t radix)
79  : BitWidth(numbits), VAL(0) {
80  fromString(numbits, StrStart, slen, radix);
81}
82
83APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
84  : BitWidth(numbits), VAL(0) {
85  assert(!Val.empty() && "String empty?");
86  fromString(numbits, Val.c_str(), Val.size(), radix);
87}
88
89APInt::APInt(const APInt& that)
90  : BitWidth(that.BitWidth), VAL(0) {
91  if (isSingleWord())
92    VAL = that.VAL;
93  else {
94    pVal = getMemory(getNumWords());
95    memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
96  }
97}
98
99APInt::~APInt() {
100  if (!isSingleWord() && pVal)
101    delete[] pVal;
102}
103
104APInt& APInt::operator=(const APInt& RHS) {
105  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
106  if (isSingleWord())
107    VAL = RHS.VAL;
108  else
109    memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
110  return *this;
111}
112
113APInt& APInt::operator=(uint64_t RHS) {
114  if (isSingleWord())
115    VAL = RHS;
116  else {
117    pVal[0] = RHS;
118    memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
119  }
120  return *this;
121}
122
123/// add_1 - This function adds a single "digit" integer, y, to the multiple
124/// "digit" integer array,  x[]. x[] is modified to reflect the addition and
125/// 1 is returned if there is a carry out, otherwise 0 is returned.
126/// @returns the carry of the addition.
127static uint64_t add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
128  for (uint32_t i = 0; i < len; ++i) {
129    dest[i] = y + x[i];
130    if (dest[i] < y)
131      y = 1; // Carry one to next digit.
132    else {
133      y = 0; // No need to carry so exit early
134      break;
135    }
136  }
137  return y;
138}
139
140/// @brief Prefix increment operator. Increments the APInt by one.
141APInt& APInt::operator++() {
142  if (isSingleWord())
143    ++VAL;
144  else
145    add_1(pVal, pVal, getNumWords(), 1);
146  clearUnusedBits();
147  return *this;
148}
149
150/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
151/// the multi-digit integer array, x[], propagating the borrowed 1 value until
152/// no further borrowing is neeeded or it runs out of "digits" in x.  The result
153/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
154/// In other words, if y > x then this function returns 1, otherwise 0.
155static uint64_t sub_1(uint64_t x[], uint32_t len,
156                             uint64_t y) {
157  for (uint32_t i = 0; i < len; ++i) {
158    uint64_t X = x[i];
159    x[i] -= y;
160    if (y > X)
161      y = 1;  // We have to "borrow 1" from next "digit"
162    else {
163      y = 0;  // No need to borrow
164      break;  // Remaining digits are unchanged so exit early
165    }
166  }
167  return y;
168}
169
170/// @brief Prefix decrement operator. Decrements the APInt by one.
171APInt& APInt::operator--() {
172  if (isSingleWord())
173    --VAL;
174  else
175    sub_1(pVal, getNumWords(), 1);
176  clearUnusedBits();
177  return *this;
178}
179
180/// add - This function adds the integer array x[] by integer array
181/// y[] and returns the carry.
182static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
183                uint32_t len) {
184  bool carry = false;
185  for (uint32_t i = 0; i< len; ++i) {
186    uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
187    dest[i] = x[i] + y[i] + carry;
188    carry = dest[i] < limit || (carry && dest[i] == limit);
189  }
190  return carry;
191}
192
193/// @brief Addition assignment operator. Adds this APInt by the given APInt&
194/// RHS and assigns the result to this APInt.
195APInt& APInt::operator+=(const APInt& RHS) {
196  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
197  if (isSingleWord())
198    VAL += RHS.VAL;
199  else {
200    add(pVal, pVal, RHS.pVal, getNumWords());
201  }
202  clearUnusedBits();
203  return *this;
204}
205
206/// sub - This function subtracts the integer array x[] by
207/// integer array y[], and returns the borrow-out.
208static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
209                uint32_t len) {
210  bool borrow = false;
211  for (uint32_t i = 0; i < len; ++i) {
212    uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
213    borrow = y[i] > x_tmp || (borrow && x[i] == 0);
214    dest[i] = x_tmp - y[i];
215  }
216  return borrow;
217}
218
219/// @brief Subtraction assignment operator. Subtracts this APInt by the given
220/// APInt &RHS and assigns the result to this APInt.
221APInt& APInt::operator-=(const APInt& RHS) {
222  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
223  if (isSingleWord())
224    VAL -= RHS.VAL;
225  else
226    sub(pVal, pVal, RHS.pVal, getNumWords());
227  clearUnusedBits();
228  return *this;
229}
230
231/// mul_1 - This function performs the multiplication operation on a
232/// large integer (represented as an integer array) and a uint64_t integer.
233/// @returns the carry of the multiplication.
234static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
235  // Split y into high 32-bit part (hy)  and low 32-bit part (ly)
236  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
237  uint64_t carry = 0, lx, hx;
238  for (uint32_t i = 0; i < len; ++i) {
239    lx = x[i] & 0xffffffffULL;
240    hx = x[i] >> 32;
241    // hasCarry - A flag to indicate if has carry.
242    // hasCarry == 0, no carry
243    // hasCarry == 1, has carry
244    // hasCarry == 2, no carry and the calculation result == 0.
245    uint8_t hasCarry = 0;
246    dest[i] = carry + lx * ly;
247    // Determine if the add above introduces carry.
248    hasCarry = (dest[i] < carry) ? 1 : 0;
249    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
250    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
251    // (2^32 - 1) + 2^32 = 2^64.
252    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
253
254    carry += (lx * hy) & 0xffffffffULL;
255    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
256    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
257            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
258  }
259
260  return carry;
261}
262
263/// mul - This function multiplies integer array x[] by integer array y[] and
264/// stores the result into integer array dest[].
265/// Note the array dest[]'s size should no less than xlen + ylen.
266static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
267                uint32_t ylen) {
268  dest[xlen] = mul_1(dest, x, xlen, y[0]);
269  for (uint32_t i = 1; i < ylen; ++i) {
270    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
271    uint64_t carry = 0, lx = 0, hx = 0;
272    for (uint32_t j = 0; j < xlen; ++j) {
273      lx = x[j] & 0xffffffffULL;
274      hx = x[j] >> 32;
275      // hasCarry - A flag to indicate if has carry.
276      // hasCarry == 0, no carry
277      // hasCarry == 1, has carry
278      // hasCarry == 2, no carry and the calculation result == 0.
279      uint8_t hasCarry = 0;
280      uint64_t resul = carry + lx * ly;
281      hasCarry = (resul < carry) ? 1 : 0;
282      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
283      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
284
285      carry += (lx * hy) & 0xffffffffULL;
286      resul = (carry << 32) | (resul & 0xffffffffULL);
287      dest[i+j] += resul;
288      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
289              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
290              ((lx * hy) >> 32) + hx * hy;
291    }
292    dest[i+xlen] = carry;
293  }
294}
295
296/// @brief Multiplication assignment operator. Multiplies this APInt by the
297/// given APInt& RHS and assigns the result to this APInt.
298APInt& APInt::operator*=(const APInt& RHS) {
299  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
300  if (isSingleWord()) {
301    VAL *= RHS.VAL;
302    clearUnusedBits();
303    return *this;
304  }
305
306  // Get some bit facts about LHS and check for zero
307  uint32_t lhsBits = getActiveBits();
308  uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
309  if (!lhsWords)
310    // 0 * X ===> 0
311    return *this;
312
313  // Get some bit facts about RHS and check for zero
314  uint32_t rhsBits = RHS.getActiveBits();
315  uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
316  if (!rhsWords) {
317    // X * 0 ===> 0
318    clear();
319    return *this;
320  }
321
322  // Allocate space for the result
323  uint32_t destWords = rhsWords + lhsWords;
324  uint64_t *dest = getMemory(destWords);
325
326  // Perform the long multiply
327  mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
328
329  // Copy result back into *this
330  clear();
331  uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
332  memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
333
334  // delete dest array and return
335  delete[] dest;
336  return *this;
337}
338
339/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
340/// this APInt and the given APInt& RHS, assigns the result to this APInt.
341APInt& APInt::operator&=(const APInt& RHS) {
342  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
343  if (isSingleWord()) {
344    VAL &= RHS.VAL;
345    return *this;
346  }
347  uint32_t numWords = getNumWords();
348  for (uint32_t i = 0; i < numWords; ++i)
349    pVal[i] &= RHS.pVal[i];
350  return *this;
351}
352
353/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on
354/// this APInt and the given APInt& RHS, assigns the result to this APInt.
355APInt& APInt::operator|=(const APInt& RHS) {
356  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
357  if (isSingleWord()) {
358    VAL |= RHS.VAL;
359    return *this;
360  }
361  uint32_t numWords = getNumWords();
362  for (uint32_t i = 0; i < numWords; ++i)
363    pVal[i] |= RHS.pVal[i];
364  return *this;
365}
366
367/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
368/// this APInt and the given APInt& RHS, assigns the result to this APInt.
369APInt& APInt::operator^=(const APInt& RHS) {
370  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
371  if (isSingleWord()) {
372    VAL ^= RHS.VAL;
373    this->clearUnusedBits();
374    return *this;
375  }
376  uint32_t numWords = getNumWords();
377  for (uint32_t i = 0; i < numWords; ++i)
378    pVal[i] ^= RHS.pVal[i];
379  this->clearUnusedBits();
380  return *this;
381}
382
383/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
384/// and the given APInt& RHS.
385APInt APInt::operator&(const APInt& RHS) const {
386  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
387  if (isSingleWord())
388    return APInt(getBitWidth(), VAL & RHS.VAL);
389
390  APInt Result(*this);
391  uint32_t numWords = getNumWords();
392  for (uint32_t i = 0; i < numWords; ++i)
393    Result.pVal[i] &= RHS.pVal[i];
394  return Result;
395}
396
397/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt
398/// and the given APInt& RHS.
399APInt APInt::operator|(const APInt& RHS) const {
400  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
401  if (isSingleWord())
402    return APInt(getBitWidth(), VAL | RHS.VAL);
403
404  APInt Result(*this);
405  uint32_t numWords = getNumWords();
406  for (uint32_t i = 0; i < numWords; ++i)
407    Result.pVal[i] |= RHS.pVal[i];
408  return Result;
409}
410
411/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
412/// and the given APInt& RHS.
413APInt APInt::operator^(const APInt& RHS) const {
414  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
415  if (isSingleWord()) {
416    APInt Result(BitWidth, VAL ^ RHS.VAL);
417    Result.clearUnusedBits();
418    return Result;
419  }
420  APInt Result(*this);
421  uint32_t numWords = getNumWords();
422  for (uint32_t i = 0; i < numWords; ++i)
423    Result.pVal[i] ^= RHS.pVal[i];
424  return Result;
425}
426
427/// @brief Logical negation operator. Performs logical negation operation on
428/// this APInt.
429bool APInt::operator !() const {
430  if (isSingleWord())
431    return !VAL;
432
433  for (uint32_t i = 0; i < getNumWords(); ++i)
434    if (pVal[i])
435      return false;
436  return true;
437}
438
439/// @brief Multiplication operator. Multiplies this APInt by the given APInt&
440/// RHS.
441APInt APInt::operator*(const APInt& RHS) const {
442  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
443  if (isSingleWord()) {
444    APInt Result(BitWidth, VAL * RHS.VAL);
445    Result.clearUnusedBits();
446    return Result;
447  }
448  APInt Result(*this);
449  Result *= RHS;
450  Result.clearUnusedBits();
451  return Result;
452}
453
454/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
455APInt APInt::operator+(const APInt& RHS) const {
456  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
457  if (isSingleWord()) {
458    APInt Result(BitWidth, VAL + RHS.VAL);
459    Result.clearUnusedBits();
460    return Result;
461  }
462  APInt Result(BitWidth, 0);
463  add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
464  Result.clearUnusedBits();
465  return Result;
466}
467
468/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
469APInt APInt::operator-(const APInt& RHS) const {
470  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
471  if (isSingleWord()) {
472    APInt Result(BitWidth, VAL - RHS.VAL);
473    Result.clearUnusedBits();
474    return Result;
475  }
476  APInt Result(BitWidth, 0);
477  sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
478  Result.clearUnusedBits();
479  return Result;
480}
481
482/// @brief Array-indexing support.
483bool APInt::operator[](uint32_t bitPosition) const {
484  return (maskBit(bitPosition) & (isSingleWord() ?
485          VAL : pVal[whichWord(bitPosition)])) != 0;
486}
487
488/// @brief Equality operator. Compare this APInt with the given APInt& RHS
489/// for the validity of the equality relationship.
490bool APInt::operator==(const APInt& RHS) const {
491  if (isSingleWord())
492    return VAL == RHS.VAL;
493
494  uint32_t n1 = getActiveBits();
495  uint32_t n2 = RHS.getActiveBits();
496  if (n1 != n2)
497    return false;
498
499  if (n1 <= APINT_BITS_PER_WORD)
500    return pVal[0] == RHS.pVal[0];
501
502  for (int i = whichWord(n1 - 1); i >= 0; --i)
503    if (pVal[i] != RHS.pVal[i])
504      return false;
505  return true;
506}
507
508/// @brief Equality operator. Compare this APInt with the given uint64_t value
509/// for the validity of the equality relationship.
510bool APInt::operator==(uint64_t Val) const {
511  if (isSingleWord())
512    return VAL == Val;
513
514  uint32_t n = getActiveBits();
515  if (n <= APINT_BITS_PER_WORD)
516    return pVal[0] == Val;
517  else
518    return false;
519}
520
521/// @brief Unsigned less than comparison
522bool APInt::ult(const APInt& RHS) const {
523  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
524  if (isSingleWord())
525    return VAL < RHS.VAL;
526  else {
527    uint32_t n1 = getActiveBits();
528    uint32_t n2 = RHS.getActiveBits();
529    if (n1 < n2)
530      return true;
531    else if (n2 < n1)
532      return false;
533    else if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
534      return pVal[0] < RHS.pVal[0];
535    for (int i = whichWord(n1 - 1); i >= 0; --i) {
536      if (pVal[i] > RHS.pVal[i]) return false;
537      else if (pVal[i] < RHS.pVal[i]) return true;
538    }
539  }
540  return false;
541}
542
543/// @brief Signed less than comparison
544bool APInt::slt(const APInt& RHS) const {
545  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
546  if (isSingleWord()) {
547    int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
548    int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
549    return lhsSext < rhsSext;
550  }
551
552  APInt lhs(*this);
553  APInt rhs(*this);
554  bool lhsNegative = false;
555  bool rhsNegative = false;
556  if (lhs[BitWidth-1]) {
557    lhsNegative = true;
558    lhs.flip();
559    lhs++;
560  }
561  if (rhs[BitWidth-1]) {
562    rhsNegative = true;
563    rhs.flip();
564    rhs++;
565  }
566  if (lhsNegative)
567    if (rhsNegative)
568      return !lhs.ult(rhs);
569    else
570      return true;
571  else if (rhsNegative)
572    return false;
573  else
574    return lhs.ult(rhs);
575}
576
577/// Set the given bit to 1 whose poition is given as "bitPosition".
578/// @brief Set a given bit to 1.
579APInt& APInt::set(uint32_t bitPosition) {
580  if (isSingleWord()) VAL |= maskBit(bitPosition);
581  else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
582  return *this;
583}
584
585/// @brief Set every bit to 1.
586APInt& APInt::set() {
587  if (isSingleWord())
588    VAL = ~0ULL >> (APINT_BITS_PER_WORD - BitWidth);
589  else {
590    for (uint32_t i = 0; i < getNumWords() - 1; ++i)
591      pVal[i] = -1ULL;
592    pVal[getNumWords() - 1] = ~0ULL >>
593      (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD);
594  }
595  return *this;
596}
597
598/// Set the given bit to 0 whose position is given as "bitPosition".
599/// @brief Set a given bit to 0.
600APInt& APInt::clear(uint32_t bitPosition) {
601  if (isSingleWord())
602    VAL &= ~maskBit(bitPosition);
603  else
604    pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
605  return *this;
606}
607
608/// @brief Set every bit to 0.
609APInt& APInt::clear() {
610  if (isSingleWord())
611    VAL = 0;
612  else
613    memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
614  return *this;
615}
616
617/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
618/// this APInt.
619APInt APInt::operator~() const {
620  APInt API(*this);
621  API.flip();
622  return API;
623}
624
625/// @brief Toggle every bit to its opposite value.
626APInt& APInt::flip() {
627  if (isSingleWord()) VAL = (~(VAL <<
628        (APINT_BITS_PER_WORD - BitWidth))) >> (APINT_BITS_PER_WORD - BitWidth);
629  else {
630    uint32_t i = 0;
631    for (; i < getNumWords() - 1; ++i)
632      pVal[i] = ~pVal[i];
633    uint32_t offset =
634      APINT_BITS_PER_WORD - (BitWidth - APINT_BITS_PER_WORD * (i - 1));
635    pVal[i] = (~(pVal[i] << offset)) >> offset;
636  }
637  return *this;
638}
639
640/// Toggle a given bit to its opposite value whose position is given
641/// as "bitPosition".
642/// @brief Toggles a given bit to its opposite value.
643APInt& APInt::flip(uint32_t bitPosition) {
644  assert(bitPosition < BitWidth && "Out of the bit-width range!");
645  if ((*this)[bitPosition]) clear(bitPosition);
646  else set(bitPosition);
647  return *this;
648}
649
650/// getMaxValue - This function returns the largest value
651/// for an APInt of the specified bit-width and if isSign == true,
652/// it should be largest signed value, otherwise unsigned value.
653APInt APInt::getMaxValue(uint32_t numBits, bool isSign) {
654  APInt Result(numBits, 0);
655  Result.set();
656  if (isSign)
657    Result.clear(numBits - 1);
658  return Result;
659}
660
661/// getMinValue - This function returns the smallest value for
662/// an APInt of the given bit-width and if isSign == true,
663/// it should be smallest signed value, otherwise zero.
664APInt APInt::getMinValue(uint32_t numBits, bool isSign) {
665  APInt Result(numBits, 0);
666  if (isSign)
667    Result.set(numBits - 1);
668  return Result;
669}
670
671/// getAllOnesValue - This function returns an all-ones value for
672/// an APInt of the specified bit-width.
673APInt APInt::getAllOnesValue(uint32_t numBits) {
674  return getMaxValue(numBits, false);
675}
676
677/// getNullValue - This function creates an '0' value for an
678/// APInt of the specified bit-width.
679APInt APInt::getNullValue(uint32_t numBits) {
680  return getMinValue(numBits, false);
681}
682
683/// HiBits - This function returns the high "numBits" bits of this APInt.
684APInt APInt::getHiBits(uint32_t numBits) const {
685  return APIntOps::lshr(*this, BitWidth - numBits);
686}
687
688/// LoBits - This function returns the low "numBits" bits of this APInt.
689APInt APInt::getLoBits(uint32_t numBits) const {
690  return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
691                        BitWidth - numBits);
692}
693
694bool APInt::isPowerOf2() const {
695  return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
696}
697
698/// countLeadingZeros - This function is a APInt version corresponding to
699/// llvm/include/llvm/Support/MathExtras.h's function
700/// countLeadingZeros_{32, 64}. It performs platform optimal form of counting
701/// the number of zeros from the most significant bit to the first one bit.
702/// @returns numWord() * 64 if the value is zero.
703uint32_t APInt::countLeadingZeros() const {
704  uint32_t Count = 0;
705  if (isSingleWord())
706    Count = CountLeadingZeros_64(VAL);
707  else {
708    for (uint32_t i = getNumWords(); i > 0u; --i) {
709      if (pVal[i-1] == 0)
710        Count += APINT_BITS_PER_WORD;
711      else {
712        Count += CountLeadingZeros_64(pVal[i-1]);
713        break;
714      }
715    }
716  }
717  uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
718  if (remainder)
719    Count -= APINT_BITS_PER_WORD - remainder;
720  return Count;
721}
722
723/// countTrailingZeros - This function is a APInt version corresponding to
724/// llvm/include/llvm/Support/MathExtras.h's function
725/// countTrailingZeros_{32, 64}. It performs platform optimal form of counting
726/// the number of zeros from the least significant bit to the first one bit.
727/// @returns numWord() * 64 if the value is zero.
728uint32_t APInt::countTrailingZeros() const {
729  if (isSingleWord())
730    return CountTrailingZeros_64(VAL);
731  APInt Tmp( ~(*this) & ((*this) - APInt(BitWidth,1)) );
732  return getNumWords() * APINT_BITS_PER_WORD - Tmp.countLeadingZeros();
733}
734
735/// countPopulation - This function is a APInt version corresponding to
736/// llvm/include/llvm/Support/MathExtras.h's function
737/// countPopulation_{32, 64}. It counts the number of set bits in a value.
738/// @returns 0 if the value is zero.
739uint32_t APInt::countPopulation() const {
740  if (isSingleWord())
741    return CountPopulation_64(VAL);
742  uint32_t Count = 0;
743  for (uint32_t i = 0; i < getNumWords(); ++i)
744    Count += CountPopulation_64(pVal[i]);
745  return Count;
746}
747
748
749/// byteSwap - This function returns a byte-swapped representation of the
750/// this APInt.
751APInt APInt::byteSwap() const {
752  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
753  if (BitWidth == 16)
754    return APInt(BitWidth, ByteSwap_16(VAL));
755  else if (BitWidth == 32)
756    return APInt(BitWidth, ByteSwap_32(VAL));
757  else if (BitWidth == 48) {
758    uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
759    Tmp1 = ByteSwap_32(Tmp1);
760    uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
761    Tmp2 = ByteSwap_16(Tmp2);
762    return
763      APInt(BitWidth,
764            (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16));
765  } else if (BitWidth == 64)
766    return APInt(BitWidth, ByteSwap_64(VAL));
767  else {
768    APInt Result(BitWidth, 0);
769    char *pByte = (char*)Result.pVal;
770    for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
771      char Tmp = pByte[i];
772      pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
773      pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
774    }
775    return Result;
776  }
777}
778
779/// GreatestCommonDivisor - This function returns the greatest common
780/// divisor of the two APInt values using Enclid's algorithm.
781APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
782                                            const APInt& API2) {
783  APInt A = API1, B = API2;
784  while (!!B) {
785    APInt T = B;
786    B = APIntOps::urem(A, B);
787    A = T;
788  }
789  return A;
790}
791
792/// DoubleRoundToAPInt - This function convert a double value to
793/// a APInt value.
794APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) {
795  union {
796    double D;
797    uint64_t I;
798  } T;
799  T.D = Double;
800  bool isNeg = T.I >> 63;
801  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
802  if (exp < 0)
803    return APInt(64ull, 0u);
804  uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52);
805  if (exp < 52)
806    return isNeg ? -APInt(64u, mantissa >> (52 - exp)) :
807                    APInt(64u, mantissa >> (52 - exp));
808  APInt Tmp(exp + 1, mantissa);
809  Tmp = Tmp.shl(exp - 52);
810  return isNeg ? -Tmp : Tmp;
811}
812
813/// RoundToDouble - This function convert this APInt to a double.
814/// The layout for double is as following (IEEE Standard 754):
815///  --------------------------------------
816/// |  Sign    Exponent    Fraction    Bias |
817/// |-------------------------------------- |
818/// |  1[63]   11[62-52]   52[51-00]   1023 |
819///  --------------------------------------
820double APInt::roundToDouble(bool isSigned) const {
821
822  // Handle the simple case where the value is contained in one uint64_t.
823  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
824    if (isSigned) {
825      int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
826      return double(sext);
827    } else
828      return double(VAL);
829  }
830
831  // Determine if the value is negative.
832  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
833
834  // Construct the absolute value if we're negative.
835  APInt Tmp(isNeg ? -(*this) : (*this));
836
837  // Figure out how many bits we're using.
838  uint32_t n = Tmp.getActiveBits();
839
840  // The exponent (without bias normalization) is just the number of bits
841  // we are using. Note that the sign bit is gone since we constructed the
842  // absolute value.
843  uint64_t exp = n;
844
845  // Return infinity for exponent overflow
846  if (exp > 1023) {
847    if (!isSigned || !isNeg)
848      return double(1.0E300 * 1.0E300); // positive infinity
849    else
850      return double(-1.0E300 * 1.0E300); // negative infinity
851  }
852  exp += 1023; // Increment for 1023 bias
853
854  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
855  // extract the high 52 bits from the correct words in pVal.
856  uint64_t mantissa;
857  unsigned hiWord = whichWord(n-1);
858  if (hiWord == 0) {
859    mantissa = Tmp.pVal[0];
860    if (n > 52)
861      mantissa >>= n - 52; // shift down, we want the top 52 bits.
862  } else {
863    assert(hiWord > 0 && "huh?");
864    uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
865    uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
866    mantissa = hibits | lobits;
867  }
868
869  // The leading bit of mantissa is implicit, so get rid of it.
870  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
871  union {
872    double D;
873    uint64_t I;
874  } T;
875  T.I = sign | (exp << 52) | mantissa;
876  return T.D;
877}
878
879// Truncate to new width.
880void APInt::trunc(uint32_t width) {
881  assert(width < BitWidth && "Invalid APInt Truncate request");
882}
883
884// Sign extend to a new width.
885void APInt::sext(uint32_t width) {
886  assert(width > BitWidth && "Invalid APInt SignExtend request");
887}
888
889//  Zero extend to a new width.
890void APInt::zext(uint32_t width) {
891  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
892}
893
894/// Arithmetic right-shift this APInt by shiftAmt.
895/// @brief Arithmetic right-shift function.
896APInt APInt::ashr(uint32_t shiftAmt) const {
897  if (isSingleWord()) {
898    if (shiftAmt == BitWidth)
899      return APInt(BitWidth, -1ull);
900    else
901      return APInt(BitWidth,
902        (((int64_t(VAL) << (APINT_BITS_PER_WORD - BitWidth)) >>
903            (APINT_BITS_PER_WORD - BitWidth)) >> shiftAmt) &
904        (~uint64_t(0UL) >> (APINT_BITS_PER_WORD - BitWidth)));
905  }
906
907  APInt Result(*this);
908  if (shiftAmt >= BitWidth) {
909    memset(Result.pVal, Result[BitWidth-1] ? 1 : 0,
910           (getNumWords()-1) * APINT_WORD_SIZE);
911    Result.pVal[getNumWords() - 1] = ~uint64_t(0UL) >>
912        (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD);
913  } else {
914    uint32_t i = 0;
915    for (; i < BitWidth - shiftAmt; ++i)
916      if (Result[i+shiftAmt])
917        Result.set(i);
918      else
919        Result.clear(i);
920    for (; i < BitWidth; ++i)
921      if (Result[BitWidth-1])
922        Result.set(i);
923      else
924        Result.clear(i);
925  }
926  return Result;
927}
928
929/// Logical right-shift this APInt by shiftAmt.
930/// @brief Logical right-shift function.
931APInt APInt::lshr(uint32_t shiftAmt) const {
932  if (isSingleWord())
933    if (shiftAmt == BitWidth)
934      return APInt(BitWidth, 0);
935    else
936      return APInt(BitWidth, this->VAL >> shiftAmt);
937
938  APInt Result(*this);
939  if (shiftAmt >= Result.BitWidth)
940    memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE);
941  uint32_t i = 0;
942  for (i = 0; i < Result.BitWidth - shiftAmt; ++i)
943    if (Result[i+shiftAmt])
944      Result.set(i);
945    else
946      Result.clear(i);
947  for (; i < Result.BitWidth; ++i)
948    Result.clear(i);
949  return Result;
950}
951
952/// Left-shift this APInt by shiftAmt.
953/// @brief Left-shift function.
954APInt APInt::shl(uint32_t shiftAmt) const {
955  assert(shiftAmt <= BitWidth && "Invalid shift amount");
956  if (isSingleWord()) {
957    if (shiftAmt == BitWidth)
958      return APInt(BitWidth, 0); // avoid undefined shift results
959    return APInt(BitWidth, (VAL << shiftAmt) &
960                           (~uint64_t(0ULL) >>
961                            (APINT_BITS_PER_WORD - BitWidth)));
962  }
963
964  // If all the bits were shifted out, the result is 0. This avoids issues
965  // with shifting by the size of the integer type, which produces undefined
966  // results. We define these "undefined results" to always be 0.
967  if (shiftAmt == BitWidth)
968    return APInt(BitWidth, 0);
969
970  // Create some space for the result.
971  uint64_t * val = new uint64_t[getNumWords()];
972
973  // If we are shifting less than a word, do it the easy way
974  if (shiftAmt < APINT_BITS_PER_WORD) {
975    uint64_t carry = 0;
976    shiftAmt %= APINT_BITS_PER_WORD;
977    for (uint32_t i = 0; i < getNumWords(); i++) {
978      val[i] = pVal[i] << shiftAmt | carry;
979      carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
980    }
981    val[getNumWords()-1] &= ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth);
982    return APInt(val, BitWidth);
983  }
984
985  // Compute some values needed by the remaining shift algorithms
986  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
987  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
988
989  // If we are shifting whole words, just move whole words
990  if (wordShift == 0) {
991    for (uint32_t i = 0; i < offset; i++)
992      val[i] = 0;
993    for (uint32_t i = offset; i < getNumWords(); i++)
994      val[i] = pVal[i-offset];
995    val[getNumWords()-1] &= ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth);
996    return APInt(val,BitWidth);
997  }
998
999  // Copy whole words from this to Result.
1000  uint32_t i = getNumWords() - 1;
1001  for (; i > offset; --i)
1002    val[i] = pVal[i-offset] << wordShift |
1003             pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1004  val[offset] = pVal[0] << wordShift;
1005  for (i = 0; i < offset; ++i)
1006    val[i] = 0;
1007  val[getNumWords()-1] &= ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth);
1008  return APInt(val, BitWidth);
1009}
1010
1011/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1012/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1013/// variables here have the same names as in the algorithm. Comments explain
1014/// the algorithm and any deviation from it.
1015static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1016                     uint32_t m, uint32_t n) {
1017  assert(u && "Must provide dividend");
1018  assert(v && "Must provide divisor");
1019  assert(q && "Must provide quotient");
1020  assert(u != v && u != q && v != q && "Must us different memory");
1021  assert(n>1 && "n must be > 1");
1022
1023  // Knuth uses the value b as the base of the number system. In our case b
1024  // is 2^31 so we just set it to -1u.
1025  uint64_t b = uint64_t(1) << 32;
1026
1027  DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1028  DEBUG(cerr << "KnuthDiv: original:");
1029  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1030  DEBUG(cerr << " by");
1031  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1032  DEBUG(cerr << '\n');
1033  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1034  // u and v by d. Note that we have taken Knuth's advice here to use a power
1035  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1036  // 2 allows us to shift instead of multiply and it is easy to determine the
1037  // shift amount from the leading zeros.  We are basically normalizing the u
1038  // and v so that its high bits are shifted to the top of v's range without
1039  // overflow. Note that this can require an extra word in u so that u must
1040  // be of length m+n+1.
1041  uint32_t shift = CountLeadingZeros_32(v[n-1]);
1042  uint32_t v_carry = 0;
1043  uint32_t u_carry = 0;
1044  if (shift) {
1045    for (uint32_t i = 0; i < m+n; ++i) {
1046      uint32_t u_tmp = u[i] >> (32 - shift);
1047      u[i] = (u[i] << shift) | u_carry;
1048      u_carry = u_tmp;
1049    }
1050    for (uint32_t i = 0; i < n; ++i) {
1051      uint32_t v_tmp = v[i] >> (32 - shift);
1052      v[i] = (v[i] << shift) | v_carry;
1053      v_carry = v_tmp;
1054    }
1055  }
1056  u[m+n] = u_carry;
1057  DEBUG(cerr << "KnuthDiv:   normal:");
1058  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1059  DEBUG(cerr << " by");
1060  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1061  DEBUG(cerr << '\n');
1062
1063  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1064  int j = m;
1065  do {
1066    DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1067    // D3. [Calculate q'.].
1068    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1069    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1070    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1071    // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1072    // on v[n-2] determines at high speed most of the cases in which the trial
1073    // value qp is one too large, and it eliminates all cases where qp is two
1074    // too large.
1075    uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1076    DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1077    uint64_t qp = dividend / v[n-1];
1078    uint64_t rp = dividend % v[n-1];
1079    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1080      qp--;
1081      rp += v[n-1];
1082      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1083        qp--;
1084    }
1085    DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1086
1087    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1088    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1089    // consists of a simple multiplication by a one-place number, combined with
1090    // a subtraction.
1091    bool isNegative = false;
1092    for (uint32_t i = 0; i < n; ++i) {
1093      uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1094      uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1095      bool borrow = subtrahend > u_tmp;
1096      DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1097                 << ", subtrahend == " << subtrahend
1098                 << ", borrow = " << borrow << '\n');
1099
1100      uint64_t result = u_tmp - subtrahend;
1101      uint32_t k = j + i;
1102      u[k++] = result & (b-1); // subtract low word
1103      u[k++] = result >> 32;   // subtract high word
1104      while (borrow && k <= m+n) { // deal with borrow to the left
1105        borrow = u[k] == 0;
1106        u[k]--;
1107        k++;
1108      }
1109      isNegative |= borrow;
1110      DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ",  u[j+i+1] == " <<
1111                    u[j+i+1] << '\n');
1112    }
1113    DEBUG(cerr << "KnuthDiv: after subtraction:");
1114    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1115    DEBUG(cerr << '\n');
1116    // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1117    // this step is actually negative, (u[j+n]...u[j]) should be left as the
1118    // true value plus b**(n+1), namely as the b's complement of
1119    // the true value, and a "borrow" to the left should be remembered.
1120    //
1121    if (isNegative) {
1122      bool carry = true;  // true because b's complement is "complement + 1"
1123      for (uint32_t i = 0; i <= m+n; ++i) {
1124        u[i] = ~u[i] + carry; // b's complement
1125        carry = carry && u[i] == 0;
1126      }
1127    }
1128    DEBUG(cerr << "KnuthDiv: after complement:");
1129    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1130    DEBUG(cerr << '\n');
1131
1132    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1133    // negative, go to step D6; otherwise go on to step D7.
1134    q[j] = qp;
1135    if (isNegative) {
1136      // D6. [Add back]. The probability that this step is necessary is very
1137      // small, on the order of only 2/b. Make sure that test data accounts for
1138      // this possibility. Decrease q[j] by 1
1139      q[j]--;
1140      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1141      // A carry will occur to the left of u[j+n], and it should be ignored
1142      // since it cancels with the borrow that occurred in D4.
1143      bool carry = false;
1144      for (uint32_t i = 0; i < n; i++) {
1145        uint32_t limit = std::min(u[j+i],v[i]);
1146        u[j+i] += v[i] + carry;
1147        carry = u[j+i] < limit || (carry && u[j+i] == limit);
1148      }
1149      u[j+n] += carry;
1150    }
1151    DEBUG(cerr << "KnuthDiv: after correction:");
1152    DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1153    DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1154
1155  // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1156  } while (--j >= 0);
1157
1158  DEBUG(cerr << "KnuthDiv: quotient:");
1159  DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1160  DEBUG(cerr << '\n');
1161
1162  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1163  // remainder may be obtained by dividing u[...] by d. If r is non-null we
1164  // compute the remainder (urem uses this).
1165  if (r) {
1166    // The value d is expressed by the "shift" value above since we avoided
1167    // multiplication by d by using a shift left. So, all we have to do is
1168    // shift right here. In order to mak
1169    if (shift) {
1170      uint32_t carry = 0;
1171      DEBUG(cerr << "KnuthDiv: remainder:");
1172      for (int i = n-1; i >= 0; i--) {
1173        r[i] = (u[i] >> shift) | carry;
1174        carry = u[i] << (32 - shift);
1175        DEBUG(cerr << " " << r[i]);
1176      }
1177    } else {
1178      for (int i = n-1; i >= 0; i--) {
1179        r[i] = u[i];
1180        DEBUG(cerr << " " << r[i]);
1181      }
1182    }
1183    DEBUG(cerr << '\n');
1184  }
1185  DEBUG(cerr << std::setbase(10) << '\n');
1186}
1187
1188// This function makes calling KnuthDiv a little more convenient. It uses
1189// APInt parameters instead of uint32_t* parameters. It can also divide APInt
1190// values of different widths.
1191void APInt::divide(const APInt LHS, uint32_t lhsWords,
1192                   const APInt &RHS, uint32_t rhsWords,
1193                   APInt *Quotient, APInt *Remainder)
1194{
1195  assert(lhsWords >= rhsWords && "Fractional result");
1196
1197  // First, compose the values into an array of 32-bit words instead of
1198  // 64-bit words. This is a necessity of both the "short division" algorithm
1199  // and the the Knuth "classical algorithm" which requires there to be native
1200  // operations for +, -, and * on an m bit value with an m*2 bit result. We
1201  // can't use 64-bit operands here because we don't have native results of
1202  // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1203  // work on large-endian machines.
1204  uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1205  uint32_t n = rhsWords * 2;
1206  uint32_t m = (lhsWords * 2) - n;
1207
1208  // Allocate space for the temporary values we need either on the stack, if
1209  // it will fit, or on the heap if it won't.
1210  uint32_t SPACE[128];
1211  uint32_t *U = 0;
1212  uint32_t *V = 0;
1213  uint32_t *Q = 0;
1214  uint32_t *R = 0;
1215  if ((Remainder?4:3)*n+2*m+1 <= 128) {
1216    U = &SPACE[0];
1217    V = &SPACE[m+n+1];
1218    Q = &SPACE[(m+n+1) + n];
1219    if (Remainder)
1220      R = &SPACE[(m+n+1) + n + (m+n)];
1221  } else {
1222    U = new uint32_t[m + n + 1];
1223    V = new uint32_t[n];
1224    Q = new uint32_t[m+n];
1225    if (Remainder)
1226      R = new uint32_t[n];
1227  }
1228
1229  // Initialize the dividend
1230  memset(U, 0, (m+n+1)*sizeof(uint32_t));
1231  for (unsigned i = 0; i < lhsWords; ++i) {
1232    uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1233    U[i * 2] = tmp & mask;
1234    U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1235  }
1236  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1237
1238  // Initialize the divisor
1239  memset(V, 0, (n)*sizeof(uint32_t));
1240  for (unsigned i = 0; i < rhsWords; ++i) {
1241    uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1242    V[i * 2] = tmp & mask;
1243    V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1244  }
1245
1246  // initialize the quotient and remainder
1247  memset(Q, 0, (m+n) * sizeof(uint32_t));
1248  if (Remainder)
1249    memset(R, 0, n * sizeof(uint32_t));
1250
1251  // Now, adjust m and n for the Knuth division. n is the number of words in
1252  // the divisor. m is the number of words by which the dividend exceeds the
1253  // divisor (i.e. m+n is the length of the dividend). These sizes must not
1254  // contain any zero words or the Knuth algorithm fails.
1255  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1256    n--;
1257    m++;
1258  }
1259  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1260    m--;
1261
1262  // If we're left with only a single word for the divisor, Knuth doesn't work
1263  // so we implement the short division algorithm here. This is much simpler
1264  // and faster because we are certain that we can divide a 64-bit quantity
1265  // by a 32-bit quantity at hardware speed and short division is simply a
1266  // series of such operations. This is just like doing short division but we
1267  // are using base 2^32 instead of base 10.
1268  assert(n != 0 && "Divide by zero?");
1269  if (n == 1) {
1270    uint32_t divisor = V[0];
1271    uint32_t remainder = 0;
1272    for (int i = m+n-1; i >= 0; i--) {
1273      uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1274      if (partial_dividend == 0) {
1275        Q[i] = 0;
1276        remainder = 0;
1277      } else if (partial_dividend < divisor) {
1278        Q[i] = 0;
1279        remainder = partial_dividend;
1280      } else if (partial_dividend == divisor) {
1281        Q[i] = 1;
1282        remainder = 0;
1283      } else {
1284        Q[i] = partial_dividend / divisor;
1285        remainder = partial_dividend - (Q[i] * divisor);
1286      }
1287    }
1288    if (R)
1289      R[0] = remainder;
1290  } else {
1291    // Now we're ready to invoke the Knuth classical divide algorithm. In this
1292    // case n > 1.
1293    KnuthDiv(U, V, Q, R, m, n);
1294  }
1295
1296  // If the caller wants the quotient
1297  if (Quotient) {
1298    // Set up the Quotient value's memory.
1299    if (Quotient->BitWidth != LHS.BitWidth) {
1300      if (Quotient->isSingleWord())
1301        Quotient->VAL = 0;
1302      else
1303        delete Quotient->pVal;
1304      Quotient->BitWidth = LHS.BitWidth;
1305      if (!Quotient->isSingleWord())
1306        Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1307    } else
1308      Quotient->clear();
1309
1310    // The quotient is in Q. Reconstitute the quotient into Quotient's low
1311    // order words.
1312    if (lhsWords == 1) {
1313      uint64_t tmp =
1314        uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1315      if (Quotient->isSingleWord())
1316        Quotient->VAL = tmp;
1317      else
1318        Quotient->pVal[0] = tmp;
1319    } else {
1320      assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1321      for (unsigned i = 0; i < lhsWords; ++i)
1322        Quotient->pVal[i] =
1323          uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1324    }
1325  }
1326
1327  // If the caller wants the remainder
1328  if (Remainder) {
1329    // Set up the Remainder value's memory.
1330    if (Remainder->BitWidth != RHS.BitWidth) {
1331      if (Remainder->isSingleWord())
1332        Remainder->VAL = 0;
1333      else
1334        delete Remainder->pVal;
1335      Remainder->BitWidth = RHS.BitWidth;
1336      if (!Remainder->isSingleWord())
1337        Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1338    } else
1339      Remainder->clear();
1340
1341    // The remainder is in R. Reconstitute the remainder into Remainder's low
1342    // order words.
1343    if (rhsWords == 1) {
1344      uint64_t tmp =
1345        uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1346      if (Remainder->isSingleWord())
1347        Remainder->VAL = tmp;
1348      else
1349        Remainder->pVal[0] = tmp;
1350    } else {
1351      assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1352      for (unsigned i = 0; i < rhsWords; ++i)
1353        Remainder->pVal[i] =
1354          uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1355    }
1356  }
1357
1358  // Clean up the memory we allocated.
1359  if (U != &SPACE[0]) {
1360    delete [] U;
1361    delete [] V;
1362    delete [] Q;
1363    delete [] R;
1364  }
1365}
1366
1367/// Unsigned divide this APInt by APInt RHS.
1368/// @brief Unsigned division function for APInt.
1369APInt APInt::udiv(const APInt& RHS) const {
1370  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1371
1372  // First, deal with the easy case
1373  if (isSingleWord()) {
1374    assert(RHS.VAL != 0 && "Divide by zero?");
1375    return APInt(BitWidth, VAL / RHS.VAL);
1376  }
1377
1378  // Get some facts about the LHS and RHS number of bits and words
1379  uint32_t rhsBits = RHS.getActiveBits();
1380  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1381  assert(rhsWords && "Divided by zero???");
1382  uint32_t lhsBits = this->getActiveBits();
1383  uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1384
1385  // Deal with some degenerate cases
1386  if (!lhsWords)
1387    // 0 / X ===> 0
1388    return APInt(BitWidth, 0);
1389  else if (lhsWords < rhsWords || this->ult(RHS)) {
1390    // X / Y ===> 0, iff X < Y
1391    return APInt(BitWidth, 0);
1392  } else if (*this == RHS) {
1393    // X / X ===> 1
1394    return APInt(BitWidth, 1);
1395  } else if (lhsWords == 1 && rhsWords == 1) {
1396    // All high words are zero, just use native divide
1397    return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1398  }
1399
1400  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1401  APInt Quotient(1,0); // to hold result.
1402  divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1403  return Quotient;
1404}
1405
1406/// Unsigned remainder operation on APInt.
1407/// @brief Function for unsigned remainder operation.
1408APInt APInt::urem(const APInt& RHS) const {
1409  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1410  if (isSingleWord()) {
1411    assert(RHS.VAL != 0 && "Remainder by zero?");
1412    return APInt(BitWidth, VAL % RHS.VAL);
1413  }
1414
1415  // Get some facts about the LHS
1416  uint32_t lhsBits = getActiveBits();
1417  uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1418
1419  // Get some facts about the RHS
1420  uint32_t rhsBits = RHS.getActiveBits();
1421  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1422  assert(rhsWords && "Performing remainder operation by zero ???");
1423
1424  // Check the degenerate cases
1425  if (lhsWords == 0) {
1426    // 0 % Y ===> 0
1427    return APInt(BitWidth, 0);
1428  } else if (lhsWords < rhsWords || this->ult(RHS)) {
1429    // X % Y ===> X, iff X < Y
1430    return *this;
1431  } else if (*this == RHS) {
1432    // X % X == 0;
1433    return APInt(BitWidth, 0);
1434  } else if (lhsWords == 1) {
1435    // All high words are zero, just use native remainder
1436    return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1437  }
1438
1439  // We have to compute it the hard way. Invoke the Knute divide algorithm.
1440  APInt Remainder(1,0);
1441  divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1442  return Remainder;
1443}
1444
1445/// @brief Converts a char array into an integer.
1446void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1447                       uint8_t radix) {
1448  // Check our assumptions here
1449  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1450         "Radix should be 2, 8, 10, or 16!");
1451  assert(str && "String is null?");
1452  assert(slen <= numbits || radix != 2 && "Insufficient bit width");
1453  assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width");
1454  assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width");
1455  assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width");
1456
1457  // Allocate memory
1458  if (!isSingleWord())
1459    pVal = getClearedMemory(getNumWords());
1460
1461  // Figure out if we can shift instead of multiply
1462  uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1463
1464  // Set up an APInt for the digit to add outside the loop so we don't
1465  // constantly construct/destruct it.
1466  APInt apdigit(getBitWidth(), 0);
1467  APInt apradix(getBitWidth(), radix);
1468
1469  // Enter digit traversal loop
1470  for (unsigned i = 0; i < slen; i++) {
1471    // Get a digit
1472    uint32_t digit = 0;
1473    char cdigit = str[i];
1474    if (isdigit(cdigit))
1475      digit = cdigit - '0';
1476    else if (isxdigit(cdigit))
1477      if (cdigit >= 'a')
1478        digit = cdigit - 'a' + 10;
1479      else if (cdigit >= 'A')
1480        digit = cdigit - 'A' + 10;
1481      else
1482        assert(0 && "huh?");
1483    else
1484      assert(0 && "Invalid character in digit string");
1485
1486    // Shift or multiple the value by the radix
1487    if (shift)
1488      this->shl(shift);
1489    else
1490      *this *= apradix;
1491
1492    // Add in the digit we just interpreted
1493    if (apdigit.isSingleWord())
1494      apdigit.VAL = digit;
1495    else
1496      apdigit.pVal[0] = digit;
1497    *this += apdigit;
1498  }
1499}
1500
1501/// to_string - This function translates the APInt into a string.
1502std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1503  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1504         "Radix should be 2, 8, 10, or 16!");
1505  static const char *digits[] = {
1506    "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1507  };
1508  std::string result;
1509  uint32_t bits_used = getActiveBits();
1510  if (isSingleWord()) {
1511    char buf[65];
1512    const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1513       (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1514    if (format) {
1515      if (wantSigned) {
1516        int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1517                           (APINT_BITS_PER_WORD-BitWidth);
1518        sprintf(buf, format, sextVal);
1519      } else
1520        sprintf(buf, format, VAL);
1521    } else {
1522      memset(buf, 0, 65);
1523      uint64_t v = VAL;
1524      while (bits_used) {
1525        uint32_t bit = v & 1;
1526        bits_used--;
1527        buf[bits_used] = digits[bit][0];
1528        v >>=1;
1529      }
1530    }
1531    result = buf;
1532    return result;
1533  }
1534
1535  if (radix != 10) {
1536    uint64_t mask = radix - 1;
1537    uint32_t shift = (radix == 16 ? 4 : radix  == 8 ? 3 : 1);
1538    uint32_t nibbles = APINT_BITS_PER_WORD / shift;
1539    for (uint32_t i = 0; i < getNumWords(); ++i) {
1540      uint64_t value = pVal[i];
1541      for (uint32_t j = 0; j < nibbles; ++j) {
1542        result.insert(0, digits[ value & mask ]);
1543        value >>= shift;
1544      }
1545    }
1546    return result;
1547  }
1548
1549  APInt tmp(*this);
1550  APInt divisor(4, radix);
1551  APInt zero(tmp.getBitWidth(), 0);
1552  size_t insert_at = 0;
1553  if (wantSigned && tmp[BitWidth-1]) {
1554    // They want to print the signed version and it is a negative value
1555    // Flip the bits and add one to turn it into the equivalent positive
1556    // value and put a '-' in the result.
1557    tmp.flip();
1558    tmp++;
1559    result = "-";
1560    insert_at = 1;
1561  }
1562  if (tmp == APInt(tmp.getBitWidth(), 0))
1563    result = "0";
1564  else while (tmp.ne(zero)) {
1565    APInt APdigit(1,0);
1566    APInt tmp2(tmp.getBitWidth(), 0);
1567    divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
1568           &APdigit);
1569    uint32_t digit = APdigit.getValue();
1570    assert(digit < radix && "divide failed");
1571    result.insert(insert_at,digits[digit]);
1572    tmp = tmp2;
1573  }
1574
1575  return result;
1576}
1577
1578#ifndef NDEBUG
1579void APInt::dump() const
1580{
1581  cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
1582  if (isSingleWord())
1583    cerr << VAL;
1584  else for (unsigned i = getNumWords(); i > 0; i--) {
1585    cerr << pVal[i-1] << " ";
1586  }
1587  cerr << " (" << this->toString(10, false) << ")\n" << std::setbase(10);
1588}
1589#endif
1590