APInt.cpp revision 4fd8606791e0ff67a9dd13a21d95cda7e114c0e0
1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Sheng Zhou and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/MathExtras.h"
20#include <math.h>
21#include <cstring>
22#include <cstdlib>
23#ifndef NDEBUG
24#include <iomanip>
25#endif
26
27using namespace llvm;
28
29/// A utility function for allocating memory, checking for allocation failures,
30/// and ensuring the contents are zeroed.
31inline static uint64_t* getClearedMemory(uint32_t numWords) {
32  uint64_t * result = new uint64_t[numWords];
33  assert(result && "APInt memory allocation fails!");
34  memset(result, 0, numWords * sizeof(uint64_t));
35  return result;
36}
37
38/// A utility function for allocating memory and checking for allocation
39/// failure.  The content is not zeroed.
40inline static uint64_t* getMemory(uint32_t numWords) {
41  uint64_t * result = new uint64_t[numWords];
42  assert(result && "APInt memory allocation fails!");
43  return result;
44}
45
46APInt::APInt(uint32_t numBits, uint64_t val) : BitWidth(numBits), VAL(0) {
47  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
48  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
49  if (isSingleWord())
50    VAL = val;
51  else {
52    pVal = getClearedMemory(getNumWords());
53    pVal[0] = val;
54  }
55  clearUnusedBits();
56}
57
58APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
59  : BitWidth(numBits), VAL(0)  {
60  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
61  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
62  assert(bigVal && "Null pointer detected!");
63  if (isSingleWord())
64    VAL = bigVal[0];
65  else {
66    // Get memory, cleared to 0
67    pVal = getClearedMemory(getNumWords());
68    // Calculate the number of words to copy
69    uint32_t words = std::min<uint32_t>(numWords, getNumWords());
70    // Copy the words from bigVal to pVal
71    memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
72  }
73  // Make sure unused high bits are cleared
74  clearUnusedBits();
75}
76
77APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
78             uint8_t radix)
79  : BitWidth(numbits), VAL(0) {
80  fromString(numbits, StrStart, slen, radix);
81}
82
83APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
84  : BitWidth(numbits), VAL(0) {
85  assert(!Val.empty() && "String empty?");
86  fromString(numbits, Val.c_str(), Val.size(), radix);
87}
88
89APInt::APInt(const APInt& that)
90  : BitWidth(that.BitWidth), VAL(0) {
91  if (isSingleWord())
92    VAL = that.VAL;
93  else {
94    pVal = getMemory(getNumWords());
95    memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
96  }
97}
98
99APInt::~APInt() {
100  if (!isSingleWord() && pVal)
101    delete [] pVal;
102}
103
104APInt& APInt::operator=(const APInt& RHS) {
105  // Don't do anything for X = X
106  if (this == &RHS)
107    return *this;
108
109  // If the bitwidths are the same, we can avoid mucking with memory
110  if (BitWidth == RHS.getBitWidth()) {
111    if (isSingleWord())
112      VAL = RHS.VAL;
113    else
114      memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
115    return *this;
116  }
117
118  if (isSingleWord())
119    if (RHS.isSingleWord())
120      VAL = RHS.VAL;
121    else {
122      VAL = 0;
123      pVal = getMemory(RHS.getNumWords());
124      memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
125    }
126  else if (getNumWords() == RHS.getNumWords())
127    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
128  else if (RHS.isSingleWord()) {
129    delete [] pVal;
130    VAL = RHS.VAL;
131  } else {
132    delete [] pVal;
133    pVal = getMemory(RHS.getNumWords());
134    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
135  }
136  BitWidth = RHS.BitWidth;
137  return clearUnusedBits();
138}
139
140APInt& APInt::operator=(uint64_t RHS) {
141  if (isSingleWord())
142    VAL = RHS;
143  else {
144    pVal[0] = RHS;
145    memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
146  }
147  return clearUnusedBits();
148}
149
150/// add_1 - This function adds a single "digit" integer, y, to the multiple
151/// "digit" integer array,  x[]. x[] is modified to reflect the addition and
152/// 1 is returned if there is a carry out, otherwise 0 is returned.
153/// @returns the carry of the addition.
154static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
155  for (uint32_t i = 0; i < len; ++i) {
156    dest[i] = y + x[i];
157    if (dest[i] < y)
158      y = 1; // Carry one to next digit.
159    else {
160      y = 0; // No need to carry so exit early
161      break;
162    }
163  }
164  return y;
165}
166
167/// @brief Prefix increment operator. Increments the APInt by one.
168APInt& APInt::operator++() {
169  if (isSingleWord())
170    ++VAL;
171  else
172    add_1(pVal, pVal, getNumWords(), 1);
173  return clearUnusedBits();
174}
175
176/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
177/// the multi-digit integer array, x[], propagating the borrowed 1 value until
178/// no further borrowing is neeeded or it runs out of "digits" in x.  The result
179/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
180/// In other words, if y > x then this function returns 1, otherwise 0.
181/// @returns the borrow out of the subtraction
182static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
183  for (uint32_t i = 0; i < len; ++i) {
184    uint64_t X = x[i];
185    x[i] -= y;
186    if (y > X)
187      y = 1;  // We have to "borrow 1" from next "digit"
188    else {
189      y = 0;  // No need to borrow
190      break;  // Remaining digits are unchanged so exit early
191    }
192  }
193  return bool(y);
194}
195
196/// @brief Prefix decrement operator. Decrements the APInt by one.
197APInt& APInt::operator--() {
198  if (isSingleWord())
199    --VAL;
200  else
201    sub_1(pVal, getNumWords(), 1);
202  return clearUnusedBits();
203}
204
205/// add - This function adds the integer array x to the integer array Y and
206/// places the result in dest.
207/// @returns the carry out from the addition
208/// @brief General addition of 64-bit integer arrays
209static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
210                uint32_t len) {
211  bool carry = false;
212  for (uint32_t i = 0; i< len; ++i) {
213    uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
214    dest[i] = x[i] + y[i] + carry;
215    carry = dest[i] < limit || (carry && dest[i] == limit);
216  }
217  return carry;
218}
219
220/// Adds the RHS APint to this APInt.
221/// @returns this, after addition of RHS.
222/// @brief Addition assignment operator.
223APInt& APInt::operator+=(const APInt& RHS) {
224  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
225  if (isSingleWord())
226    VAL += RHS.VAL;
227  else {
228    add(pVal, pVal, RHS.pVal, getNumWords());
229  }
230  return clearUnusedBits();
231}
232
233/// Subtracts the integer array y from the integer array x
234/// @returns returns the borrow out.
235/// @brief Generalized subtraction of 64-bit integer arrays.
236static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
237                uint32_t len) {
238  bool borrow = false;
239  for (uint32_t i = 0; i < len; ++i) {
240    uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
241    borrow = y[i] > x_tmp || (borrow && x[i] == 0);
242    dest[i] = x_tmp - y[i];
243  }
244  return borrow;
245}
246
247/// Subtracts the RHS APInt from this APInt
248/// @returns this, after subtraction
249/// @brief Subtraction assignment operator.
250APInt& APInt::operator-=(const APInt& RHS) {
251  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
252  if (isSingleWord())
253    VAL -= RHS.VAL;
254  else
255    sub(pVal, pVal, RHS.pVal, getNumWords());
256  return clearUnusedBits();
257}
258
259/// Multiplies an integer array, x by a a uint64_t integer and places the result
260/// into dest.
261/// @returns the carry out of the multiplication.
262/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
263static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
264  // Split y into high 32-bit part (hy)  and low 32-bit part (ly)
265  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
266  uint64_t carry = 0;
267
268  // For each digit of x.
269  for (uint32_t i = 0; i < len; ++i) {
270    // Split x into high and low words
271    uint64_t lx = x[i] & 0xffffffffULL;
272    uint64_t hx = x[i] >> 32;
273    // hasCarry - A flag to indicate if there is a carry to the next digit.
274    // hasCarry == 0, no carry
275    // hasCarry == 1, has carry
276    // hasCarry == 2, no carry and the calculation result == 0.
277    uint8_t hasCarry = 0;
278    dest[i] = carry + lx * ly;
279    // Determine if the add above introduces carry.
280    hasCarry = (dest[i] < carry) ? 1 : 0;
281    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
282    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
283    // (2^32 - 1) + 2^32 = 2^64.
284    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
285
286    carry += (lx * hy) & 0xffffffffULL;
287    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
288    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
289            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
290  }
291  return carry;
292}
293
294/// Multiplies integer array x by integer array y and stores the result into
295/// the integer array dest. Note that dest's size must be >= xlen + ylen.
296/// @brief Generalized multiplicate of integer arrays.
297static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
298                uint32_t ylen) {
299  dest[xlen] = mul_1(dest, x, xlen, y[0]);
300  for (uint32_t i = 1; i < ylen; ++i) {
301    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
302    uint64_t carry = 0, lx = 0, hx = 0;
303    for (uint32_t j = 0; j < xlen; ++j) {
304      lx = x[j] & 0xffffffffULL;
305      hx = x[j] >> 32;
306      // hasCarry - A flag to indicate if has carry.
307      // hasCarry == 0, no carry
308      // hasCarry == 1, has carry
309      // hasCarry == 2, no carry and the calculation result == 0.
310      uint8_t hasCarry = 0;
311      uint64_t resul = carry + lx * ly;
312      hasCarry = (resul < carry) ? 1 : 0;
313      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
314      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
315
316      carry += (lx * hy) & 0xffffffffULL;
317      resul = (carry << 32) | (resul & 0xffffffffULL);
318      dest[i+j] += resul;
319      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
320              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
321              ((lx * hy) >> 32) + hx * hy;
322    }
323    dest[i+xlen] = carry;
324  }
325}
326
327APInt& APInt::operator*=(const APInt& RHS) {
328  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
329  if (isSingleWord()) {
330    VAL *= RHS.VAL;
331    clearUnusedBits();
332    return *this;
333  }
334
335  // Get some bit facts about LHS and check for zero
336  uint32_t lhsBits = getActiveBits();
337  uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
338  if (!lhsWords)
339    // 0 * X ===> 0
340    return *this;
341
342  // Get some bit facts about RHS and check for zero
343  uint32_t rhsBits = RHS.getActiveBits();
344  uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
345  if (!rhsWords) {
346    // X * 0 ===> 0
347    clear();
348    return *this;
349  }
350
351  // Allocate space for the result
352  uint32_t destWords = rhsWords + lhsWords;
353  uint64_t *dest = getMemory(destWords);
354
355  // Perform the long multiply
356  mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
357
358  // Copy result back into *this
359  clear();
360  uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
361  memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
362
363  // delete dest array and return
364  delete[] dest;
365  return *this;
366}
367
368APInt& APInt::operator&=(const APInt& RHS) {
369  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
370  if (isSingleWord()) {
371    VAL &= RHS.VAL;
372    return *this;
373  }
374  uint32_t numWords = getNumWords();
375  for (uint32_t i = 0; i < numWords; ++i)
376    pVal[i] &= RHS.pVal[i];
377  return *this;
378}
379
380APInt& APInt::operator|=(const APInt& RHS) {
381  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
382  if (isSingleWord()) {
383    VAL |= RHS.VAL;
384    return *this;
385  }
386  uint32_t numWords = getNumWords();
387  for (uint32_t i = 0; i < numWords; ++i)
388    pVal[i] |= RHS.pVal[i];
389  return *this;
390}
391
392APInt& APInt::operator^=(const APInt& RHS) {
393  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
394  if (isSingleWord()) {
395    VAL ^= RHS.VAL;
396    this->clearUnusedBits();
397    return *this;
398  }
399  uint32_t numWords = getNumWords();
400  for (uint32_t i = 0; i < numWords; ++i)
401    pVal[i] ^= RHS.pVal[i];
402  return clearUnusedBits();
403}
404
405APInt APInt::operator&(const APInt& RHS) const {
406  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
407  if (isSingleWord())
408    return APInt(getBitWidth(), VAL & RHS.VAL);
409
410  uint32_t numWords = getNumWords();
411  uint64_t* val = getMemory(numWords);
412  for (uint32_t i = 0; i < numWords; ++i)
413    val[i] = pVal[i] & RHS.pVal[i];
414  return APInt(val, getBitWidth());
415}
416
417APInt APInt::operator|(const APInt& RHS) const {
418  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
419  if (isSingleWord())
420    return APInt(getBitWidth(), VAL | RHS.VAL);
421
422  uint32_t numWords = getNumWords();
423  uint64_t *val = getMemory(numWords);
424  for (uint32_t i = 0; i < numWords; ++i)
425    val[i] = pVal[i] | RHS.pVal[i];
426  return APInt(val, getBitWidth());
427}
428
429APInt APInt::operator^(const APInt& RHS) const {
430  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
431  if (isSingleWord())
432    return APInt(BitWidth, VAL ^ RHS.VAL);
433
434  uint32_t numWords = getNumWords();
435  uint64_t *val = getMemory(numWords);
436  for (uint32_t i = 0; i < numWords; ++i)
437    val[i] = pVal[i] ^ RHS.pVal[i];
438
439  // 0^0==1 so clear the high bits in case they got set.
440  return APInt(val, getBitWidth()).clearUnusedBits();
441}
442
443bool APInt::operator !() const {
444  if (isSingleWord())
445    return !VAL;
446
447  for (uint32_t i = 0; i < getNumWords(); ++i)
448    if (pVal[i])
449      return false;
450  return true;
451}
452
453APInt APInt::operator*(const APInt& RHS) const {
454  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
455  if (isSingleWord())
456    return APInt(BitWidth, VAL * RHS.VAL);
457  APInt Result(*this);
458  Result *= RHS;
459  return Result.clearUnusedBits();
460}
461
462APInt APInt::operator+(const APInt& RHS) const {
463  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
464  if (isSingleWord())
465    return APInt(BitWidth, VAL + RHS.VAL);
466  APInt Result(BitWidth, 0);
467  add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
468  return Result.clearUnusedBits();
469}
470
471APInt APInt::operator-(const APInt& RHS) const {
472  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
473  if (isSingleWord())
474    return APInt(BitWidth, VAL - RHS.VAL);
475  APInt Result(BitWidth, 0);
476  sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
477  return Result.clearUnusedBits();
478}
479
480bool APInt::operator[](uint32_t bitPosition) const {
481  return (maskBit(bitPosition) &
482          (isSingleWord() ?  VAL : pVal[whichWord(bitPosition)])) != 0;
483}
484
485bool APInt::operator==(const APInt& RHS) const {
486  assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
487  if (isSingleWord())
488    return VAL == RHS.VAL;
489
490  // Get some facts about the number of bits used in the two operands.
491  uint32_t n1 = getActiveBits();
492  uint32_t n2 = RHS.getActiveBits();
493
494  // If the number of bits isn't the same, they aren't equal
495  if (n1 != n2)
496    return false;
497
498  // If the number of bits fits in a word, we only need to compare the low word.
499  if (n1 <= APINT_BITS_PER_WORD)
500    return pVal[0] == RHS.pVal[0];
501
502  // Otherwise, compare everything
503  for (int i = whichWord(n1 - 1); i >= 0; --i)
504    if (pVal[i] != RHS.pVal[i])
505      return false;
506  return true;
507}
508
509bool APInt::operator==(uint64_t Val) const {
510  if (isSingleWord())
511    return VAL == Val;
512
513  uint32_t n = getActiveBits();
514  if (n <= APINT_BITS_PER_WORD)
515    return pVal[0] == Val;
516  else
517    return false;
518}
519
520bool APInt::ult(const APInt& RHS) const {
521  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
522  if (isSingleWord())
523    return VAL < RHS.VAL;
524
525  // Get active bit length of both operands
526  uint32_t n1 = getActiveBits();
527  uint32_t n2 = RHS.getActiveBits();
528
529  // If magnitude of LHS is less than RHS, return true.
530  if (n1 < n2)
531    return true;
532
533  // If magnitude of RHS is greather than LHS, return false.
534  if (n2 < n1)
535    return false;
536
537  // If they bot fit in a word, just compare the low order word
538  if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
539    return pVal[0] < RHS.pVal[0];
540
541  // Otherwise, compare all words
542  uint32_t topWord = whichWord(std::max(n1,n2)-1);
543  for (int i = topWord; i >= 0; --i) {
544    if (pVal[i] > RHS.pVal[i])
545      return false;
546    if (pVal[i] < RHS.pVal[i])
547      return true;
548  }
549  return false;
550}
551
552bool APInt::slt(const APInt& RHS) const {
553  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
554  if (isSingleWord()) {
555    int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
556    int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
557    return lhsSext < rhsSext;
558  }
559
560  APInt lhs(*this);
561  APInt rhs(RHS);
562  bool lhsNeg = isNegative();
563  bool rhsNeg = rhs.isNegative();
564  if (lhsNeg) {
565    // Sign bit is set so perform two's complement to make it positive
566    lhs.flip();
567    lhs++;
568  }
569  if (rhsNeg) {
570    // Sign bit is set so perform two's complement to make it positive
571    rhs.flip();
572    rhs++;
573  }
574
575  // Now we have unsigned values to compare so do the comparison if necessary
576  // based on the negativeness of the values.
577  if (lhsNeg)
578    if (rhsNeg)
579      return lhs.ugt(rhs);
580    else
581      return true;
582  else if (rhsNeg)
583    return false;
584  else
585    return lhs.ult(rhs);
586}
587
588APInt& APInt::set(uint32_t bitPosition) {
589  if (isSingleWord())
590    VAL |= maskBit(bitPosition);
591  else
592    pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
593  return *this;
594}
595
596APInt& APInt::set() {
597  if (isSingleWord()) {
598    VAL = -1ULL;
599    return clearUnusedBits();
600  }
601
602  // Set all the bits in all the words.
603  for (uint32_t i = 0; i < getNumWords() - 1; ++i)
604    pVal[i] = -1ULL;
605  // Clear the unused ones
606  return clearUnusedBits();
607}
608
609/// Set the given bit to 0 whose position is given as "bitPosition".
610/// @brief Set a given bit to 0.
611APInt& APInt::clear(uint32_t bitPosition) {
612  if (isSingleWord())
613    VAL &= ~maskBit(bitPosition);
614  else
615    pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
616  return *this;
617}
618
619/// @brief Set every bit to 0.
620APInt& APInt::clear() {
621  if (isSingleWord())
622    VAL = 0;
623  else
624    memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
625  return *this;
626}
627
628/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
629/// this APInt.
630APInt APInt::operator~() const {
631  APInt Result(*this);
632  Result.flip();
633  return Result;
634}
635
636/// @brief Toggle every bit to its opposite value.
637APInt& APInt::flip() {
638  if (isSingleWord()) {
639    VAL ^= -1ULL;
640    return clearUnusedBits();
641  }
642  for (uint32_t i = 0; i < getNumWords(); ++i)
643    pVal[i] ^= -1ULL;
644  return clearUnusedBits();
645}
646
647/// Toggle a given bit to its opposite value whose position is given
648/// as "bitPosition".
649/// @brief Toggles a given bit to its opposite value.
650APInt& APInt::flip(uint32_t bitPosition) {
651  assert(bitPosition < BitWidth && "Out of the bit-width range!");
652  if ((*this)[bitPosition]) clear(bitPosition);
653  else set(bitPosition);
654  return *this;
655}
656
657uint64_t APInt::getHashValue() const {
658  // Put the bit width into the low order bits.
659  uint64_t hash = BitWidth;
660
661  // Add the sum of the words to the hash.
662  if (isSingleWord())
663    hash += VAL << 6; // clear separation of up to 64 bits
664  else
665    for (uint32_t i = 0; i < getNumWords(); ++i)
666      hash += pVal[i] << 6; // clear sepration of up to 64 bits
667  return hash;
668}
669
670/// HiBits - This function returns the high "numBits" bits of this APInt.
671APInt APInt::getHiBits(uint32_t numBits) const {
672  return APIntOps::lshr(*this, BitWidth - numBits);
673}
674
675/// LoBits - This function returns the low "numBits" bits of this APInt.
676APInt APInt::getLoBits(uint32_t numBits) const {
677  return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
678                        BitWidth - numBits);
679}
680
681bool APInt::isPowerOf2() const {
682  return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
683}
684
685uint32_t APInt::countLeadingZeros() const {
686  uint32_t Count = 0;
687  if (isSingleWord())
688    Count = CountLeadingZeros_64(VAL);
689  else {
690    for (uint32_t i = getNumWords(); i > 0u; --i) {
691      if (pVal[i-1] == 0)
692        Count += APINT_BITS_PER_WORD;
693      else {
694        Count += CountLeadingZeros_64(pVal[i-1]);
695        break;
696      }
697    }
698  }
699  uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
700  if (remainder)
701    Count -= APINT_BITS_PER_WORD - remainder;
702  return Count;
703}
704
705static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
706  uint32_t Count = 0;
707  if (skip)
708    V <<= skip;
709  while (V && (V & (1ULL << 63))) {
710    Count++;
711    V <<= 1;
712  }
713  return Count;
714}
715
716uint32_t APInt::countLeadingOnes() const {
717  if (isSingleWord())
718    return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
719
720  uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
721  uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
722  int i = getNumWords() - 1;
723  uint32_t Count = countLeadingOnes_64(pVal[i], shift);
724  if (Count == highWordBits) {
725    for (i--; i >= 0; --i) {
726      if (pVal[i] == -1ULL)
727        Count += APINT_BITS_PER_WORD;
728      else {
729        Count += countLeadingOnes_64(pVal[i], 0);
730        break;
731      }
732    }
733  }
734  return Count;
735}
736
737uint32_t APInt::countTrailingZeros() const {
738  if (isSingleWord())
739    return CountTrailingZeros_64(VAL);
740  uint32_t Count = 0;
741  uint32_t i = 0;
742  for (; i < getNumWords() && pVal[i] == 0; ++i)
743    Count += APINT_BITS_PER_WORD;
744  if (i < getNumWords())
745    Count += CountTrailingZeros_64(pVal[i]);
746  return Count;
747}
748
749uint32_t APInt::countPopulation() const {
750  if (isSingleWord())
751    return CountPopulation_64(VAL);
752  uint32_t Count = 0;
753  for (uint32_t i = 0; i < getNumWords(); ++i)
754    Count += CountPopulation_64(pVal[i]);
755  return Count;
756}
757
758APInt APInt::byteSwap() const {
759  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
760  if (BitWidth == 16)
761    return APInt(BitWidth, ByteSwap_16(VAL));
762  else if (BitWidth == 32)
763    return APInt(BitWidth, ByteSwap_32(VAL));
764  else if (BitWidth == 48) {
765    uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
766    Tmp1 = ByteSwap_32(Tmp1);
767    uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
768    Tmp2 = ByteSwap_16(Tmp2);
769    return
770      APInt(BitWidth,
771            (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16));
772  } else if (BitWidth == 64)
773    return APInt(BitWidth, ByteSwap_64(VAL));
774  else {
775    APInt Result(BitWidth, 0);
776    char *pByte = (char*)Result.pVal;
777    for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
778      char Tmp = pByte[i];
779      pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
780      pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
781    }
782    return Result;
783  }
784}
785
786APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
787                                            const APInt& API2) {
788  APInt A = API1, B = API2;
789  while (!!B) {
790    APInt T = B;
791    B = APIntOps::urem(A, B);
792    A = T;
793  }
794  return A;
795}
796
797APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
798  union {
799    double D;
800    uint64_t I;
801  } T;
802  T.D = Double;
803
804  // Get the sign bit from the highest order bit
805  bool isNeg = T.I >> 63;
806
807  // Get the 11-bit exponent and adjust for the 1023 bit bias
808  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
809
810  // If the exponent is negative, the value is < 0 so just return 0.
811  if (exp < 0)
812    return APInt(width, 0u);
813
814  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
815  uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
816
817  // If the exponent doesn't shift all bits out of the mantissa
818  if (exp < 52)
819    return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
820                    APInt(width, mantissa >> (52 - exp));
821
822  // If the client didn't provide enough bits for us to shift the mantissa into
823  // then the result is undefined, just return 0
824  if (width <= exp - 52)
825    return APInt(width, 0);
826
827  // Otherwise, we have to shift the mantissa bits up to the right location
828  APInt Tmp(width, mantissa);
829  Tmp = Tmp.shl(exp - 52);
830  return isNeg ? -Tmp : Tmp;
831}
832
833/// RoundToDouble - This function convert this APInt to a double.
834/// The layout for double is as following (IEEE Standard 754):
835///  --------------------------------------
836/// |  Sign    Exponent    Fraction    Bias |
837/// |-------------------------------------- |
838/// |  1[63]   11[62-52]   52[51-00]   1023 |
839///  --------------------------------------
840double APInt::roundToDouble(bool isSigned) const {
841
842  // Handle the simple case where the value is contained in one uint64_t.
843  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
844    if (isSigned) {
845      int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
846      return double(sext);
847    } else
848      return double(VAL);
849  }
850
851  // Determine if the value is negative.
852  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
853
854  // Construct the absolute value if we're negative.
855  APInt Tmp(isNeg ? -(*this) : (*this));
856
857  // Figure out how many bits we're using.
858  uint32_t n = Tmp.getActiveBits();
859
860  // The exponent (without bias normalization) is just the number of bits
861  // we are using. Note that the sign bit is gone since we constructed the
862  // absolute value.
863  uint64_t exp = n;
864
865  // Return infinity for exponent overflow
866  if (exp > 1023) {
867    if (!isSigned || !isNeg)
868      return double(1.0E300 * 1.0E300); // positive infinity
869    else
870      return double(-1.0E300 * 1.0E300); // negative infinity
871  }
872  exp += 1023; // Increment for 1023 bias
873
874  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
875  // extract the high 52 bits from the correct words in pVal.
876  uint64_t mantissa;
877  unsigned hiWord = whichWord(n-1);
878  if (hiWord == 0) {
879    mantissa = Tmp.pVal[0];
880    if (n > 52)
881      mantissa >>= n - 52; // shift down, we want the top 52 bits.
882  } else {
883    assert(hiWord > 0 && "huh?");
884    uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
885    uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
886    mantissa = hibits | lobits;
887  }
888
889  // The leading bit of mantissa is implicit, so get rid of it.
890  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
891  union {
892    double D;
893    uint64_t I;
894  } T;
895  T.I = sign | (exp << 52) | mantissa;
896  return T.D;
897}
898
899// Truncate to new width.
900APInt &APInt::trunc(uint32_t width) {
901  assert(width < BitWidth && "Invalid APInt Truncate request");
902  assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
903  uint32_t wordsBefore = getNumWords();
904  BitWidth = width;
905  uint32_t wordsAfter = getNumWords();
906  if (wordsBefore != wordsAfter) {
907    if (wordsAfter == 1) {
908      uint64_t *tmp = pVal;
909      VAL = pVal[0];
910      delete [] tmp;
911    } else {
912      uint64_t *newVal = getClearedMemory(wordsAfter);
913      for (uint32_t i = 0; i < wordsAfter; ++i)
914        newVal[i] = pVal[i];
915      delete [] pVal;
916      pVal = newVal;
917    }
918  }
919  return clearUnusedBits();
920}
921
922// Sign extend to a new width.
923APInt &APInt::sext(uint32_t width) {
924  assert(width > BitWidth && "Invalid APInt SignExtend request");
925  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
926  // If the sign bit isn't set, this is the same as zext.
927  if (!isNegative()) {
928    zext(width);
929    return *this;
930  }
931
932  // The sign bit is set. First, get some facts
933  uint32_t wordsBefore = getNumWords();
934  uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
935  BitWidth = width;
936  uint32_t wordsAfter = getNumWords();
937
938  // Mask the high order word appropriately
939  if (wordsBefore == wordsAfter) {
940    uint32_t newWordBits = width % APINT_BITS_PER_WORD;
941    // The extension is contained to the wordsBefore-1th word.
942    uint64_t mask = ~0ULL;
943    if (newWordBits)
944      mask >>= APINT_BITS_PER_WORD - newWordBits;
945    mask <<= wordBits;
946    if (wordsBefore == 1)
947      VAL |= mask;
948    else
949      pVal[wordsBefore-1] |= mask;
950    return clearUnusedBits();
951  }
952
953  uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
954  uint64_t *newVal = getMemory(wordsAfter);
955  if (wordsBefore == 1)
956    newVal[0] = VAL | mask;
957  else {
958    for (uint32_t i = 0; i < wordsBefore; ++i)
959      newVal[i] = pVal[i];
960    newVal[wordsBefore-1] |= mask;
961  }
962  for (uint32_t i = wordsBefore; i < wordsAfter; i++)
963    newVal[i] = -1ULL;
964  if (wordsBefore != 1)
965    delete [] pVal;
966  pVal = newVal;
967  return clearUnusedBits();
968}
969
970//  Zero extend to a new width.
971APInt &APInt::zext(uint32_t width) {
972  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
973  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
974  uint32_t wordsBefore = getNumWords();
975  BitWidth = width;
976  uint32_t wordsAfter = getNumWords();
977  if (wordsBefore != wordsAfter) {
978    uint64_t *newVal = getClearedMemory(wordsAfter);
979    if (wordsBefore == 1)
980      newVal[0] = VAL;
981    else
982      for (uint32_t i = 0; i < wordsBefore; ++i)
983        newVal[i] = pVal[i];
984    if (wordsBefore != 1)
985      delete [] pVal;
986    pVal = newVal;
987  }
988  return *this;
989}
990
991APInt &APInt::zextOrTrunc(uint32_t width) {
992  if (BitWidth < width)
993    return zext(width);
994  if (BitWidth > width)
995    return trunc(width);
996  return *this;
997}
998
999APInt &APInt::sextOrTrunc(uint32_t width) {
1000  if (BitWidth < width)
1001    return sext(width);
1002  if (BitWidth > width)
1003    return trunc(width);
1004  return *this;
1005}
1006
1007/// Arithmetic right-shift this APInt by shiftAmt.
1008/// @brief Arithmetic right-shift function.
1009APInt APInt::ashr(uint32_t shiftAmt) const {
1010  assert(shiftAmt <= BitWidth && "Invalid shift amount");
1011  // Handle a degenerate case
1012  if (shiftAmt == 0)
1013    return *this;
1014
1015  // Handle single word shifts with built-in ashr
1016  if (isSingleWord()) {
1017    if (shiftAmt == BitWidth)
1018      return APInt(BitWidth, 0); // undefined
1019    else {
1020      uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
1021      return APInt(BitWidth,
1022        (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1023    }
1024  }
1025
1026  // If all the bits were shifted out, the result is, technically, undefined.
1027  // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1028  // issues in the algorithm below.
1029  if (shiftAmt == BitWidth)
1030    if (isNegative())
1031      return APInt(BitWidth, -1ULL);
1032    else
1033      return APInt(BitWidth, 0);
1034
1035  // Create some space for the result.
1036  uint64_t * val = new uint64_t[getNumWords()];
1037
1038  // Compute some values needed by the following shift algorithms
1039  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1040  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1041  uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
1042  uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
1043  if (bitsInWord == 0)
1044    bitsInWord = APINT_BITS_PER_WORD;
1045
1046  // If we are shifting whole words, just move whole words
1047  if (wordShift == 0) {
1048    // Move the words containing significant bits
1049    for (uint32_t i = 0; i <= breakWord; ++i)
1050      val[i] = pVal[i+offset]; // move whole word
1051
1052    // Adjust the top significant word for sign bit fill, if negative
1053    if (isNegative())
1054      if (bitsInWord < APINT_BITS_PER_WORD)
1055        val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1056  } else {
1057    // Shift the low order words
1058    for (uint32_t i = 0; i < breakWord; ++i) {
1059      // This combines the shifted corresponding word with the low bits from
1060      // the next word (shifted into this word's high bits).
1061      val[i] = (pVal[i+offset] >> wordShift) |
1062               (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1063    }
1064
1065    // Shift the break word. In this case there are no bits from the next word
1066    // to include in this word.
1067    val[breakWord] = pVal[breakWord+offset] >> wordShift;
1068
1069    // Deal with sign extenstion in the break word, and possibly the word before
1070    // it.
1071    if (isNegative())
1072      if (wordShift > bitsInWord) {
1073        if (breakWord > 0)
1074          val[breakWord-1] |=
1075            ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1076        val[breakWord] |= ~0ULL;
1077      } else
1078        val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1079  }
1080
1081  // Remaining words are 0 or -1, just assign them.
1082  uint64_t fillValue = (isNegative() ? -1ULL : 0);
1083  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1084    val[i] = fillValue;
1085  return APInt(val, BitWidth).clearUnusedBits();
1086}
1087
1088/// Logical right-shift this APInt by shiftAmt.
1089/// @brief Logical right-shift function.
1090APInt APInt::lshr(uint32_t shiftAmt) const {
1091  if (isSingleWord())
1092    if (shiftAmt == BitWidth)
1093      return APInt(BitWidth, 0);
1094    else
1095      return APInt(BitWidth, this->VAL >> shiftAmt);
1096
1097  // If all the bits were shifted out, the result is 0. This avoids issues
1098  // with shifting by the size of the integer type, which produces undefined
1099  // results. We define these "undefined results" to always be 0.
1100  if (shiftAmt == BitWidth)
1101    return APInt(BitWidth, 0);
1102
1103  // Create some space for the result.
1104  uint64_t * val = new uint64_t[getNumWords()];
1105
1106  // If we are shifting less than a word, compute the shift with a simple carry
1107  if (shiftAmt < APINT_BITS_PER_WORD) {
1108    uint64_t carry = 0;
1109    for (int i = getNumWords()-1; i >= 0; --i) {
1110      val[i] = (pVal[i] >> shiftAmt) | carry;
1111      carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1112    }
1113    return APInt(val, BitWidth).clearUnusedBits();
1114  }
1115
1116  // Compute some values needed by the remaining shift algorithms
1117  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1118  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1119
1120  // If we are shifting whole words, just move whole words
1121  if (wordShift == 0) {
1122    for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1123      val[i] = pVal[i+offset];
1124    for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1125      val[i] = 0;
1126    return APInt(val,BitWidth).clearUnusedBits();
1127  }
1128
1129  // Shift the low order words
1130  uint32_t breakWord = getNumWords() - offset -1;
1131  for (uint32_t i = 0; i < breakWord; ++i)
1132    val[i] = (pVal[i+offset] >> wordShift) |
1133             (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1134  // Shift the break word.
1135  val[breakWord] = pVal[breakWord+offset] >> wordShift;
1136
1137  // Remaining words are 0
1138  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1139    val[i] = 0;
1140  return APInt(val, BitWidth).clearUnusedBits();
1141}
1142
1143/// Left-shift this APInt by shiftAmt.
1144/// @brief Left-shift function.
1145APInt APInt::shl(uint32_t shiftAmt) const {
1146  assert(shiftAmt <= BitWidth && "Invalid shift amount");
1147  if (isSingleWord()) {
1148    if (shiftAmt == BitWidth)
1149      return APInt(BitWidth, 0); // avoid undefined shift results
1150    return APInt(BitWidth, VAL << shiftAmt);
1151  }
1152
1153  // If all the bits were shifted out, the result is 0. This avoids issues
1154  // with shifting by the size of the integer type, which produces undefined
1155  // results. We define these "undefined results" to always be 0.
1156  if (shiftAmt == BitWidth)
1157    return APInt(BitWidth, 0);
1158
1159  // Create some space for the result.
1160  uint64_t * val = new uint64_t[getNumWords()];
1161
1162  // If we are shifting less than a word, do it the easy way
1163  if (shiftAmt < APINT_BITS_PER_WORD) {
1164    uint64_t carry = 0;
1165    for (uint32_t i = 0; i < getNumWords(); i++) {
1166      val[i] = pVal[i] << shiftAmt | carry;
1167      carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1168    }
1169    return APInt(val, BitWidth).clearUnusedBits();
1170  }
1171
1172  // Compute some values needed by the remaining shift algorithms
1173  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1174  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1175
1176  // If we are shifting whole words, just move whole words
1177  if (wordShift == 0) {
1178    for (uint32_t i = 0; i < offset; i++)
1179      val[i] = 0;
1180    for (uint32_t i = offset; i < getNumWords(); i++)
1181      val[i] = pVal[i-offset];
1182    return APInt(val,BitWidth).clearUnusedBits();
1183  }
1184
1185  // Copy whole words from this to Result.
1186  uint32_t i = getNumWords() - 1;
1187  for (; i > offset; --i)
1188    val[i] = pVal[i-offset] << wordShift |
1189             pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1190  val[offset] = pVal[0] << wordShift;
1191  for (i = 0; i < offset; ++i)
1192    val[i] = 0;
1193  return APInt(val, BitWidth).clearUnusedBits();
1194}
1195
1196
1197// Square Root - this method computes and returns the square root of "this".
1198// Three mechanisms are used for computation. For small values (<= 5 bits),
1199// a table lookup is done. This gets some performance for common cases. For
1200// values using less than 52 bits, the value is converted to double and then
1201// the libc sqrt function is called. The result is rounded and then converted
1202// back to a uint64_t which is then used to construct the result. Finally,
1203// the Babylonian method for computing square roots is used.
1204APInt APInt::sqrt() const {
1205
1206  // Determine the magnitude of the value.
1207  uint32_t magnitude = getActiveBits();
1208
1209  // Use a fast table for some small values. This also gets rid of some
1210  // rounding errors in libc sqrt for small values.
1211  if (magnitude <= 5) {
1212    static const uint8_t results[32] = {
1213      /*     0 */ 0,
1214      /*  1- 2 */ 1, 1,
1215      /*  3- 6 */ 2, 2, 2, 2,
1216      /*  7-12 */ 3, 3, 3, 3, 3, 3,
1217      /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1218      /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1219      /*    31 */ 6
1220    };
1221    return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1222  }
1223
1224  // If the magnitude of the value fits in less than 52 bits (the precision of
1225  // an IEEE double precision floating point value), then we can use the
1226  // libc sqrt function which will probably use a hardware sqrt computation.
1227  // This should be faster than the algorithm below.
1228  if (magnitude < 52) {
1229#ifdef _MSC_VER
1230    // Amazingly, VC++ doesn't have round().
1231    return APInt(BitWidth,
1232                 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1233#else
1234    return APInt(BitWidth,
1235                 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1236#endif
1237  }
1238
1239  // Okay, all the short cuts are exhausted. We must compute it. The following
1240  // is a classical Babylonian method for computing the square root. This code
1241  // was adapted to APINt from a wikipedia article on such computations.
1242  // See http://www.wikipedia.org/ and go to the page named
1243  // Calculate_an_integer_square_root.
1244  uint32_t nbits = BitWidth, i = 4;
1245  APInt testy(BitWidth, 16);
1246  APInt x_old(BitWidth, 1);
1247  APInt x_new(BitWidth, 0);
1248  APInt two(BitWidth, 2);
1249
1250  // Select a good starting value using binary logarithms.
1251  for (;; i += 2, testy = testy.shl(2))
1252    if (i >= nbits || this->ule(testy)) {
1253      x_old = x_old.shl(i / 2);
1254      break;
1255    }
1256
1257  // Use the Babylonian method to arrive at the integer square root:
1258  for (;;) {
1259    x_new = (this->udiv(x_old) + x_old).udiv(two);
1260    if (x_old.ule(x_new))
1261      break;
1262    x_old = x_new;
1263  }
1264
1265  // Make sure we return the closest approximation
1266  // NOTE: The rounding calculation below is correct. It will produce an
1267  // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1268  // determined to be a rounding issue with pari/gp as it begins to use a
1269  // floating point representation after 192 bits. There are no discrepancies
1270  // between this algorithm and pari/gp for bit widths < 192 bits.
1271  APInt square(x_old * x_old);
1272  APInt nextSquare((x_old + 1) * (x_old +1));
1273  if (this->ult(square))
1274    return x_old;
1275  else if (this->ule(nextSquare)) {
1276    APInt midpoint((nextSquare - square).udiv(two));
1277    APInt offset(*this - square);
1278    if (offset.ult(midpoint))
1279      return x_old;
1280    else
1281      return x_old + 1;
1282  } else
1283    assert(0 && "Error in APInt::sqrt computation");
1284  return x_old + 1;
1285}
1286
1287/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1288/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1289/// variables here have the same names as in the algorithm. Comments explain
1290/// the algorithm and any deviation from it.
1291static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1292                     uint32_t m, uint32_t n) {
1293  assert(u && "Must provide dividend");
1294  assert(v && "Must provide divisor");
1295  assert(q && "Must provide quotient");
1296  assert(u != v && u != q && v != q && "Must us different memory");
1297  assert(n>1 && "n must be > 1");
1298
1299  // Knuth uses the value b as the base of the number system. In our case b
1300  // is 2^31 so we just set it to -1u.
1301  uint64_t b = uint64_t(1) << 32;
1302
1303  DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1304  DEBUG(cerr << "KnuthDiv: original:");
1305  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1306  DEBUG(cerr << " by");
1307  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1308  DEBUG(cerr << '\n');
1309  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1310  // u and v by d. Note that we have taken Knuth's advice here to use a power
1311  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1312  // 2 allows us to shift instead of multiply and it is easy to determine the
1313  // shift amount from the leading zeros.  We are basically normalizing the u
1314  // and v so that its high bits are shifted to the top of v's range without
1315  // overflow. Note that this can require an extra word in u so that u must
1316  // be of length m+n+1.
1317  uint32_t shift = CountLeadingZeros_32(v[n-1]);
1318  uint32_t v_carry = 0;
1319  uint32_t u_carry = 0;
1320  if (shift) {
1321    for (uint32_t i = 0; i < m+n; ++i) {
1322      uint32_t u_tmp = u[i] >> (32 - shift);
1323      u[i] = (u[i] << shift) | u_carry;
1324      u_carry = u_tmp;
1325    }
1326    for (uint32_t i = 0; i < n; ++i) {
1327      uint32_t v_tmp = v[i] >> (32 - shift);
1328      v[i] = (v[i] << shift) | v_carry;
1329      v_carry = v_tmp;
1330    }
1331  }
1332  u[m+n] = u_carry;
1333  DEBUG(cerr << "KnuthDiv:   normal:");
1334  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1335  DEBUG(cerr << " by");
1336  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1337  DEBUG(cerr << '\n');
1338
1339  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1340  int j = m;
1341  do {
1342    DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1343    // D3. [Calculate q'.].
1344    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1345    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1346    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1347    // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1348    // on v[n-2] determines at high speed most of the cases in which the trial
1349    // value qp is one too large, and it eliminates all cases where qp is two
1350    // too large.
1351    uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1352    DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1353    uint64_t qp = dividend / v[n-1];
1354    uint64_t rp = dividend % v[n-1];
1355    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1356      qp--;
1357      rp += v[n-1];
1358      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1359        qp--;
1360    }
1361    DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1362
1363    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1364    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1365    // consists of a simple multiplication by a one-place number, combined with
1366    // a subtraction.
1367    bool isNeg = false;
1368    for (uint32_t i = 0; i < n; ++i) {
1369      uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1370      uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1371      bool borrow = subtrahend > u_tmp;
1372      DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1373                 << ", subtrahend == " << subtrahend
1374                 << ", borrow = " << borrow << '\n');
1375
1376      uint64_t result = u_tmp - subtrahend;
1377      uint32_t k = j + i;
1378      u[k++] = result & (b-1); // subtract low word
1379      u[k++] = result >> 32;   // subtract high word
1380      while (borrow && k <= m+n) { // deal with borrow to the left
1381        borrow = u[k] == 0;
1382        u[k]--;
1383        k++;
1384      }
1385      isNeg |= borrow;
1386      DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ",  u[j+i+1] == " <<
1387                    u[j+i+1] << '\n');
1388    }
1389    DEBUG(cerr << "KnuthDiv: after subtraction:");
1390    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1391    DEBUG(cerr << '\n');
1392    // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1393    // this step is actually negative, (u[j+n]...u[j]) should be left as the
1394    // true value plus b**(n+1), namely as the b's complement of
1395    // the true value, and a "borrow" to the left should be remembered.
1396    //
1397    if (isNeg) {
1398      bool carry = true;  // true because b's complement is "complement + 1"
1399      for (uint32_t i = 0; i <= m+n; ++i) {
1400        u[i] = ~u[i] + carry; // b's complement
1401        carry = carry && u[i] == 0;
1402      }
1403    }
1404    DEBUG(cerr << "KnuthDiv: after complement:");
1405    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1406    DEBUG(cerr << '\n');
1407
1408    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1409    // negative, go to step D6; otherwise go on to step D7.
1410    q[j] = qp;
1411    if (isNeg) {
1412      // D6. [Add back]. The probability that this step is necessary is very
1413      // small, on the order of only 2/b. Make sure that test data accounts for
1414      // this possibility. Decrease q[j] by 1
1415      q[j]--;
1416      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1417      // A carry will occur to the left of u[j+n], and it should be ignored
1418      // since it cancels with the borrow that occurred in D4.
1419      bool carry = false;
1420      for (uint32_t i = 0; i < n; i++) {
1421        uint32_t limit = std::min(u[j+i],v[i]);
1422        u[j+i] += v[i] + carry;
1423        carry = u[j+i] < limit || (carry && u[j+i] == limit);
1424      }
1425      u[j+n] += carry;
1426    }
1427    DEBUG(cerr << "KnuthDiv: after correction:");
1428    DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1429    DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1430
1431  // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1432  } while (--j >= 0);
1433
1434  DEBUG(cerr << "KnuthDiv: quotient:");
1435  DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1436  DEBUG(cerr << '\n');
1437
1438  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1439  // remainder may be obtained by dividing u[...] by d. If r is non-null we
1440  // compute the remainder (urem uses this).
1441  if (r) {
1442    // The value d is expressed by the "shift" value above since we avoided
1443    // multiplication by d by using a shift left. So, all we have to do is
1444    // shift right here. In order to mak
1445    if (shift) {
1446      uint32_t carry = 0;
1447      DEBUG(cerr << "KnuthDiv: remainder:");
1448      for (int i = n-1; i >= 0; i--) {
1449        r[i] = (u[i] >> shift) | carry;
1450        carry = u[i] << (32 - shift);
1451        DEBUG(cerr << " " << r[i]);
1452      }
1453    } else {
1454      for (int i = n-1; i >= 0; i--) {
1455        r[i] = u[i];
1456        DEBUG(cerr << " " << r[i]);
1457      }
1458    }
1459    DEBUG(cerr << '\n');
1460  }
1461  DEBUG(cerr << std::setbase(10) << '\n');
1462}
1463
1464void APInt::divide(const APInt LHS, uint32_t lhsWords,
1465                   const APInt &RHS, uint32_t rhsWords,
1466                   APInt *Quotient, APInt *Remainder)
1467{
1468  assert(lhsWords >= rhsWords && "Fractional result");
1469
1470  // First, compose the values into an array of 32-bit words instead of
1471  // 64-bit words. This is a necessity of both the "short division" algorithm
1472  // and the the Knuth "classical algorithm" which requires there to be native
1473  // operations for +, -, and * on an m bit value with an m*2 bit result. We
1474  // can't use 64-bit operands here because we don't have native results of
1475  // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1476  // work on large-endian machines.
1477  uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1478  uint32_t n = rhsWords * 2;
1479  uint32_t m = (lhsWords * 2) - n;
1480
1481  // Allocate space for the temporary values we need either on the stack, if
1482  // it will fit, or on the heap if it won't.
1483  uint32_t SPACE[128];
1484  uint32_t *U = 0;
1485  uint32_t *V = 0;
1486  uint32_t *Q = 0;
1487  uint32_t *R = 0;
1488  if ((Remainder?4:3)*n+2*m+1 <= 128) {
1489    U = &SPACE[0];
1490    V = &SPACE[m+n+1];
1491    Q = &SPACE[(m+n+1) + n];
1492    if (Remainder)
1493      R = &SPACE[(m+n+1) + n + (m+n)];
1494  } else {
1495    U = new uint32_t[m + n + 1];
1496    V = new uint32_t[n];
1497    Q = new uint32_t[m+n];
1498    if (Remainder)
1499      R = new uint32_t[n];
1500  }
1501
1502  // Initialize the dividend
1503  memset(U, 0, (m+n+1)*sizeof(uint32_t));
1504  for (unsigned i = 0; i < lhsWords; ++i) {
1505    uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1506    U[i * 2] = tmp & mask;
1507    U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1508  }
1509  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1510
1511  // Initialize the divisor
1512  memset(V, 0, (n)*sizeof(uint32_t));
1513  for (unsigned i = 0; i < rhsWords; ++i) {
1514    uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1515    V[i * 2] = tmp & mask;
1516    V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1517  }
1518
1519  // initialize the quotient and remainder
1520  memset(Q, 0, (m+n) * sizeof(uint32_t));
1521  if (Remainder)
1522    memset(R, 0, n * sizeof(uint32_t));
1523
1524  // Now, adjust m and n for the Knuth division. n is the number of words in
1525  // the divisor. m is the number of words by which the dividend exceeds the
1526  // divisor (i.e. m+n is the length of the dividend). These sizes must not
1527  // contain any zero words or the Knuth algorithm fails.
1528  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1529    n--;
1530    m++;
1531  }
1532  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1533    m--;
1534
1535  // If we're left with only a single word for the divisor, Knuth doesn't work
1536  // so we implement the short division algorithm here. This is much simpler
1537  // and faster because we are certain that we can divide a 64-bit quantity
1538  // by a 32-bit quantity at hardware speed and short division is simply a
1539  // series of such operations. This is just like doing short division but we
1540  // are using base 2^32 instead of base 10.
1541  assert(n != 0 && "Divide by zero?");
1542  if (n == 1) {
1543    uint32_t divisor = V[0];
1544    uint32_t remainder = 0;
1545    for (int i = m+n-1; i >= 0; i--) {
1546      uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1547      if (partial_dividend == 0) {
1548        Q[i] = 0;
1549        remainder = 0;
1550      } else if (partial_dividend < divisor) {
1551        Q[i] = 0;
1552        remainder = partial_dividend;
1553      } else if (partial_dividend == divisor) {
1554        Q[i] = 1;
1555        remainder = 0;
1556      } else {
1557        Q[i] = partial_dividend / divisor;
1558        remainder = partial_dividend - (Q[i] * divisor);
1559      }
1560    }
1561    if (R)
1562      R[0] = remainder;
1563  } else {
1564    // Now we're ready to invoke the Knuth classical divide algorithm. In this
1565    // case n > 1.
1566    KnuthDiv(U, V, Q, R, m, n);
1567  }
1568
1569  // If the caller wants the quotient
1570  if (Quotient) {
1571    // Set up the Quotient value's memory.
1572    if (Quotient->BitWidth != LHS.BitWidth) {
1573      if (Quotient->isSingleWord())
1574        Quotient->VAL = 0;
1575      else
1576        delete [] Quotient->pVal;
1577      Quotient->BitWidth = LHS.BitWidth;
1578      if (!Quotient->isSingleWord())
1579        Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1580    } else
1581      Quotient->clear();
1582
1583    // The quotient is in Q. Reconstitute the quotient into Quotient's low
1584    // order words.
1585    if (lhsWords == 1) {
1586      uint64_t tmp =
1587        uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1588      if (Quotient->isSingleWord())
1589        Quotient->VAL = tmp;
1590      else
1591        Quotient->pVal[0] = tmp;
1592    } else {
1593      assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1594      for (unsigned i = 0; i < lhsWords; ++i)
1595        Quotient->pVal[i] =
1596          uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1597    }
1598  }
1599
1600  // If the caller wants the remainder
1601  if (Remainder) {
1602    // Set up the Remainder value's memory.
1603    if (Remainder->BitWidth != RHS.BitWidth) {
1604      if (Remainder->isSingleWord())
1605        Remainder->VAL = 0;
1606      else
1607        delete [] Remainder->pVal;
1608      Remainder->BitWidth = RHS.BitWidth;
1609      if (!Remainder->isSingleWord())
1610        Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1611    } else
1612      Remainder->clear();
1613
1614    // The remainder is in R. Reconstitute the remainder into Remainder's low
1615    // order words.
1616    if (rhsWords == 1) {
1617      uint64_t tmp =
1618        uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1619      if (Remainder->isSingleWord())
1620        Remainder->VAL = tmp;
1621      else
1622        Remainder->pVal[0] = tmp;
1623    } else {
1624      assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1625      for (unsigned i = 0; i < rhsWords; ++i)
1626        Remainder->pVal[i] =
1627          uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1628    }
1629  }
1630
1631  // Clean up the memory we allocated.
1632  if (U != &SPACE[0]) {
1633    delete [] U;
1634    delete [] V;
1635    delete [] Q;
1636    delete [] R;
1637  }
1638}
1639
1640APInt APInt::udiv(const APInt& RHS) const {
1641  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1642
1643  // First, deal with the easy case
1644  if (isSingleWord()) {
1645    assert(RHS.VAL != 0 && "Divide by zero?");
1646    return APInt(BitWidth, VAL / RHS.VAL);
1647  }
1648
1649  // Get some facts about the LHS and RHS number of bits and words
1650  uint32_t rhsBits = RHS.getActiveBits();
1651  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1652  assert(rhsWords && "Divided by zero???");
1653  uint32_t lhsBits = this->getActiveBits();
1654  uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1655
1656  // Deal with some degenerate cases
1657  if (!lhsWords)
1658    // 0 / X ===> 0
1659    return APInt(BitWidth, 0);
1660  else if (lhsWords < rhsWords || this->ult(RHS)) {
1661    // X / Y ===> 0, iff X < Y
1662    return APInt(BitWidth, 0);
1663  } else if (*this == RHS) {
1664    // X / X ===> 1
1665    return APInt(BitWidth, 1);
1666  } else if (lhsWords == 1 && rhsWords == 1) {
1667    // All high words are zero, just use native divide
1668    return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1669  }
1670
1671  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1672  APInt Quotient(1,0); // to hold result.
1673  divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1674  return Quotient;
1675}
1676
1677APInt APInt::urem(const APInt& RHS) const {
1678  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1679  if (isSingleWord()) {
1680    assert(RHS.VAL != 0 && "Remainder by zero?");
1681    return APInt(BitWidth, VAL % RHS.VAL);
1682  }
1683
1684  // Get some facts about the LHS
1685  uint32_t lhsBits = getActiveBits();
1686  uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1687
1688  // Get some facts about the RHS
1689  uint32_t rhsBits = RHS.getActiveBits();
1690  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1691  assert(rhsWords && "Performing remainder operation by zero ???");
1692
1693  // Check the degenerate cases
1694  if (lhsWords == 0) {
1695    // 0 % Y ===> 0
1696    return APInt(BitWidth, 0);
1697  } else if (lhsWords < rhsWords || this->ult(RHS)) {
1698    // X % Y ===> X, iff X < Y
1699    return *this;
1700  } else if (*this == RHS) {
1701    // X % X == 0;
1702    return APInt(BitWidth, 0);
1703  } else if (lhsWords == 1) {
1704    // All high words are zero, just use native remainder
1705    return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1706  }
1707
1708  // We have to compute it the hard way. Invoke the Knute divide algorithm.
1709  APInt Remainder(1,0);
1710  divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1711  return Remainder;
1712}
1713
1714void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1715                       uint8_t radix) {
1716  // Check our assumptions here
1717  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1718         "Radix should be 2, 8, 10, or 16!");
1719  assert(str && "String is null?");
1720  bool isNeg = str[0] == '-';
1721  if (isNeg)
1722    str++, slen--;
1723  assert(slen <= numbits || radix != 2 && "Insufficient bit width");
1724  assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width");
1725  assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width");
1726  assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width");
1727
1728  // Allocate memory
1729  if (!isSingleWord())
1730    pVal = getClearedMemory(getNumWords());
1731
1732  // Figure out if we can shift instead of multiply
1733  uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1734
1735  // Set up an APInt for the digit to add outside the loop so we don't
1736  // constantly construct/destruct it.
1737  APInt apdigit(getBitWidth(), 0);
1738  APInt apradix(getBitWidth(), radix);
1739
1740  // Enter digit traversal loop
1741  for (unsigned i = 0; i < slen; i++) {
1742    // Get a digit
1743    uint32_t digit = 0;
1744    char cdigit = str[i];
1745    if (isdigit(cdigit))
1746      digit = cdigit - '0';
1747    else if (isxdigit(cdigit))
1748      if (cdigit >= 'a')
1749        digit = cdigit - 'a' + 10;
1750      else if (cdigit >= 'A')
1751        digit = cdigit - 'A' + 10;
1752      else
1753        assert(0 && "huh?");
1754    else
1755      assert(0 && "Invalid character in digit string");
1756
1757    // Shift or multiple the value by the radix
1758    if (shift)
1759      this->shl(shift);
1760    else
1761      *this *= apradix;
1762
1763    // Add in the digit we just interpreted
1764    if (apdigit.isSingleWord())
1765      apdigit.VAL = digit;
1766    else
1767      apdigit.pVal[0] = digit;
1768    *this += apdigit;
1769  }
1770  // If its negative, put it in two's complement form
1771  if (isNeg) {
1772    (*this)--;
1773    this->flip();
1774  }
1775}
1776
1777std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1778  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1779         "Radix should be 2, 8, 10, or 16!");
1780  static const char *digits[] = {
1781    "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1782  };
1783  std::string result;
1784  uint32_t bits_used = getActiveBits();
1785  if (isSingleWord()) {
1786    char buf[65];
1787    const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1788       (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1789    if (format) {
1790      if (wantSigned) {
1791        int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1792                           (APINT_BITS_PER_WORD-BitWidth);
1793        sprintf(buf, format, sextVal);
1794      } else
1795        sprintf(buf, format, VAL);
1796    } else {
1797      memset(buf, 0, 65);
1798      uint64_t v = VAL;
1799      while (bits_used) {
1800        uint32_t bit = v & 1;
1801        bits_used--;
1802        buf[bits_used] = digits[bit][0];
1803        v >>=1;
1804      }
1805    }
1806    result = buf;
1807    return result;
1808  }
1809
1810  if (radix != 10) {
1811    uint64_t mask = radix - 1;
1812    uint32_t shift = (radix == 16 ? 4 : radix  == 8 ? 3 : 1);
1813    uint32_t nibbles = APINT_BITS_PER_WORD / shift;
1814    for (uint32_t i = 0; i < getNumWords(); ++i) {
1815      uint64_t value = pVal[i];
1816      for (uint32_t j = 0; j < nibbles; ++j) {
1817        result.insert(0, digits[ value & mask ]);
1818        value >>= shift;
1819      }
1820    }
1821    return result;
1822  }
1823
1824  APInt tmp(*this);
1825  APInt divisor(4, radix);
1826  APInt zero(tmp.getBitWidth(), 0);
1827  size_t insert_at = 0;
1828  if (wantSigned && tmp[BitWidth-1]) {
1829    // They want to print the signed version and it is a negative value
1830    // Flip the bits and add one to turn it into the equivalent positive
1831    // value and put a '-' in the result.
1832    tmp.flip();
1833    tmp++;
1834    result = "-";
1835    insert_at = 1;
1836  }
1837  if (tmp == APInt(tmp.getBitWidth(), 0))
1838    result = "0";
1839  else while (tmp.ne(zero)) {
1840    APInt APdigit(1,0);
1841    APInt tmp2(tmp.getBitWidth(), 0);
1842    divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
1843           &APdigit);
1844    uint32_t digit = APdigit.getZExtValue();
1845    assert(digit < radix && "divide failed");
1846    result.insert(insert_at,digits[digit]);
1847    tmp = tmp2;
1848  }
1849
1850  return result;
1851}
1852
1853#ifndef NDEBUG
1854void APInt::dump() const
1855{
1856  cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
1857  if (isSingleWord())
1858    cerr << VAL;
1859  else for (unsigned i = getNumWords(); i > 0; i--) {
1860    cerr << pVal[i-1] << " ";
1861  }
1862  cerr << " U(" << this->toString(10) << ") S(" << this->toStringSigned(10)
1863       << ")\n" << std::setbase(10);
1864}
1865#endif
1866