APInt.cpp revision 385f7547b9755997b8bd918c2a4e2fc39d7d0207
1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Sheng Zhou and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integral
11// constant values.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Support/MathExtras.h"
18#include <cstring>
19#include <cstdlib>
20#ifndef NDEBUG
21#include <iostream>
22#include <iomanip>
23#endif
24
25using namespace llvm;
26
27// A utility function for allocating memory, checking for allocation failures,
28// and ensuring the contents is zeroed.
29inline static uint64_t* getClearedMemory(uint32_t numWords) {
30  uint64_t * result = new uint64_t[numWords];
31  assert(result && "APInt memory allocation fails!");
32  memset(result, 0, numWords * sizeof(uint64_t));
33  return result;
34}
35
36// A utility function for allocating memory and checking for allocation failure.
37inline static uint64_t* getMemory(uint32_t numWords) {
38  uint64_t * result = new uint64_t[numWords];
39  assert(result && "APInt memory allocation fails!");
40  return result;
41}
42
43APInt::APInt(uint32_t numBits, uint64_t val)
44  : BitWidth(numBits), VAL(0) {
45  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
46  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
47  if (isSingleWord())
48    VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
49  else {
50    pVal = getClearedMemory(getNumWords());
51    pVal[0] = val;
52  }
53}
54
55APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
56  : BitWidth(numBits), VAL(0)  {
57  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
58  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
59  assert(bigVal && "Null pointer detected!");
60  if (isSingleWord())
61    VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
62  else {
63    pVal = getMemory(getNumWords());
64    // Calculate the actual length of bigVal[].
65    uint32_t maxN = std::max<uint32_t>(numWords, getNumWords());
66    uint32_t minN = std::min<uint32_t>(numWords, getNumWords());
67    memcpy(pVal, bigVal, (minN - 1) * APINT_WORD_SIZE);
68    pVal[minN-1] = bigVal[minN-1] &
69                    (~uint64_t(0ULL) >>
70                     (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD));
71    if (maxN == getNumWords())
72      memset(pVal+numWords, 0, (getNumWords() - numWords) * APINT_WORD_SIZE);
73  }
74}
75
76/// @brief Create a new APInt by translating the char array represented
77/// integer value.
78APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
79             uint8_t radix)
80  : BitWidth(numbits), VAL(0) {
81  fromString(numbits, StrStart, slen, radix);
82}
83
84/// @brief Create a new APInt by translating the string represented
85/// integer value.
86APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
87  : BitWidth(numbits), VAL(0) {
88  assert(!Val.empty() && "String empty?");
89  fromString(numbits, Val.c_str(), Val.size(), radix);
90}
91
92/// @brief Copy constructor
93APInt::APInt(const APInt& that)
94  : BitWidth(that.BitWidth), VAL(0) {
95  if (isSingleWord())
96    VAL = that.VAL;
97  else {
98    pVal = getMemory(getNumWords());
99    memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
100  }
101}
102
103APInt::~APInt() {
104  if (!isSingleWord() && pVal)
105    delete[] pVal;
106}
107
108/// @brief Copy assignment operator. Create a new object from the given
109/// APInt one by initialization.
110APInt& APInt::operator=(const APInt& RHS) {
111  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
112  if (isSingleWord())
113    VAL = RHS.VAL;
114  else
115    memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
116  return *this;
117}
118
119/// @brief Assignment operator. Assigns a common case integer value to
120/// the APInt.
121APInt& APInt::operator=(uint64_t RHS) {
122  if (isSingleWord())
123    VAL = RHS;
124  else {
125    pVal[0] = RHS;
126    memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
127  }
128  return *this;
129}
130
131/// add_1 - This function adds a single "digit" integer, y, to the multiple
132/// "digit" integer array,  x[]. x[] is modified to reflect the addition and
133/// 1 is returned if there is a carry out, otherwise 0 is returned.
134/// @returns the carry of the addition.
135static uint64_t add_1(uint64_t dest[],
136                             uint64_t x[], uint32_t len,
137                             uint64_t y) {
138  for (uint32_t i = 0; i < len; ++i) {
139    dest[i] = y + x[i];
140    if (dest[i] < y)
141      y = 1;
142    else {
143      y = 0;
144      break;
145    }
146  }
147  return y;
148}
149
150/// @brief Prefix increment operator. Increments the APInt by one.
151APInt& APInt::operator++() {
152  if (isSingleWord())
153    ++VAL;
154  else
155    add_1(pVal, pVal, getNumWords(), 1);
156  clearUnusedBits();
157  return *this;
158}
159
160/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
161/// the multi-digit integer array, x[], propagating the borrowed 1 value until
162/// no further borrowing is neeeded or it runs out of "digits" in x.  The result
163/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
164/// In other words, if y > x then this function returns 1, otherwise 0.
165static uint64_t sub_1(uint64_t x[], uint32_t len,
166                             uint64_t y) {
167  for (uint32_t i = 0; i < len; ++i) {
168    uint64_t X = x[i];
169    x[i] -= y;
170    if (y > X)
171      y = 1;  // We have to "borrow 1" from next "digit"
172    else {
173      y = 0;  // No need to borrow
174      break;  // Remaining digits are unchanged so exit early
175    }
176  }
177  return y;
178}
179
180/// @brief Prefix decrement operator. Decrements the APInt by one.
181APInt& APInt::operator--() {
182  if (isSingleWord())
183    --VAL;
184  else
185    sub_1(pVal, getNumWords(), 1);
186  clearUnusedBits();
187  return *this;
188}
189
190/// add - This function adds the integer array x[] by integer array
191/// y[] and returns the carry.
192static uint64_t add(uint64_t dest[], uint64_t x[], uint64_t y[], uint32_t len) {
193  uint64_t carry = 0;
194  for (uint32_t i = 0; i< len; ++i) {
195    uint64_t save = std::max(x[i],y[i]);
196    dest[i] = x[i] + y[i] + carry;
197    carry = dest[i] < save ? 1 : 0;
198  }
199  return carry;
200}
201
202/// @brief Addition assignment operator. Adds this APInt by the given APInt&
203/// RHS and assigns the result to this APInt.
204APInt& APInt::operator+=(const APInt& RHS) {
205  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
206  if (isSingleWord())
207    VAL += RHS.VAL;
208  else {
209    add(pVal, pVal, RHS.pVal, getNumWords());
210  }
211  clearUnusedBits();
212  return *this;
213}
214
215/// sub - This function subtracts the integer array x[] by
216/// integer array y[], and returns the borrow-out carry.
217static uint64_t sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
218                    uint32_t len) {
219  bool borrow = false;
220  for (uint32_t i = 0; i < len; ++i) {
221    uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
222    borrow = y[i] > x_tmp || (borrow && x[i] == 0);
223    dest[i] = x_tmp - y[i];
224  }
225  return borrow;
226}
227
228/// @brief Subtraction assignment operator. Subtracts this APInt by the given
229/// APInt &RHS and assigns the result to this APInt.
230APInt& APInt::operator-=(const APInt& RHS) {
231  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
232  if (isSingleWord())
233    VAL -= RHS.VAL;
234  else
235    sub(pVal, pVal, RHS.pVal, getNumWords());
236  clearUnusedBits();
237  return *this;
238}
239
240/// mul_1 - This function performs the multiplication operation on a
241/// large integer (represented as an integer array) and a uint64_t integer.
242/// @returns the carry of the multiplication.
243static uint64_t mul_1(uint64_t dest[],
244                             uint64_t x[], uint32_t len,
245                             uint64_t y) {
246  // Split y into high 32-bit part and low 32-bit part.
247  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
248  uint64_t carry = 0, lx, hx;
249  for (uint32_t i = 0; i < len; ++i) {
250    lx = x[i] & 0xffffffffULL;
251    hx = x[i] >> 32;
252    // hasCarry - A flag to indicate if has carry.
253    // hasCarry == 0, no carry
254    // hasCarry == 1, has carry
255    // hasCarry == 2, no carry and the calculation result == 0.
256    uint8_t hasCarry = 0;
257    dest[i] = carry + lx * ly;
258    // Determine if the add above introduces carry.
259    hasCarry = (dest[i] < carry) ? 1 : 0;
260    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
261    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
262    // (2^32 - 1) + 2^32 = 2^64.
263    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
264
265    carry += (lx * hy) & 0xffffffffULL;
266    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
267    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
268            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
269  }
270
271  return carry;
272}
273
274/// mul - This function multiplies integer array x[] by integer array y[] and
275/// stores the result into integer array dest[].
276/// Note the array dest[]'s size should no less than xlen + ylen.
277static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen,
278                uint64_t y[], uint32_t ylen) {
279  dest[xlen] = mul_1(dest, x, xlen, y[0]);
280
281  for (uint32_t i = 1; i < ylen; ++i) {
282    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
283    uint64_t carry = 0, lx, hx;
284    for (uint32_t j = 0; j < xlen; ++j) {
285      lx = x[j] & 0xffffffffULL;
286      hx = x[j] >> 32;
287      // hasCarry - A flag to indicate if has carry.
288      // hasCarry == 0, no carry
289      // hasCarry == 1, has carry
290      // hasCarry == 2, no carry and the calculation result == 0.
291      uint8_t hasCarry = 0;
292      uint64_t resul = carry + lx * ly;
293      hasCarry = (resul < carry) ? 1 : 0;
294      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
295      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
296
297      carry += (lx * hy) & 0xffffffffULL;
298      resul = (carry << 32) | (resul & 0xffffffffULL);
299      dest[i+j] += resul;
300      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
301              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
302              ((lx * hy) >> 32) + hx * hy;
303    }
304    dest[i+xlen] = carry;
305  }
306}
307
308/// @brief Multiplication assignment operator. Multiplies this APInt by the
309/// given APInt& RHS and assigns the result to this APInt.
310APInt& APInt::operator*=(const APInt& RHS) {
311  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
312  if (isSingleWord())
313    VAL *= RHS.VAL;
314  else {
315    // one-based first non-zero bit position.
316    uint32_t first = getActiveBits();
317    uint32_t xlen = !first ? 0 : whichWord(first - 1) + 1;
318    if (!xlen)
319      return *this;
320    else {
321      first = RHS.getActiveBits();
322      uint32_t ylen = !first ? 0 : whichWord(first - 1) + 1;
323      if (!ylen) {
324        memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
325        return *this;
326      }
327      uint64_t *dest = getMemory(xlen+ylen);
328      mul(dest, pVal, xlen, RHS.pVal, ylen);
329      memcpy(pVal, dest, ((xlen + ylen >= getNumWords()) ?
330                         getNumWords() : xlen + ylen) * APINT_WORD_SIZE);
331      delete[] dest;
332    }
333  }
334  clearUnusedBits();
335  return *this;
336}
337
338/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
339/// this APInt and the given APInt& RHS, assigns the result to this APInt.
340APInt& APInt::operator&=(const APInt& RHS) {
341  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
342  if (isSingleWord()) {
343    VAL &= RHS.VAL;
344    return *this;
345  }
346  uint32_t numWords = getNumWords();
347  for (uint32_t i = 0; i < numWords; ++i)
348    pVal[i] &= RHS.pVal[i];
349  return *this;
350}
351
352/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on
353/// this APInt and the given APInt& RHS, assigns the result to this APInt.
354APInt& APInt::operator|=(const APInt& RHS) {
355  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
356  if (isSingleWord()) {
357    VAL |= RHS.VAL;
358    return *this;
359  }
360  uint32_t numWords = getNumWords();
361  for (uint32_t i = 0; i < numWords; ++i)
362    pVal[i] |= RHS.pVal[i];
363  return *this;
364}
365
366/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
367/// this APInt and the given APInt& RHS, assigns the result to this APInt.
368APInt& APInt::operator^=(const APInt& RHS) {
369  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
370  if (isSingleWord()) {
371    VAL ^= RHS.VAL;
372    this->clearUnusedBits();
373    return *this;
374  }
375  uint32_t numWords = getNumWords();
376  for (uint32_t i = 0; i < numWords; ++i)
377    pVal[i] ^= RHS.pVal[i];
378  this->clearUnusedBits();
379  return *this;
380}
381
382/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
383/// and the given APInt& RHS.
384APInt APInt::operator&(const APInt& RHS) const {
385  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
386  if (isSingleWord())
387    return APInt(getBitWidth(), VAL & RHS.VAL);
388
389  APInt Result(*this);
390  uint32_t numWords = getNumWords();
391  for (uint32_t i = 0; i < numWords; ++i)
392    Result.pVal[i] &= RHS.pVal[i];
393  return Result;
394}
395
396/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt
397/// and the given APInt& RHS.
398APInt APInt::operator|(const APInt& RHS) const {
399  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
400  if (isSingleWord())
401    return APInt(getBitWidth(), VAL | RHS.VAL);
402
403  APInt Result(*this);
404  uint32_t numWords = getNumWords();
405  for (uint32_t i = 0; i < numWords; ++i)
406    Result.pVal[i] |= RHS.pVal[i];
407  return Result;
408}
409
410/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
411/// and the given APInt& RHS.
412APInt APInt::operator^(const APInt& RHS) const {
413  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
414  if (isSingleWord()) {
415    APInt Result(BitWidth, VAL ^ RHS.VAL);
416    Result.clearUnusedBits();
417    return Result;
418  }
419  APInt Result(*this);
420  uint32_t numWords = getNumWords();
421  for (uint32_t i = 0; i < numWords; ++i)
422    Result.pVal[i] ^= RHS.pVal[i];
423  return Result;
424}
425
426/// @brief Logical negation operator. Performs logical negation operation on
427/// this APInt.
428bool APInt::operator !() const {
429  if (isSingleWord())
430    return !VAL;
431
432  for (uint32_t i = 0; i < getNumWords(); ++i)
433    if (pVal[i])
434      return false;
435  return true;
436}
437
438/// @brief Multiplication operator. Multiplies this APInt by the given APInt&
439/// RHS.
440APInt APInt::operator*(const APInt& RHS) const {
441  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
442  if (isSingleWord()) {
443    APInt Result(BitWidth, VAL * RHS.VAL);
444    Result.clearUnusedBits();
445    return Result;
446  }
447  APInt Result(*this);
448  Result *= RHS;
449  Result.clearUnusedBits();
450  return Result;
451}
452
453/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
454APInt APInt::operator+(const APInt& RHS) const {
455  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
456  if (isSingleWord()) {
457    APInt Result(BitWidth, VAL + RHS.VAL);
458    Result.clearUnusedBits();
459    return Result;
460  }
461  APInt Result(BitWidth, 0);
462  add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
463  Result.clearUnusedBits();
464  return Result;
465}
466
467/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
468APInt APInt::operator-(const APInt& RHS) const {
469  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
470  if (isSingleWord()) {
471    APInt Result(BitWidth, VAL - RHS.VAL);
472    Result.clearUnusedBits();
473    return Result;
474  }
475  APInt Result(BitWidth, 0);
476  sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
477  Result.clearUnusedBits();
478  return Result;
479}
480
481/// @brief Array-indexing support.
482bool APInt::operator[](uint32_t bitPosition) const {
483  return (maskBit(bitPosition) & (isSingleWord() ?
484          VAL : pVal[whichWord(bitPosition)])) != 0;
485}
486
487/// @brief Equality operator. Compare this APInt with the given APInt& RHS
488/// for the validity of the equality relationship.
489bool APInt::operator==(const APInt& RHS) const {
490  if (isSingleWord())
491    return VAL == RHS.VAL;
492
493  uint32_t n1 = getActiveBits();
494  uint32_t n2 = RHS.getActiveBits();
495  if (n1 != n2)
496    return false;
497
498  if (n1 <= APINT_BITS_PER_WORD)
499    return pVal[0] == RHS.pVal[0];
500
501  for (int i = whichWord(n1 - 1); i >= 0; --i)
502    if (pVal[i] != RHS.pVal[i])
503      return false;
504  return true;
505}
506
507/// @brief Equality operator. Compare this APInt with the given uint64_t value
508/// for the validity of the equality relationship.
509bool APInt::operator==(uint64_t Val) const {
510  if (isSingleWord())
511    return VAL == Val;
512
513  uint32_t n = getActiveBits();
514  if (n <= APINT_BITS_PER_WORD)
515    return pVal[0] == Val;
516  else
517    return false;
518}
519
520/// @brief Unsigned less than comparison
521bool APInt::ult(const APInt& RHS) const {
522  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
523  if (isSingleWord())
524    return VAL < RHS.VAL;
525  else {
526    uint32_t n1 = getActiveBits();
527    uint32_t n2 = RHS.getActiveBits();
528    if (n1 < n2)
529      return true;
530    else if (n2 < n1)
531      return false;
532    else if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
533      return pVal[0] < RHS.pVal[0];
534    for (int i = whichWord(n1 - 1); i >= 0; --i) {
535      if (pVal[i] > RHS.pVal[i]) return false;
536      else if (pVal[i] < RHS.pVal[i]) return true;
537    }
538  }
539  return false;
540}
541
542/// @brief Signed less than comparison
543bool APInt::slt(const APInt& RHS) const {
544  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
545  if (isSingleWord()) {
546    int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
547    int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
548    return lhsSext < rhsSext;
549  }
550
551  APInt lhs(*this);
552  APInt rhs(*this);
553  bool lhsNegative = false;
554  bool rhsNegative = false;
555  if (lhs[BitWidth-1]) {
556    lhsNegative = true;
557    lhs.flip();
558    lhs++;
559  }
560  if (rhs[BitWidth-1]) {
561    rhsNegative = true;
562    rhs.flip();
563    rhs++;
564  }
565  if (lhsNegative)
566    if (rhsNegative)
567      return !lhs.ult(rhs);
568    else
569      return true;
570  else if (rhsNegative)
571    return false;
572  else
573    return lhs.ult(rhs);
574}
575
576/// Set the given bit to 1 whose poition is given as "bitPosition".
577/// @brief Set a given bit to 1.
578APInt& APInt::set(uint32_t bitPosition) {
579  if (isSingleWord()) VAL |= maskBit(bitPosition);
580  else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
581  return *this;
582}
583
584/// @brief Set every bit to 1.
585APInt& APInt::set() {
586  if (isSingleWord())
587    VAL = ~0ULL >> (APINT_BITS_PER_WORD - BitWidth);
588  else {
589    for (uint32_t i = 0; i < getNumWords() - 1; ++i)
590      pVal[i] = -1ULL;
591    pVal[getNumWords() - 1] = ~0ULL >>
592      (APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD);
593  }
594  return *this;
595}
596
597/// Set the given bit to 0 whose position is given as "bitPosition".
598/// @brief Set a given bit to 0.
599APInt& APInt::clear(uint32_t bitPosition) {
600  if (isSingleWord())
601    VAL &= ~maskBit(bitPosition);
602  else
603    pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
604  return *this;
605}
606
607/// @brief Set every bit to 0.
608APInt& APInt::clear() {
609  if (isSingleWord())
610    VAL = 0;
611  else
612    memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
613  return *this;
614}
615
616/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
617/// this APInt.
618APInt APInt::operator~() const {
619  APInt API(*this);
620  API.flip();
621  return API;
622}
623
624/// @brief Toggle every bit to its opposite value.
625APInt& APInt::flip() {
626  if (isSingleWord()) VAL = (~(VAL <<
627        (APINT_BITS_PER_WORD - BitWidth))) >> (APINT_BITS_PER_WORD - BitWidth);
628  else {
629    uint32_t i = 0;
630    for (; i < getNumWords() - 1; ++i)
631      pVal[i] = ~pVal[i];
632    uint32_t offset =
633      APINT_BITS_PER_WORD - (BitWidth - APINT_BITS_PER_WORD * (i - 1));
634    pVal[i] = (~(pVal[i] << offset)) >> offset;
635  }
636  return *this;
637}
638
639/// Toggle a given bit to its opposite value whose position is given
640/// as "bitPosition".
641/// @brief Toggles a given bit to its opposite value.
642APInt& APInt::flip(uint32_t bitPosition) {
643  assert(bitPosition < BitWidth && "Out of the bit-width range!");
644  if ((*this)[bitPosition]) clear(bitPosition);
645  else set(bitPosition);
646  return *this;
647}
648
649/// getMaxValue - This function returns the largest value
650/// for an APInt of the specified bit-width and if isSign == true,
651/// it should be largest signed value, otherwise unsigned value.
652APInt APInt::getMaxValue(uint32_t numBits, bool isSign) {
653  APInt Result(numBits, 0);
654  Result.set();
655  if (isSign)
656    Result.clear(numBits - 1);
657  return Result;
658}
659
660/// getMinValue - This function returns the smallest value for
661/// an APInt of the given bit-width and if isSign == true,
662/// it should be smallest signed value, otherwise zero.
663APInt APInt::getMinValue(uint32_t numBits, bool isSign) {
664  APInt Result(numBits, 0);
665  if (isSign)
666    Result.set(numBits - 1);
667  return Result;
668}
669
670/// getAllOnesValue - This function returns an all-ones value for
671/// an APInt of the specified bit-width.
672APInt APInt::getAllOnesValue(uint32_t numBits) {
673  return getMaxValue(numBits, false);
674}
675
676/// getNullValue - This function creates an '0' value for an
677/// APInt of the specified bit-width.
678APInt APInt::getNullValue(uint32_t numBits) {
679  return getMinValue(numBits, false);
680}
681
682/// HiBits - This function returns the high "numBits" bits of this APInt.
683APInt APInt::getHiBits(uint32_t numBits) const {
684  return APIntOps::lshr(*this, BitWidth - numBits);
685}
686
687/// LoBits - This function returns the low "numBits" bits of this APInt.
688APInt APInt::getLoBits(uint32_t numBits) const {
689  return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
690                        BitWidth - numBits);
691}
692
693bool APInt::isPowerOf2() const {
694  return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
695}
696
697/// countLeadingZeros - This function is a APInt version corresponding to
698/// llvm/include/llvm/Support/MathExtras.h's function
699/// countLeadingZeros_{32, 64}. It performs platform optimal form of counting
700/// the number of zeros from the most significant bit to the first one bit.
701/// @returns numWord() * 64 if the value is zero.
702uint32_t APInt::countLeadingZeros() const {
703  uint32_t Count = 0;
704  if (isSingleWord())
705    Count = CountLeadingZeros_64(VAL);
706  else {
707    for (uint32_t i = getNumWords(); i > 0u; --i) {
708      if (pVal[i-1] == 0)
709        Count += APINT_BITS_PER_WORD;
710      else {
711        Count += CountLeadingZeros_64(pVal[i-1]);
712        break;
713      }
714    }
715  }
716  return Count - (APINT_BITS_PER_WORD - (BitWidth % APINT_BITS_PER_WORD));
717}
718
719/// countTrailingZeros - This function is a APInt version corresponding to
720/// llvm/include/llvm/Support/MathExtras.h's function
721/// countTrailingZeros_{32, 64}. It performs platform optimal form of counting
722/// the number of zeros from the least significant bit to the first one bit.
723/// @returns numWord() * 64 if the value is zero.
724uint32_t APInt::countTrailingZeros() const {
725  if (isSingleWord())
726    return CountTrailingZeros_64(VAL);
727  APInt Tmp( ~(*this) & ((*this) - APInt(BitWidth,1)) );
728  return getNumWords() * APINT_BITS_PER_WORD - Tmp.countLeadingZeros();
729}
730
731/// countPopulation - This function is a APInt version corresponding to
732/// llvm/include/llvm/Support/MathExtras.h's function
733/// countPopulation_{32, 64}. It counts the number of set bits in a value.
734/// @returns 0 if the value is zero.
735uint32_t APInt::countPopulation() const {
736  if (isSingleWord())
737    return CountPopulation_64(VAL);
738  uint32_t Count = 0;
739  for (uint32_t i = 0; i < getNumWords(); ++i)
740    Count += CountPopulation_64(pVal[i]);
741  return Count;
742}
743
744
745/// byteSwap - This function returns a byte-swapped representation of the
746/// this APInt.
747APInt APInt::byteSwap() const {
748  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
749  if (BitWidth == 16)
750    return APInt(BitWidth, ByteSwap_16(VAL));
751  else if (BitWidth == 32)
752    return APInt(BitWidth, ByteSwap_32(VAL));
753  else if (BitWidth == 48) {
754    uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
755    Tmp1 = ByteSwap_32(Tmp1);
756    uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
757    Tmp2 = ByteSwap_16(Tmp2);
758    return
759      APInt(BitWidth,
760            (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16));
761  } else if (BitWidth == 64)
762    return APInt(BitWidth, ByteSwap_64(VAL));
763  else {
764    APInt Result(BitWidth, 0);
765    char *pByte = (char*)Result.pVal;
766    for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
767      char Tmp = pByte[i];
768      pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
769      pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
770    }
771    return Result;
772  }
773}
774
775/// GreatestCommonDivisor - This function returns the greatest common
776/// divisor of the two APInt values using Enclid's algorithm.
777APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
778                                            const APInt& API2) {
779  APInt A = API1, B = API2;
780  while (!!B) {
781    APInt T = B;
782    B = APIntOps::urem(A, B);
783    A = T;
784  }
785  return A;
786}
787
788/// DoubleRoundToAPInt - This function convert a double value to
789/// a APInt value.
790APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) {
791  union {
792    double D;
793    uint64_t I;
794  } T;
795  T.D = Double;
796  bool isNeg = T.I >> 63;
797  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
798  if (exp < 0)
799    return APInt(64ull, 0u);
800  uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52);
801  if (exp < 52)
802    return isNeg ? -APInt(64u, mantissa >> (52 - exp)) :
803                    APInt(64u, mantissa >> (52 - exp));
804  APInt Tmp(exp + 1, mantissa);
805  Tmp = Tmp.shl(exp - 52);
806  return isNeg ? -Tmp : Tmp;
807}
808
809/// RoundToDouble - This function convert this APInt to a double.
810/// The layout for double is as following (IEEE Standard 754):
811///  --------------------------------------
812/// |  Sign    Exponent    Fraction    Bias |
813/// |-------------------------------------- |
814/// |  1[63]   11[62-52]   52[51-00]   1023 |
815///  --------------------------------------
816double APInt::roundToDouble(bool isSigned) const {
817
818  // Handle the simple case where the value is contained in one uint64_t.
819  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
820    if (isSigned) {
821      int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
822      return double(sext);
823    } else
824      return double(VAL);
825  }
826
827  // Determine if the value is negative.
828  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
829
830  // Construct the absolute value if we're negative.
831  APInt Tmp(isNeg ? -(*this) : (*this));
832
833  // Figure out how many bits we're using.
834  uint32_t n = Tmp.getActiveBits();
835
836  // The exponent (without bias normalization) is just the number of bits
837  // we are using. Note that the sign bit is gone since we constructed the
838  // absolute value.
839  uint64_t exp = n;
840
841  // Return infinity for exponent overflow
842  if (exp > 1023) {
843    if (!isSigned || !isNeg)
844      return double(1.0E300 * 1.0E300); // positive infinity
845    else
846      return double(-1.0E300 * 1.0E300); // negative infinity
847  }
848  exp += 1023; // Increment for 1023 bias
849
850  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
851  // extract the high 52 bits from the correct words in pVal.
852  uint64_t mantissa;
853  unsigned hiWord = whichWord(n-1);
854  if (hiWord == 0) {
855    mantissa = Tmp.pVal[0];
856    if (n > 52)
857      mantissa >>= n - 52; // shift down, we want the top 52 bits.
858  } else {
859    assert(hiWord > 0 && "huh?");
860    uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
861    uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
862    mantissa = hibits | lobits;
863  }
864
865  // The leading bit of mantissa is implicit, so get rid of it.
866  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
867  union {
868    double D;
869    uint64_t I;
870  } T;
871  T.I = sign | (exp << 52) | mantissa;
872  return T.D;
873}
874
875// Truncate to new width.
876void APInt::trunc(uint32_t width) {
877  assert(width < BitWidth && "Invalid APInt Truncate request");
878}
879
880// Sign extend to a new width.
881void APInt::sext(uint32_t width) {
882  assert(width > BitWidth && "Invalid APInt SignExtend request");
883}
884
885//  Zero extend to a new width.
886void APInt::zext(uint32_t width) {
887  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
888}
889
890/// Arithmetic right-shift this APInt by shiftAmt.
891/// @brief Arithmetic right-shift function.
892APInt APInt::ashr(uint32_t shiftAmt) const {
893  APInt API(*this);
894  if (API.isSingleWord())
895    API.VAL =
896      (((int64_t(API.VAL) << (APINT_BITS_PER_WORD - API.BitWidth)) >>
897          (APINT_BITS_PER_WORD - API.BitWidth)) >> shiftAmt) &
898      (~uint64_t(0UL) >> (APINT_BITS_PER_WORD - API.BitWidth));
899  else {
900    if (shiftAmt >= API.BitWidth) {
901      memset(API.pVal, API[API.BitWidth-1] ? 1 : 0,
902             (API.getNumWords()-1) * APINT_WORD_SIZE);
903      API.pVal[API.getNumWords() - 1] =
904        ~uint64_t(0UL) >>
905          (APINT_BITS_PER_WORD - API.BitWidth % APINT_BITS_PER_WORD);
906    } else {
907      uint32_t i = 0;
908      for (; i < API.BitWidth - shiftAmt; ++i)
909        if (API[i+shiftAmt])
910          API.set(i);
911        else
912          API.clear(i);
913      for (; i < API.BitWidth; ++i)
914        if (API[API.BitWidth-1])
915          API.set(i);
916        else API.clear(i);
917    }
918  }
919  return API;
920}
921
922/// Logical right-shift this APInt by shiftAmt.
923/// @brief Logical right-shift function.
924APInt APInt::lshr(uint32_t shiftAmt) const {
925  APInt API(*this);
926  if (API.isSingleWord())
927    API.VAL >>= shiftAmt;
928  else {
929    if (shiftAmt >= API.BitWidth)
930      memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE);
931    uint32_t i = 0;
932    for (i = 0; i < API.BitWidth - shiftAmt; ++i)
933      if (API[i+shiftAmt]) API.set(i);
934      else API.clear(i);
935    for (; i < API.BitWidth; ++i)
936      API.clear(i);
937  }
938  return API;
939}
940
941/// Left-shift this APInt by shiftAmt.
942/// @brief Left-shift function.
943APInt APInt::shl(uint32_t shiftAmt) const {
944  APInt API(*this);
945  if (API.isSingleWord())
946    API.VAL <<= shiftAmt;
947  else if (shiftAmt >= API.BitWidth)
948    memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE);
949  else {
950    if (uint32_t offset = shiftAmt / APINT_BITS_PER_WORD) {
951      for (uint32_t i = API.getNumWords() - 1; i > offset - 1; --i)
952        API.pVal[i] = API.pVal[i-offset];
953      memset(API.pVal, 0, offset * APINT_WORD_SIZE);
954    }
955    shiftAmt %= APINT_BITS_PER_WORD;
956    uint32_t i;
957    for (i = API.getNumWords() - 1; i > 0; --i)
958      API.pVal[i] = (API.pVal[i] << shiftAmt) |
959                    (API.pVal[i-1] >> (APINT_BITS_PER_WORD - shiftAmt));
960    API.pVal[i] <<= shiftAmt;
961  }
962  API.clearUnusedBits();
963  return API;
964}
965
966#if 0
967/// subMul - This function substracts x[len-1:0] * y from
968/// dest[offset+len-1:offset], and returns the most significant
969/// word of the product, minus the borrow-out from the subtraction.
970static uint32_t subMul(uint32_t dest[], uint32_t offset,
971                        uint32_t x[], uint32_t len, uint32_t y) {
972  uint64_t yl = (uint64_t) y & 0xffffffffL;
973  uint32_t carry = 0;
974  uint32_t j = 0;
975  do {
976    uint64_t prod = ((uint64_t) x[j] & 0xffffffffUL) * yl;
977    uint32_t prod_low = (uint32_t) prod;
978    uint32_t prod_high = (uint32_t) (prod >> 32);
979    prod_low += carry;
980    carry = (prod_low < carry ? 1 : 0) + prod_high;
981    uint32_t x_j = dest[offset+j];
982    prod_low = x_j - prod_low;
983    if (prod_low > x_j) ++carry;
984    dest[offset+j] = prod_low;
985  } while (++j < len);
986  return carry;
987}
988
989/// unitDiv - This function divides N by D,
990/// and returns (remainder << 32) | quotient.
991/// Assumes (N >> 32) < D.
992static uint64_t unitDiv(uint64_t N, uint32_t D) {
993  uint64_t q, r;                   // q: quotient, r: remainder.
994  uint64_t a1 = N >> 32;           // a1: high 32-bit part of N.
995  uint64_t a0 = N & 0xffffffffL;   // a0: low 32-bit part of N
996  if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
997      q = N / D;
998      r = N % D;
999  }
1000  else {
1001    // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
1002    uint64_t c = N - ((uint64_t) D << 31);
1003    // Divide (c1*2^32 + c0) by d
1004    q = c / D;
1005    r = c % D;
1006    // Add 2^31 to quotient
1007    q += 1 << 31;
1008  }
1009
1010  return (r << 32) | (q & 0xFFFFFFFFl);
1011}
1012
1013#endif
1014
1015/// div - This is basically Knuth's formulation of the classical algorithm.
1016/// Correspondance with Knuth's notation:
1017/// Knuth's u[0:m+n] == zds[nx:0].
1018/// Knuth's v[1:n] == y[ny-1:0]
1019/// Knuth's n == ny.
1020/// Knuth's m == nx-ny.
1021/// Our nx == Knuth's m+n.
1022/// Could be re-implemented using gmp's mpn_divrem:
1023/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
1024
1025/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1026/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1027/// variables here have the same names as in the algorithm. Comments explain
1028/// the algorithm and any deviation from it.
1029static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1030                     uint32_t m, uint32_t n) {
1031  assert(u && "Must provide dividend");
1032  assert(v && "Must provide divisor");
1033  assert(q && "Must provide quotient");
1034  assert(n>1 && "n must be > 1");
1035
1036  // Knuth uses the value b as the base of the number system. In our case b
1037  // is 2^31 so we just set it to -1u.
1038  uint64_t b = uint64_t(1) << 32;
1039
1040  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1041  // u and v by d. Note that we have taken Knuth's advice here to use a power
1042  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1043  // 2 allows us to shift instead of multiply and it is easy to determine the
1044  // shift amount from the leading zeros.  We are basically normalizing the u
1045  // and v so that its high bits are shifted to the top of v's range without
1046  // overflow. Note that this can require an extra word in u so that u must
1047  // be of length m+n+1.
1048  uint32_t shift = CountLeadingZeros_32(v[n-1]);
1049  uint32_t v_carry = 0;
1050  uint32_t u_carry = 0;
1051  if (shift) {
1052    for (uint32_t i = 0; i < m+n; ++i) {
1053      uint32_t u_tmp = u[i] >> (32 - shift);
1054      u[i] = (u[i] << shift) | u_carry;
1055      u_carry = u_tmp;
1056    }
1057    for (uint32_t i = 0; i < n; ++i) {
1058      uint32_t v_tmp = v[i] >> (32 - shift);
1059      v[i] = (v[i] << shift) | v_carry;
1060      v_carry = v_tmp;
1061    }
1062  }
1063  u[m+n] = u_carry;
1064
1065  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1066  int j = m;
1067  do {
1068    // D3. [Calculate q'.].
1069    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1070    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1071    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1072    // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1073    // on v[n-2] determines at high speed most of the cases in which the trial
1074    // value qp is one too large, and it eliminates all cases where qp is two
1075    // too large.
1076    uint64_t qp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) / v[n-1];
1077    uint64_t rp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) % v[n-1];
1078    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1079      qp--;
1080      rp += v[n-1];
1081    }
1082    if (rp < b)
1083      if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1084        qp--;
1085        rp += v[n-1];
1086      }
1087
1088    // D4. [Multiply and subtract.] Replace u with u - q*v (for each word).
1089    uint32_t borrow = 0;
1090    for (uint32_t i = 0; i < n; i++) {
1091      uint32_t save = u[j+i];
1092      u[j+i] = uint64_t(u[j+i]) - (qp * v[i]) - borrow;
1093      if (u[j+i] > save) {
1094        borrow = 1;
1095        u[j+i+1] += b;
1096      } else {
1097        borrow = 0;
1098      }
1099    }
1100    if (borrow)
1101      u[j+n] += 1;
1102
1103    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1104    // negative, go to step D6; otherwise go on to step D7.
1105    q[j] = qp;
1106    if (borrow) {
1107      // D6. [Add back]. The probability that this step is necessary is very
1108      // small, on the order of only 2/b. Make sure that test data accounts for
1109      // this possibility. Decreate qj by 1 and add v[...] to u[...]. A carry
1110      // will occur to the left of u[j+n], and it should be ignored since it
1111      // cancels with the borrow that occurred in D4.
1112      uint32_t carry = 0;
1113      for (uint32_t i = 0; i < n; i++) {
1114        uint32_t save = u[j+i];
1115        u[j+i] += v[i] + carry;
1116        carry = u[j+i] < save;
1117      }
1118    }
1119
1120    // D7. [Loop on j.]  Decreate j by one. Now if j >= 0, go back to D3.
1121    j--;
1122  } while (j >= 0);
1123
1124  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1125  // remainder may be obtained by dividing u[...] by d. If r is non-null we
1126  // compute the remainder (urem uses this).
1127  if (r) {
1128    // The value d is expressed by the "shift" value above since we avoided
1129    // multiplication by d by using a shift left. So, all we have to do is
1130    // shift right here. In order to mak
1131    uint32_t mask = ~0u >> (32 - shift);
1132    uint32_t carry = 0;
1133    for (int i = n-1; i >= 0; i--) {
1134      uint32_t save = u[i] & mask;
1135      r[i] = (u[i] >> shift) | carry;
1136      carry = save;
1137    }
1138  }
1139}
1140
1141// This function makes calling KnuthDiv a little more convenient. It uses
1142// APInt parameters instead of uint32_t* parameters. It can also divide APInt
1143// values of different widths.
1144void APInt::divide(const APInt LHS, uint32_t lhsWords,
1145                   const APInt &RHS, uint32_t rhsWords,
1146                   APInt *Quotient, APInt *Remainder)
1147{
1148  assert(lhsWords >= rhsWords && "Fractional result");
1149
1150  // First, compose the values into an array of 32-bit words instead of
1151  // 64-bit words. This is a necessity of both the "short division" algorithm
1152  // and the the Knuth "classical algorithm" which requires there to be native
1153  // operations for +, -, and * on an m bit value with an m*2 bit result. We
1154  // can't use 64-bit operands here because we don't have native results of
1155  // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1156  // work on large-endian machines.
1157  uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1158  uint32_t n = rhsWords * 2;
1159  uint32_t m = (lhsWords * 2) - n;
1160  // FIXME: allocate space on stack if m and n are sufficiently small.
1161  uint32_t *U = new uint32_t[m + n + 1];
1162  memset(U, 0, (m+n+1)*sizeof(uint32_t));
1163  for (unsigned i = 0; i < lhsWords; ++i) {
1164    uint64_t tmp = (lhsWords == 1 ? LHS.VAL : LHS.pVal[i]);
1165    U[i * 2] = tmp & mask;
1166    U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1167  }
1168  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1169
1170  uint32_t *V = new uint32_t[n];
1171  memset(V, 0, (n)*sizeof(uint32_t));
1172  for (unsigned i = 0; i < rhsWords; ++i) {
1173    uint64_t tmp = (rhsWords == 1 ? RHS.VAL : RHS.pVal[i]);
1174    V[i * 2] = tmp & mask;
1175    V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1176  }
1177
1178  // Set up the quotient and remainder
1179  uint32_t *Q = new uint32_t[m+n];
1180  memset(Q, 0, (m+n) * sizeof(uint32_t));
1181  uint32_t *R = 0;
1182  if (Remainder) {
1183    R = new uint32_t[n];
1184    memset(R, 0, n * sizeof(uint32_t));
1185  }
1186
1187  // Now, adjust m and n for the Knuth division. n is the number of words in
1188  // the divisor. m is the number of words by which the dividend exceeds the
1189  // divisor (i.e. m+n is the length of the dividend). These sizes must not
1190  // contain any zero words or the Knuth algorithm fails.
1191  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1192    n--;
1193    m++;
1194  }
1195  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1196    m--;
1197
1198  // If we're left with only a single word for the divisor, Knuth doesn't work
1199  // so we implement the short division algorithm here. This is much simpler
1200  // and faster because we are certain that we can divide a 64-bit quantity
1201  // by a 32-bit quantity at hardware speed and short division is simply a
1202  // series of such operations. This is just like doing short division but we
1203  // are using base 2^32 instead of base 10.
1204  assert(n != 0 && "Divide by zero?");
1205  if (n == 1) {
1206    uint32_t divisor = V[0];
1207    uint32_t remainder = 0;
1208    for (int i = m+n-1; i >= 0; i--) {
1209      uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1210      if (partial_dividend == 0) {
1211        Q[i] = 0;
1212        remainder = 0;
1213      } else if (partial_dividend < divisor) {
1214        Q[i] = 0;
1215        remainder = partial_dividend;
1216      } else if (partial_dividend == divisor) {
1217        Q[i] = 1;
1218        remainder = 0;
1219      } else {
1220        Q[i] = partial_dividend / divisor;
1221        remainder = partial_dividend - (Q[i] * divisor);
1222      }
1223    }
1224    if (R)
1225      R[0] = remainder;
1226  } else {
1227    // Now we're ready to invoke the Knuth classical divide algorithm. In this
1228    // case n > 1.
1229    KnuthDiv(U, V, Q, R, m, n);
1230  }
1231
1232  // If the caller wants the quotient
1233  if (Quotient) {
1234    // Set up the Quotient value's memory.
1235    if (Quotient->BitWidth != LHS.BitWidth) {
1236      if (Quotient->isSingleWord())
1237        Quotient->VAL = 0;
1238      else
1239        delete Quotient->pVal;
1240      Quotient->BitWidth = LHS.BitWidth;
1241      if (!Quotient->isSingleWord())
1242        Quotient->pVal = getClearedMemory(lhsWords);
1243    } else
1244      Quotient->clear();
1245
1246    // The quotient is in Q. Reconstitute the quotient into Quotient's low
1247    // order words.
1248    if (lhsWords == 1) {
1249      uint64_t tmp =
1250        uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1251      if (Quotient->isSingleWord())
1252        Quotient->VAL = tmp;
1253      else
1254        Quotient->pVal[0] = tmp;
1255    } else {
1256      assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1257      for (unsigned i = 0; i < lhsWords; ++i)
1258        Quotient->pVal[i] =
1259          uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1260    }
1261  }
1262
1263  // If the caller wants the remainder
1264  if (Remainder) {
1265    // Set up the Remainder value's memory.
1266    if (Remainder->BitWidth != RHS.BitWidth) {
1267      if (Remainder->isSingleWord())
1268        Remainder->VAL = 0;
1269      else
1270        delete Remainder->pVal;
1271      Remainder->BitWidth = RHS.BitWidth;
1272      if (!Remainder->isSingleWord())
1273        Remainder->pVal = getClearedMemory(rhsWords);
1274    } else
1275      Remainder->clear();
1276
1277    // The remainder is in R. Reconstitute the remainder into Remainder's low
1278    // order words.
1279    if (rhsWords == 1) {
1280      uint64_t tmp =
1281        uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1282      if (Remainder->isSingleWord())
1283        Remainder->VAL = tmp;
1284      else
1285        Remainder->pVal[0] = tmp;
1286    } else {
1287      assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1288      for (unsigned i = 0; i < rhsWords; ++i)
1289        Remainder->pVal[i] =
1290          uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1291    }
1292  }
1293
1294  // Clean up the memory we allocated.
1295  delete [] U;
1296  delete [] V;
1297  delete [] Q;
1298  delete [] R;
1299}
1300
1301/// Unsigned divide this APInt by APInt RHS.
1302/// @brief Unsigned division function for APInt.
1303APInt APInt::udiv(const APInt& RHS) const {
1304  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1305
1306  // First, deal with the easy case
1307  if (isSingleWord()) {
1308    assert(RHS.VAL != 0 && "Divide by zero?");
1309    return APInt(BitWidth, VAL / RHS.VAL);
1310  }
1311
1312  // Get some facts about the LHS and RHS number of bits and words
1313  uint32_t rhsBits = RHS.getActiveBits();
1314  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1315  assert(rhsWords && "Divided by zero???");
1316  uint32_t lhsBits = this->getActiveBits();
1317  uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1318
1319  // Make a temporary to hold the result
1320  APInt Result(*this);
1321
1322  // Deal with some degenerate cases
1323  if (!lhsWords)
1324    return Result; // 0 / X == 0
1325  else if (lhsWords < rhsWords || Result.ult(RHS)) {
1326    // X / Y with X < Y == 0
1327    memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE);
1328    return Result;
1329  } else if (Result == RHS) {
1330    // X / X == 1
1331    memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE);
1332    Result.pVal[0] = 1;
1333    return Result;
1334  } else if (lhsWords == 1 && rhsWords == 1) {
1335    // All high words are zero, just use native divide
1336    Result.pVal[0] /= RHS.pVal[0];
1337    return Result;
1338  }
1339
1340  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1341  APInt Quotient(1,0); // to hold result.
1342  divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1343  return Quotient;
1344}
1345
1346/// Unsigned remainder operation on APInt.
1347/// @brief Function for unsigned remainder operation.
1348APInt APInt::urem(const APInt& RHS) const {
1349  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1350  if (isSingleWord()) {
1351    assert(RHS.VAL != 0 && "Remainder by zero?");
1352    return APInt(BitWidth, VAL % RHS.VAL);
1353  }
1354
1355  // Make a temporary to hold the result
1356  APInt Result(*this);
1357
1358  // Get some facts about the RHS
1359  uint32_t rhsBits = RHS.getActiveBits();
1360  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1361  assert(rhsWords && "Performing remainder operation by zero ???");
1362
1363  // Get some facts about the LHS
1364  uint32_t lhsBits = Result.getActiveBits();
1365  uint32_t lhsWords = !lhsBits ? 0 : (Result.whichWord(lhsBits - 1) + 1);
1366
1367  // Check the degenerate cases
1368  if (lhsWords == 0) {
1369    // 0 % Y == 0
1370    memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE);
1371    return Result;
1372  } else if (lhsWords < rhsWords || Result.ult(RHS)) {
1373    // X % Y == X iff X < Y
1374    return Result;
1375  } else if (Result == RHS) {
1376    // X % X == 0;
1377    memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE);
1378    return Result;
1379  } else if (lhsWords == 1) {
1380    // All high words are zero, just use native remainder
1381    Result.pVal[0] %=  RHS.pVal[0];
1382    return Result;
1383  }
1384
1385  // We have to compute it the hard way. Invoke the Knute divide algorithm.
1386  APInt Remainder(1,0);
1387  divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1388  return Remainder;
1389}
1390
1391/// @brief Converts a char array into an integer.
1392void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1393                       uint8_t radix) {
1394  // Check our assumptions here
1395  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1396         "Radix should be 2, 8, 10, or 16!");
1397  assert(str && "String is null?");
1398  assert(slen <= numbits || radix != 2 && "Insufficient bit width");
1399  assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width");
1400  assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width");
1401  assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width");
1402
1403  // Allocate memory
1404  if (!isSingleWord())
1405    pVal = getClearedMemory(getNumWords());
1406
1407  // Figure out if we can shift instead of multiply
1408  uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1409
1410  // Set up an APInt for the digit to add outside the loop so we don't
1411  // constantly construct/destruct it.
1412  APInt apdigit(getBitWidth(), 0);
1413  APInt apradix(getBitWidth(), radix);
1414
1415  // Enter digit traversal loop
1416  for (unsigned i = 0; i < slen; i++) {
1417    // Get a digit
1418    uint32_t digit = 0;
1419    char cdigit = str[i];
1420    if (isdigit(cdigit))
1421      digit = cdigit - '0';
1422    else if (isxdigit(cdigit))
1423      if (cdigit >= 'a')
1424        digit = cdigit - 'a' + 10;
1425      else if (cdigit >= 'A')
1426        digit = cdigit - 'A' + 10;
1427      else
1428        assert(0 && "huh?");
1429    else
1430      assert(0 && "Invalid character in digit string");
1431
1432    // Shift or multiple the value by the radix
1433    if (shift)
1434      this->shl(shift);
1435    else
1436      *this *= apradix;
1437
1438    // Add in the digit we just interpreted
1439    apdigit.pVal[0] = digit;
1440    *this += apdigit;
1441  }
1442}
1443
1444/// to_string - This function translates the APInt into a string.
1445std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1446  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1447         "Radix should be 2, 8, 10, or 16!");
1448  static const char *digits[] = {
1449    "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1450  };
1451  std::string result;
1452  uint32_t bits_used = getActiveBits();
1453  if (isSingleWord()) {
1454    char buf[65];
1455    const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1456       (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1457    if (format) {
1458      if (wantSigned) {
1459        int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1460                           (APINT_BITS_PER_WORD-BitWidth);
1461        sprintf(buf, format, sextVal);
1462      } else
1463        sprintf(buf, format, VAL);
1464    } else {
1465      memset(buf, 0, 65);
1466      uint64_t v = VAL;
1467      while (bits_used) {
1468        uint32_t bit = v & 1;
1469        bits_used--;
1470        buf[bits_used] = digits[bit][0];
1471        v >>=1;
1472      }
1473    }
1474    result = buf;
1475    return result;
1476  }
1477
1478  if (radix != 10) {
1479    uint64_t mask = radix - 1;
1480    uint32_t shift = (radix == 16 ? 4 : radix  == 8 ? 3 : 1);
1481    uint32_t nibbles = APINT_BITS_PER_WORD / shift;
1482    for (uint32_t i = 0; i < getNumWords(); ++i) {
1483      uint64_t value = pVal[i];
1484      for (uint32_t j = 0; j < nibbles; ++j) {
1485        result.insert(0, digits[ value & mask ]);
1486        value >>= shift;
1487      }
1488    }
1489    return result;
1490  }
1491
1492  APInt tmp(*this);
1493  APInt divisor(4, radix);
1494  APInt zero(tmp.getBitWidth(), 0);
1495  size_t insert_at = 0;
1496  if (wantSigned && tmp[BitWidth-1]) {
1497    // They want to print the signed version and it is a negative value
1498    // Flip the bits and add one to turn it into the equivalent positive
1499    // value and put a '-' in the result.
1500    tmp.flip();
1501    tmp++;
1502    result = "-";
1503    insert_at = 1;
1504  }
1505  if (tmp == APInt(tmp.getBitWidth(), 0))
1506    result = "0";
1507  else while (tmp.ne(zero)) {
1508    APInt APdigit(1,0);
1509    APInt tmp2(tmp.getBitWidth(), 0);
1510    divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
1511           &APdigit);
1512    uint32_t digit = APdigit.getValue();
1513    assert(digit < radix && "divide failed");
1514    result.insert(insert_at,digits[digit]);
1515    tmp = tmp2;
1516  }
1517
1518  return result;
1519}
1520
1521#ifndef NDEBUG
1522void APInt::dump() const
1523{
1524  std::cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
1525  if (isSingleWord())
1526    std::cerr << VAL;
1527  else for (unsigned i = getNumWords(); i > 0; i--) {
1528    std::cerr << pVal[i-1] << " ";
1529  }
1530  std::cerr << " (" << this->toString(10, false) << ")\n" << std::setbase(10);
1531}
1532#endif
1533