APInt.cpp revision 66ed1099ff3591c61e008198bb5a30862e778fc0
1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Sheng Zhou and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/MathExtras.h"
20#include <cstring>
21#include <cstdlib>
22#ifndef NDEBUG
23#include <iomanip>
24#endif
25
26using namespace llvm;
27
28/// A utility function for allocating memory, checking for allocation failures,
29/// and ensuring the contents are zeroed.
30inline static uint64_t* getClearedMemory(uint32_t numWords) {
31  uint64_t * result = new uint64_t[numWords];
32  assert(result && "APInt memory allocation fails!");
33  memset(result, 0, numWords * sizeof(uint64_t));
34  return result;
35}
36
37/// A utility function for allocating memory and checking for allocation
38/// failure.  The content is not zeroed.
39inline static uint64_t* getMemory(uint32_t numWords) {
40  uint64_t * result = new uint64_t[numWords];
41  assert(result && "APInt memory allocation fails!");
42  return result;
43}
44
45APInt::APInt(uint32_t numBits, uint64_t val)
46  : BitWidth(numBits), VAL(0) {
47  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
48  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
49  if (isSingleWord())
50    VAL = val;
51  else {
52    pVal = getClearedMemory(getNumWords());
53    pVal[0] = val;
54  }
55  clearUnusedBits();
56}
57
58APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
59  : BitWidth(numBits), VAL(0)  {
60  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
61  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
62  assert(bigVal && "Null pointer detected!");
63  if (isSingleWord())
64    VAL = bigVal[0];
65  else {
66    // Get memory, cleared to 0
67    pVal = getClearedMemory(getNumWords());
68    // Calculate the number of words to copy
69    uint32_t words = std::min<uint32_t>(numWords, getNumWords());
70    // Copy the words from bigVal to pVal
71    memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
72  }
73  // Make sure unused high bits are cleared
74  clearUnusedBits();
75}
76
77APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
78             uint8_t radix)
79  : BitWidth(numbits), VAL(0) {
80  fromString(numbits, StrStart, slen, radix);
81}
82
83APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
84  : BitWidth(numbits), VAL(0) {
85  assert(!Val.empty() && "String empty?");
86  fromString(numbits, Val.c_str(), Val.size(), radix);
87}
88
89APInt::APInt(const APInt& that)
90  : BitWidth(that.BitWidth), VAL(0) {
91  if (isSingleWord())
92    VAL = that.VAL;
93  else {
94    pVal = getMemory(getNumWords());
95    memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
96  }
97}
98
99APInt::~APInt() {
100  if (!isSingleWord() && pVal)
101    delete [] pVal;
102}
103
104APInt& APInt::operator=(const APInt& RHS) {
105  // Don't do anything for X = X
106  if (this == &RHS)
107    return *this;
108
109  // If the bitwidths are the same, we can avoid mucking with memory
110  if (BitWidth == RHS.getBitWidth()) {
111    if (isSingleWord())
112      VAL = RHS.VAL;
113    else
114      memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
115    return *this;
116  }
117
118  if (isSingleWord())
119    if (RHS.isSingleWord())
120      VAL = RHS.VAL;
121    else {
122      VAL = 0;
123      pVal = getMemory(RHS.getNumWords());
124      memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
125    }
126  else if (getNumWords() == RHS.getNumWords())
127    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
128  else if (RHS.isSingleWord()) {
129    delete [] pVal;
130    VAL = RHS.VAL;
131  } else {
132    delete [] pVal;
133    pVal = getMemory(RHS.getNumWords());
134    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
135  }
136  BitWidth = RHS.BitWidth;
137  return clearUnusedBits();
138}
139
140APInt& APInt::operator=(uint64_t RHS) {
141  if (isSingleWord())
142    VAL = RHS;
143  else {
144    pVal[0] = RHS;
145    memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
146  }
147  return clearUnusedBits();
148}
149
150/// add_1 - This function adds a single "digit" integer, y, to the multiple
151/// "digit" integer array,  x[]. x[] is modified to reflect the addition and
152/// 1 is returned if there is a carry out, otherwise 0 is returned.
153/// @returns the carry of the addition.
154static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
155  for (uint32_t i = 0; i < len; ++i) {
156    dest[i] = y + x[i];
157    if (dest[i] < y)
158      y = 1; // Carry one to next digit.
159    else {
160      y = 0; // No need to carry so exit early
161      break;
162    }
163  }
164  return y;
165}
166
167/// @brief Prefix increment operator. Increments the APInt by one.
168APInt& APInt::operator++() {
169  if (isSingleWord())
170    ++VAL;
171  else
172    add_1(pVal, pVal, getNumWords(), 1);
173  return clearUnusedBits();
174}
175
176/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
177/// the multi-digit integer array, x[], propagating the borrowed 1 value until
178/// no further borrowing is neeeded or it runs out of "digits" in x.  The result
179/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
180/// In other words, if y > x then this function returns 1, otherwise 0.
181/// @returns the borrow out of the subtraction
182static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
183  for (uint32_t i = 0; i < len; ++i) {
184    uint64_t X = x[i];
185    x[i] -= y;
186    if (y > X)
187      y = 1;  // We have to "borrow 1" from next "digit"
188    else {
189      y = 0;  // No need to borrow
190      break;  // Remaining digits are unchanged so exit early
191    }
192  }
193  return bool(y);
194}
195
196/// @brief Prefix decrement operator. Decrements the APInt by one.
197APInt& APInt::operator--() {
198  if (isSingleWord())
199    --VAL;
200  else
201    sub_1(pVal, getNumWords(), 1);
202  return clearUnusedBits();
203}
204
205/// add - This function adds the integer array x to the integer array Y and
206/// places the result in dest.
207/// @returns the carry out from the addition
208/// @brief General addition of 64-bit integer arrays
209static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
210                uint32_t len) {
211  bool carry = false;
212  for (uint32_t i = 0; i< len; ++i) {
213    uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
214    dest[i] = x[i] + y[i] + carry;
215    carry = dest[i] < limit || (carry && dest[i] == limit);
216  }
217  return carry;
218}
219
220/// Adds the RHS APint to this APInt.
221/// @returns this, after addition of RHS.
222/// @brief Addition assignment operator.
223APInt& APInt::operator+=(const APInt& RHS) {
224  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
225  if (isSingleWord())
226    VAL += RHS.VAL;
227  else {
228    add(pVal, pVal, RHS.pVal, getNumWords());
229  }
230  return clearUnusedBits();
231}
232
233/// Subtracts the integer array y from the integer array x
234/// @returns returns the borrow out.
235/// @brief Generalized subtraction of 64-bit integer arrays.
236static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
237                uint32_t len) {
238  bool borrow = false;
239  for (uint32_t i = 0; i < len; ++i) {
240    uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
241    borrow = y[i] > x_tmp || (borrow && x[i] == 0);
242    dest[i] = x_tmp - y[i];
243  }
244  return borrow;
245}
246
247/// Subtracts the RHS APInt from this APInt
248/// @returns this, after subtraction
249/// @brief Subtraction assignment operator.
250APInt& APInt::operator-=(const APInt& RHS) {
251  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
252  if (isSingleWord())
253    VAL -= RHS.VAL;
254  else
255    sub(pVal, pVal, RHS.pVal, getNumWords());
256  return clearUnusedBits();
257}
258
259/// Multiplies an integer array, x by a a uint64_t integer and places the result
260/// into dest.
261/// @returns the carry out of the multiplication.
262/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
263static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
264  // Split y into high 32-bit part (hy)  and low 32-bit part (ly)
265  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
266  uint64_t carry = 0;
267
268  // For each digit of x.
269  for (uint32_t i = 0; i < len; ++i) {
270    // Split x into high and low words
271    uint64_t lx = x[i] & 0xffffffffULL;
272    uint64_t hx = x[i] >> 32;
273    // hasCarry - A flag to indicate if there is a carry to the next digit.
274    // hasCarry == 0, no carry
275    // hasCarry == 1, has carry
276    // hasCarry == 2, no carry and the calculation result == 0.
277    uint8_t hasCarry = 0;
278    dest[i] = carry + lx * ly;
279    // Determine if the add above introduces carry.
280    hasCarry = (dest[i] < carry) ? 1 : 0;
281    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
282    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
283    // (2^32 - 1) + 2^32 = 2^64.
284    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
285
286    carry += (lx * hy) & 0xffffffffULL;
287    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
288    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
289            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
290  }
291  return carry;
292}
293
294/// Multiplies integer array x by integer array y and stores the result into
295/// the integer array dest. Note that dest's size must be >= xlen + ylen.
296/// @brief Generalized multiplicate of integer arrays.
297static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
298                uint32_t ylen) {
299  dest[xlen] = mul_1(dest, x, xlen, y[0]);
300  for (uint32_t i = 1; i < ylen; ++i) {
301    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
302    uint64_t carry = 0, lx = 0, hx = 0;
303    for (uint32_t j = 0; j < xlen; ++j) {
304      lx = x[j] & 0xffffffffULL;
305      hx = x[j] >> 32;
306      // hasCarry - A flag to indicate if has carry.
307      // hasCarry == 0, no carry
308      // hasCarry == 1, has carry
309      // hasCarry == 2, no carry and the calculation result == 0.
310      uint8_t hasCarry = 0;
311      uint64_t resul = carry + lx * ly;
312      hasCarry = (resul < carry) ? 1 : 0;
313      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
314      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
315
316      carry += (lx * hy) & 0xffffffffULL;
317      resul = (carry << 32) | (resul & 0xffffffffULL);
318      dest[i+j] += resul;
319      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
320              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
321              ((lx * hy) >> 32) + hx * hy;
322    }
323    dest[i+xlen] = carry;
324  }
325}
326
327APInt& APInt::operator*=(const APInt& RHS) {
328  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
329  if (isSingleWord()) {
330    VAL *= RHS.VAL;
331    clearUnusedBits();
332    return *this;
333  }
334
335  // Get some bit facts about LHS and check for zero
336  uint32_t lhsBits = getActiveBits();
337  uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
338  if (!lhsWords)
339    // 0 * X ===> 0
340    return *this;
341
342  // Get some bit facts about RHS and check for zero
343  uint32_t rhsBits = RHS.getActiveBits();
344  uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
345  if (!rhsWords) {
346    // X * 0 ===> 0
347    clear();
348    return *this;
349  }
350
351  // Allocate space for the result
352  uint32_t destWords = rhsWords + lhsWords;
353  uint64_t *dest = getMemory(destWords);
354
355  // Perform the long multiply
356  mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
357
358  // Copy result back into *this
359  clear();
360  uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
361  memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
362
363  // delete dest array and return
364  delete[] dest;
365  return *this;
366}
367
368APInt& APInt::operator&=(const APInt& RHS) {
369  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
370  if (isSingleWord()) {
371    VAL &= RHS.VAL;
372    return *this;
373  }
374  uint32_t numWords = getNumWords();
375  for (uint32_t i = 0; i < numWords; ++i)
376    pVal[i] &= RHS.pVal[i];
377  return *this;
378}
379
380APInt& APInt::operator|=(const APInt& RHS) {
381  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
382  if (isSingleWord()) {
383    VAL |= RHS.VAL;
384    return *this;
385  }
386  uint32_t numWords = getNumWords();
387  for (uint32_t i = 0; i < numWords; ++i)
388    pVal[i] |= RHS.pVal[i];
389  return *this;
390}
391
392APInt& APInt::operator^=(const APInt& RHS) {
393  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
394  if (isSingleWord()) {
395    VAL ^= RHS.VAL;
396    this->clearUnusedBits();
397    return *this;
398  }
399  uint32_t numWords = getNumWords();
400  for (uint32_t i = 0; i < numWords; ++i)
401    pVal[i] ^= RHS.pVal[i];
402  return clearUnusedBits();
403}
404
405APInt APInt::operator&(const APInt& RHS) const {
406  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
407  if (isSingleWord())
408    return APInt(getBitWidth(), VAL & RHS.VAL);
409
410  uint32_t numWords = getNumWords();
411  uint64_t* val = getMemory(numWords);
412  for (uint32_t i = 0; i < numWords; ++i)
413    val[i] = pVal[i] & RHS.pVal[i];
414  return APInt(val, getBitWidth());
415}
416
417APInt APInt::operator|(const APInt& RHS) const {
418  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
419  if (isSingleWord())
420    return APInt(getBitWidth(), VAL | RHS.VAL);
421
422  uint32_t numWords = getNumWords();
423  uint64_t *val = getMemory(numWords);
424  for (uint32_t i = 0; i < numWords; ++i)
425    val[i] = pVal[i] | RHS.pVal[i];
426  return APInt(val, getBitWidth());
427}
428
429APInt APInt::operator^(const APInt& RHS) const {
430  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
431  if (isSingleWord())
432    return APInt(BitWidth, VAL ^ RHS.VAL);
433
434  uint32_t numWords = getNumWords();
435  uint64_t *val = getMemory(numWords);
436  for (uint32_t i = 0; i < numWords; ++i)
437    val[i] = pVal[i] ^ RHS.pVal[i];
438
439  // 0^0==1 so clear the high bits in case they got set.
440  return APInt(val, getBitWidth()).clearUnusedBits();
441}
442
443bool APInt::operator !() const {
444  if (isSingleWord())
445    return !VAL;
446
447  for (uint32_t i = 0; i < getNumWords(); ++i)
448    if (pVal[i])
449      return false;
450  return true;
451}
452
453APInt APInt::operator*(const APInt& RHS) const {
454  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
455  if (isSingleWord())
456    return APInt(BitWidth, VAL * RHS.VAL);
457  APInt Result(*this);
458  Result *= RHS;
459  return Result.clearUnusedBits();
460}
461
462APInt APInt::operator+(const APInt& RHS) const {
463  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
464  if (isSingleWord())
465    return APInt(BitWidth, VAL + RHS.VAL);
466  APInt Result(BitWidth, 0);
467  add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
468  return Result.clearUnusedBits();
469}
470
471APInt APInt::operator-(const APInt& RHS) const {
472  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
473  if (isSingleWord())
474    return APInt(BitWidth, VAL - RHS.VAL);
475  APInt Result(BitWidth, 0);
476  sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
477  return Result.clearUnusedBits();
478}
479
480bool APInt::operator[](uint32_t bitPosition) const {
481  return (maskBit(bitPosition) &
482          (isSingleWord() ?  VAL : pVal[whichWord(bitPosition)])) != 0;
483}
484
485bool APInt::operator==(const APInt& RHS) const {
486  assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
487  if (isSingleWord())
488    return VAL == RHS.VAL;
489
490  // Get some facts about the number of bits used in the two operands.
491  uint32_t n1 = getActiveBits();
492  uint32_t n2 = RHS.getActiveBits();
493
494  // If the number of bits isn't the same, they aren't equal
495  if (n1 != n2)
496    return false;
497
498  // If the number of bits fits in a word, we only need to compare the low word.
499  if (n1 <= APINT_BITS_PER_WORD)
500    return pVal[0] == RHS.pVal[0];
501
502  // Otherwise, compare everything
503  for (int i = whichWord(n1 - 1); i >= 0; --i)
504    if (pVal[i] != RHS.pVal[i])
505      return false;
506  return true;
507}
508
509bool APInt::operator==(uint64_t Val) const {
510  if (isSingleWord())
511    return VAL == Val;
512
513  uint32_t n = getActiveBits();
514  if (n <= APINT_BITS_PER_WORD)
515    return pVal[0] == Val;
516  else
517    return false;
518}
519
520bool APInt::ult(const APInt& RHS) const {
521  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
522  if (isSingleWord())
523    return VAL < RHS.VAL;
524
525  // Get active bit length of both operands
526  uint32_t n1 = getActiveBits();
527  uint32_t n2 = RHS.getActiveBits();
528
529  // If magnitude of LHS is less than RHS, return true.
530  if (n1 < n2)
531    return true;
532
533  // If magnitude of RHS is greather than LHS, return false.
534  if (n2 < n1)
535    return false;
536
537  // If they bot fit in a word, just compare the low order word
538  if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
539    return pVal[0] < RHS.pVal[0];
540
541  // Otherwise, compare all words
542  uint32_t topWord = whichWord(std::max(n1,n2)-1);
543  for (int i = topWord; i >= 0; --i) {
544    if (pVal[i] > RHS.pVal[i])
545      return false;
546    if (pVal[i] < RHS.pVal[i])
547      return true;
548  }
549  return false;
550}
551
552bool APInt::slt(const APInt& RHS) const {
553  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
554  if (isSingleWord()) {
555    int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
556    int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
557    return lhsSext < rhsSext;
558  }
559
560  APInt lhs(*this);
561  APInt rhs(RHS);
562  bool lhsNeg = isNegative();
563  bool rhsNeg = rhs.isNegative();
564  if (lhsNeg) {
565    // Sign bit is set so perform two's complement to make it positive
566    lhs.flip();
567    lhs++;
568  }
569  if (rhsNeg) {
570    // Sign bit is set so perform two's complement to make it positive
571    rhs.flip();
572    rhs++;
573  }
574
575  // Now we have unsigned values to compare so do the comparison if necessary
576  // based on the negativeness of the values.
577  if (lhsNeg)
578    if (rhsNeg)
579      return lhs.ugt(rhs);
580    else
581      return true;
582  else if (rhsNeg)
583    return false;
584  else
585    return lhs.ult(rhs);
586}
587
588APInt& APInt::set(uint32_t bitPosition) {
589  if (isSingleWord())
590    VAL |= maskBit(bitPosition);
591  else
592    pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
593  return *this;
594}
595
596APInt& APInt::set() {
597  if (isSingleWord()) {
598    VAL = -1ULL;
599    return clearUnusedBits();
600  }
601
602  // Set all the bits in all the words.
603  for (uint32_t i = 0; i < getNumWords() - 1; ++i)
604    pVal[i] = -1ULL;
605  // Clear the unused ones
606  return clearUnusedBits();
607}
608
609/// Set the given bit to 0 whose position is given as "bitPosition".
610/// @brief Set a given bit to 0.
611APInt& APInt::clear(uint32_t bitPosition) {
612  if (isSingleWord())
613    VAL &= ~maskBit(bitPosition);
614  else
615    pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
616  return *this;
617}
618
619/// @brief Set every bit to 0.
620APInt& APInt::clear() {
621  if (isSingleWord())
622    VAL = 0;
623  else
624    memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
625  return *this;
626}
627
628/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
629/// this APInt.
630APInt APInt::operator~() const {
631  APInt Result(*this);
632  Result.flip();
633  return Result;
634}
635
636/// @brief Toggle every bit to its opposite value.
637APInt& APInt::flip() {
638  if (isSingleWord()) {
639    VAL ^= -1ULL;
640    return clearUnusedBits();
641  }
642  for (uint32_t i = 0; i < getNumWords(); ++i)
643    pVal[i] ^= -1ULL;
644  return clearUnusedBits();
645}
646
647/// Toggle a given bit to its opposite value whose position is given
648/// as "bitPosition".
649/// @brief Toggles a given bit to its opposite value.
650APInt& APInt::flip(uint32_t bitPosition) {
651  assert(bitPosition < BitWidth && "Out of the bit-width range!");
652  if ((*this)[bitPosition]) clear(bitPosition);
653  else set(bitPosition);
654  return *this;
655}
656
657uint64_t APInt::getHashValue() const {
658  // Put the bit width into the low order bits.
659  uint64_t hash = BitWidth;
660
661  // Add the sum of the words to the hash.
662  if (isSingleWord())
663    hash += VAL << 6; // clear separation of up to 64 bits
664  else
665    for (uint32_t i = 0; i < getNumWords(); ++i)
666      hash += pVal[i] << 6; // clear sepration of up to 64 bits
667  return hash;
668}
669
670/// HiBits - This function returns the high "numBits" bits of this APInt.
671APInt APInt::getHiBits(uint32_t numBits) const {
672  return APIntOps::lshr(*this, BitWidth - numBits);
673}
674
675/// LoBits - This function returns the low "numBits" bits of this APInt.
676APInt APInt::getLoBits(uint32_t numBits) const {
677  return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
678                        BitWidth - numBits);
679}
680
681bool APInt::isPowerOf2() const {
682  return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
683}
684
685uint32_t APInt::countLeadingZeros() const {
686  uint32_t Count = 0;
687  if (isSingleWord())
688    Count = CountLeadingZeros_64(VAL);
689  else {
690    for (uint32_t i = getNumWords(); i > 0u; --i) {
691      if (pVal[i-1] == 0)
692        Count += APINT_BITS_PER_WORD;
693      else {
694        Count += CountLeadingZeros_64(pVal[i-1]);
695        break;
696      }
697    }
698  }
699  uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
700  if (remainder)
701    Count -= APINT_BITS_PER_WORD - remainder;
702  return Count;
703}
704
705uint32_t APInt::countTrailingZeros() const {
706  if (isSingleWord())
707    return CountTrailingZeros_64(VAL);
708  uint32_t Count = 0;
709  uint32_t i = 0;
710  for (; i < getNumWords() && pVal[i] == 0; ++i)
711    Count += APINT_BITS_PER_WORD;
712  if (i < getNumWords())
713    Count += CountTrailingZeros_64(pVal[i]);
714  return Count;
715}
716
717uint32_t APInt::countPopulation() const {
718  if (isSingleWord())
719    return CountPopulation_64(VAL);
720  uint32_t Count = 0;
721  for (uint32_t i = 0; i < getNumWords(); ++i)
722    Count += CountPopulation_64(pVal[i]);
723  return Count;
724}
725
726APInt APInt::byteSwap() const {
727  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
728  if (BitWidth == 16)
729    return APInt(BitWidth, ByteSwap_16(VAL));
730  else if (BitWidth == 32)
731    return APInt(BitWidth, ByteSwap_32(VAL));
732  else if (BitWidth == 48) {
733    uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
734    Tmp1 = ByteSwap_32(Tmp1);
735    uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
736    Tmp2 = ByteSwap_16(Tmp2);
737    return
738      APInt(BitWidth,
739            (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16));
740  } else if (BitWidth == 64)
741    return APInt(BitWidth, ByteSwap_64(VAL));
742  else {
743    APInt Result(BitWidth, 0);
744    char *pByte = (char*)Result.pVal;
745    for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
746      char Tmp = pByte[i];
747      pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
748      pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
749    }
750    return Result;
751  }
752}
753
754APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
755                                            const APInt& API2) {
756  APInt A = API1, B = API2;
757  while (!!B) {
758    APInt T = B;
759    B = APIntOps::urem(A, B);
760    A = T;
761  }
762  return A;
763}
764
765APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
766  union {
767    double D;
768    uint64_t I;
769  } T;
770  T.D = Double;
771
772  // Get the sign bit from the highest order bit
773  bool isNeg = T.I >> 63;
774
775  // Get the 11-bit exponent and adjust for the 1023 bit bias
776  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
777
778  // If the exponent is negative, the value is < 0 so just return 0.
779  if (exp < 0)
780    return APInt(64u, 0u);
781
782  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
783  uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
784
785  // If the exponent doesn't shift all bits out of the mantissa
786  if (exp < 52)
787    return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
788                    APInt(width, mantissa >> (52 - exp));
789
790  // If the client didn't provide enough bits for us to shift the mantissa into
791  // then the result is undefined, just return 0
792  if (width <= exp - 52)
793    return APInt(width, 0);
794
795  // Otherwise, we have to shift the mantissa bits up to the right location
796  APInt Tmp(width, mantissa);
797  Tmp = Tmp.shl(exp - 52);
798  return isNeg ? -Tmp : Tmp;
799}
800
801/// RoundToDouble - This function convert this APInt to a double.
802/// The layout for double is as following (IEEE Standard 754):
803///  --------------------------------------
804/// |  Sign    Exponent    Fraction    Bias |
805/// |-------------------------------------- |
806/// |  1[63]   11[62-52]   52[51-00]   1023 |
807///  --------------------------------------
808double APInt::roundToDouble(bool isSigned) const {
809
810  // Handle the simple case where the value is contained in one uint64_t.
811  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
812    if (isSigned) {
813      int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
814      return double(sext);
815    } else
816      return double(VAL);
817  }
818
819  // Determine if the value is negative.
820  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
821
822  // Construct the absolute value if we're negative.
823  APInt Tmp(isNeg ? -(*this) : (*this));
824
825  // Figure out how many bits we're using.
826  uint32_t n = Tmp.getActiveBits();
827
828  // The exponent (without bias normalization) is just the number of bits
829  // we are using. Note that the sign bit is gone since we constructed the
830  // absolute value.
831  uint64_t exp = n;
832
833  // Return infinity for exponent overflow
834  if (exp > 1023) {
835    if (!isSigned || !isNeg)
836      return double(1.0E300 * 1.0E300); // positive infinity
837    else
838      return double(-1.0E300 * 1.0E300); // negative infinity
839  }
840  exp += 1023; // Increment for 1023 bias
841
842  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
843  // extract the high 52 bits from the correct words in pVal.
844  uint64_t mantissa;
845  unsigned hiWord = whichWord(n-1);
846  if (hiWord == 0) {
847    mantissa = Tmp.pVal[0];
848    if (n > 52)
849      mantissa >>= n - 52; // shift down, we want the top 52 bits.
850  } else {
851    assert(hiWord > 0 && "huh?");
852    uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
853    uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
854    mantissa = hibits | lobits;
855  }
856
857  // The leading bit of mantissa is implicit, so get rid of it.
858  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
859  union {
860    double D;
861    uint64_t I;
862  } T;
863  T.I = sign | (exp << 52) | mantissa;
864  return T.D;
865}
866
867// Truncate to new width.
868void APInt::trunc(uint32_t width) {
869  assert(width < BitWidth && "Invalid APInt Truncate request");
870  assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
871  uint32_t wordsBefore = getNumWords();
872  BitWidth = width;
873  uint32_t wordsAfter = getNumWords();
874  if (wordsBefore != wordsAfter) {
875    if (wordsAfter == 1) {
876      uint64_t *tmp = pVal;
877      VAL = pVal[0];
878      delete [] tmp;
879    } else {
880      uint64_t *newVal = getClearedMemory(wordsAfter);
881      for (uint32_t i = 0; i < wordsAfter; ++i)
882        newVal[i] = pVal[i];
883      delete [] pVal;
884      pVal = newVal;
885    }
886  }
887  clearUnusedBits();
888}
889
890// Sign extend to a new width.
891void APInt::sext(uint32_t width) {
892  assert(width > BitWidth && "Invalid APInt SignExtend request");
893  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
894  // If the sign bit isn't set, this is the same as zext.
895  if (!isNegative()) {
896    zext(width);
897    return;
898  }
899
900  // The sign bit is set. First, get some facts
901  uint32_t wordsBefore = getNumWords();
902  uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
903  BitWidth = width;
904  uint32_t wordsAfter = getNumWords();
905
906  // Mask the high order word appropriately
907  if (wordsBefore == wordsAfter) {
908    uint32_t newWordBits = width % APINT_BITS_PER_WORD;
909    // The extension is contained to the wordsBefore-1th word.
910    uint64_t mask = (~0ULL >> (APINT_BITS_PER_WORD - newWordBits)) <<  wordBits;
911    if (wordsBefore == 1)
912      VAL |= mask;
913    else
914      pVal[wordsBefore-1] |= mask;
915    clearUnusedBits();
916    return;
917  }
918
919  uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
920  uint64_t *newVal = getMemory(wordsAfter);
921  if (wordsBefore == 1)
922    newVal[0] = VAL | mask;
923  else {
924    for (uint32_t i = 0; i < wordsBefore; ++i)
925      newVal[i] = pVal[i];
926    newVal[wordsBefore-1] |= mask;
927  }
928  for (uint32_t i = wordsBefore; i < wordsAfter; i++)
929    newVal[i] = -1ULL;
930  if (wordsBefore != 1)
931    delete [] pVal;
932  pVal = newVal;
933  clearUnusedBits();
934}
935
936//  Zero extend to a new width.
937void APInt::zext(uint32_t width) {
938  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
939  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
940  uint32_t wordsBefore = getNumWords();
941  BitWidth = width;
942  uint32_t wordsAfter = getNumWords();
943  if (wordsBefore != wordsAfter) {
944    uint64_t *newVal = getClearedMemory(wordsAfter);
945    if (wordsBefore == 1)
946      newVal[0] = VAL;
947    else
948      for (uint32_t i = 0; i < wordsBefore; ++i)
949        newVal[i] = pVal[i];
950    if (wordsBefore != 1)
951      delete [] pVal;
952    pVal = newVal;
953  }
954}
955
956/// Arithmetic right-shift this APInt by shiftAmt.
957/// @brief Arithmetic right-shift function.
958APInt APInt::ashr(uint32_t shiftAmt) const {
959  assert(shiftAmt <= BitWidth && "Invalid shift amount");
960  if (isSingleWord()) {
961    if (shiftAmt == BitWidth)
962      return APInt(BitWidth, 0); // undefined
963    else {
964      uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
965      return APInt(BitWidth,
966        (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
967    }
968  }
969
970  // If all the bits were shifted out, the result is 0 or -1. This avoids issues
971  // with shifting by the size of the integer type, which produces undefined
972  // results.
973  if (shiftAmt == BitWidth)
974    if (isNegative())
975      return APInt(BitWidth, -1ULL);
976    else
977      return APInt(BitWidth, 0);
978
979  // Create some space for the result.
980  uint64_t * val = new uint64_t[getNumWords()];
981
982  // If we are shifting less than a word, compute the shift with a simple carry
983  if (shiftAmt < APINT_BITS_PER_WORD) {
984    uint64_t carry = 0;
985    for (int i = getNumWords()-1; i >= 0; --i) {
986      val[i] = pVal[i] >> shiftAmt | carry;
987      carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
988    }
989    return APInt(val, BitWidth).clearUnusedBits();
990  }
991
992  // Compute some values needed by the remaining shift algorithms
993  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
994  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
995
996  // If we are shifting whole words, just move whole words
997  if (wordShift == 0) {
998    for (uint32_t i = 0; i < getNumWords() - offset; ++i)
999      val[i] = pVal[i+offset];
1000    for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1001      val[i] = (isNegative() ? -1ULL : 0);
1002    return APInt(val,BitWidth).clearUnusedBits();
1003  }
1004
1005  // Shift the low order words
1006  uint32_t breakWord = getNumWords() - offset -1;
1007  for (uint32_t i = 0; i < breakWord; ++i)
1008    val[i] = pVal[i+offset] >> wordShift |
1009             pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift);
1010  // Shift the break word.
1011  uint32_t SignBit = APINT_BITS_PER_WORD - (BitWidth % APINT_BITS_PER_WORD);
1012  val[breakWord] = uint64_t(
1013    (((int64_t(pVal[breakWord+offset]) << SignBit) >> SignBit) >> wordShift));
1014
1015  // Remaining words are 0 or -1
1016  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1017    val[i] = (isNegative() ? -1ULL : 0);
1018  return APInt(val, BitWidth).clearUnusedBits();
1019}
1020
1021/// Logical right-shift this APInt by shiftAmt.
1022/// @brief Logical right-shift function.
1023APInt APInt::lshr(uint32_t shiftAmt) const {
1024  if (isSingleWord())
1025    if (shiftAmt == BitWidth)
1026      return APInt(BitWidth, 0);
1027    else
1028      return APInt(BitWidth, this->VAL >> shiftAmt);
1029
1030  // If all the bits were shifted out, the result is 0. This avoids issues
1031  // with shifting by the size of the integer type, which produces undefined
1032  // results. We define these "undefined results" to always be 0.
1033  if (shiftAmt == BitWidth)
1034    return APInt(BitWidth, 0);
1035
1036  // Create some space for the result.
1037  uint64_t * val = new uint64_t[getNumWords()];
1038
1039  // If we are shifting less than a word, compute the shift with a simple carry
1040  if (shiftAmt < APINT_BITS_PER_WORD) {
1041    uint64_t carry = 0;
1042    for (int i = getNumWords()-1; i >= 0; --i) {
1043      val[i] = pVal[i] >> shiftAmt | carry;
1044      carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1045    }
1046    return APInt(val, BitWidth).clearUnusedBits();
1047  }
1048
1049  // Compute some values needed by the remaining shift algorithms
1050  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1051  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1052
1053  // If we are shifting whole words, just move whole words
1054  if (wordShift == 0) {
1055    for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1056      val[i] = pVal[i+offset];
1057    for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1058      val[i] = 0;
1059    return APInt(val,BitWidth).clearUnusedBits();
1060  }
1061
1062  // Shift the low order words
1063  uint32_t breakWord = getNumWords() - offset -1;
1064  for (uint32_t i = 0; i < breakWord; ++i)
1065    val[i] = pVal[i+offset] >> wordShift |
1066             pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift);
1067  // Shift the break word.
1068  val[breakWord] = pVal[breakWord+offset] >> wordShift;
1069
1070  // Remaining words are 0
1071  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1072    val[i] = 0;
1073  return APInt(val, BitWidth).clearUnusedBits();
1074}
1075
1076/// Left-shift this APInt by shiftAmt.
1077/// @brief Left-shift function.
1078APInt APInt::shl(uint32_t shiftAmt) const {
1079  assert(shiftAmt <= BitWidth && "Invalid shift amount");
1080  if (isSingleWord()) {
1081    if (shiftAmt == BitWidth)
1082      return APInt(BitWidth, 0); // avoid undefined shift results
1083    return APInt(BitWidth, VAL << shiftAmt);
1084  }
1085
1086  // If all the bits were shifted out, the result is 0. This avoids issues
1087  // with shifting by the size of the integer type, which produces undefined
1088  // results. We define these "undefined results" to always be 0.
1089  if (shiftAmt == BitWidth)
1090    return APInt(BitWidth, 0);
1091
1092  // Create some space for the result.
1093  uint64_t * val = new uint64_t[getNumWords()];
1094
1095  // If we are shifting less than a word, do it the easy way
1096  if (shiftAmt < APINT_BITS_PER_WORD) {
1097    uint64_t carry = 0;
1098    for (uint32_t i = 0; i < getNumWords(); i++) {
1099      val[i] = pVal[i] << shiftAmt | carry;
1100      carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1101    }
1102    return APInt(val, BitWidth).clearUnusedBits();
1103  }
1104
1105  // Compute some values needed by the remaining shift algorithms
1106  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1107  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1108
1109  // If we are shifting whole words, just move whole words
1110  if (wordShift == 0) {
1111    for (uint32_t i = 0; i < offset; i++)
1112      val[i] = 0;
1113    for (uint32_t i = offset; i < getNumWords(); i++)
1114      val[i] = pVal[i-offset];
1115    return APInt(val,BitWidth).clearUnusedBits();
1116  }
1117
1118  // Copy whole words from this to Result.
1119  uint32_t i = getNumWords() - 1;
1120  for (; i > offset; --i)
1121    val[i] = pVal[i-offset] << wordShift |
1122             pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1123  val[offset] = pVal[0] << wordShift;
1124  for (i = 0; i < offset; ++i)
1125    val[i] = 0;
1126  return APInt(val, BitWidth).clearUnusedBits();
1127}
1128
1129/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1130/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1131/// variables here have the same names as in the algorithm. Comments explain
1132/// the algorithm and any deviation from it.
1133static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1134                     uint32_t m, uint32_t n) {
1135  assert(u && "Must provide dividend");
1136  assert(v && "Must provide divisor");
1137  assert(q && "Must provide quotient");
1138  assert(u != v && u != q && v != q && "Must us different memory");
1139  assert(n>1 && "n must be > 1");
1140
1141  // Knuth uses the value b as the base of the number system. In our case b
1142  // is 2^31 so we just set it to -1u.
1143  uint64_t b = uint64_t(1) << 32;
1144
1145  DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1146  DEBUG(cerr << "KnuthDiv: original:");
1147  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1148  DEBUG(cerr << " by");
1149  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1150  DEBUG(cerr << '\n');
1151  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1152  // u and v by d. Note that we have taken Knuth's advice here to use a power
1153  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1154  // 2 allows us to shift instead of multiply and it is easy to determine the
1155  // shift amount from the leading zeros.  We are basically normalizing the u
1156  // and v so that its high bits are shifted to the top of v's range without
1157  // overflow. Note that this can require an extra word in u so that u must
1158  // be of length m+n+1.
1159  uint32_t shift = CountLeadingZeros_32(v[n-1]);
1160  uint32_t v_carry = 0;
1161  uint32_t u_carry = 0;
1162  if (shift) {
1163    for (uint32_t i = 0; i < m+n; ++i) {
1164      uint32_t u_tmp = u[i] >> (32 - shift);
1165      u[i] = (u[i] << shift) | u_carry;
1166      u_carry = u_tmp;
1167    }
1168    for (uint32_t i = 0; i < n; ++i) {
1169      uint32_t v_tmp = v[i] >> (32 - shift);
1170      v[i] = (v[i] << shift) | v_carry;
1171      v_carry = v_tmp;
1172    }
1173  }
1174  u[m+n] = u_carry;
1175  DEBUG(cerr << "KnuthDiv:   normal:");
1176  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1177  DEBUG(cerr << " by");
1178  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1179  DEBUG(cerr << '\n');
1180
1181  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1182  int j = m;
1183  do {
1184    DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1185    // D3. [Calculate q'.].
1186    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1187    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1188    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1189    // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1190    // on v[n-2] determines at high speed most of the cases in which the trial
1191    // value qp is one too large, and it eliminates all cases where qp is two
1192    // too large.
1193    uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1194    DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1195    uint64_t qp = dividend / v[n-1];
1196    uint64_t rp = dividend % v[n-1];
1197    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1198      qp--;
1199      rp += v[n-1];
1200      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1201        qp--;
1202    }
1203    DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1204
1205    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1206    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1207    // consists of a simple multiplication by a one-place number, combined with
1208    // a subtraction.
1209    bool isNeg = false;
1210    for (uint32_t i = 0; i < n; ++i) {
1211      uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1212      uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1213      bool borrow = subtrahend > u_tmp;
1214      DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1215                 << ", subtrahend == " << subtrahend
1216                 << ", borrow = " << borrow << '\n');
1217
1218      uint64_t result = u_tmp - subtrahend;
1219      uint32_t k = j + i;
1220      u[k++] = result & (b-1); // subtract low word
1221      u[k++] = result >> 32;   // subtract high word
1222      while (borrow && k <= m+n) { // deal with borrow to the left
1223        borrow = u[k] == 0;
1224        u[k]--;
1225        k++;
1226      }
1227      isNeg |= borrow;
1228      DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ",  u[j+i+1] == " <<
1229                    u[j+i+1] << '\n');
1230    }
1231    DEBUG(cerr << "KnuthDiv: after subtraction:");
1232    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1233    DEBUG(cerr << '\n');
1234    // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1235    // this step is actually negative, (u[j+n]...u[j]) should be left as the
1236    // true value plus b**(n+1), namely as the b's complement of
1237    // the true value, and a "borrow" to the left should be remembered.
1238    //
1239    if (isNeg) {
1240      bool carry = true;  // true because b's complement is "complement + 1"
1241      for (uint32_t i = 0; i <= m+n; ++i) {
1242        u[i] = ~u[i] + carry; // b's complement
1243        carry = carry && u[i] == 0;
1244      }
1245    }
1246    DEBUG(cerr << "KnuthDiv: after complement:");
1247    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1248    DEBUG(cerr << '\n');
1249
1250    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1251    // negative, go to step D6; otherwise go on to step D7.
1252    q[j] = qp;
1253    if (isNeg) {
1254      // D6. [Add back]. The probability that this step is necessary is very
1255      // small, on the order of only 2/b. Make sure that test data accounts for
1256      // this possibility. Decrease q[j] by 1
1257      q[j]--;
1258      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1259      // A carry will occur to the left of u[j+n], and it should be ignored
1260      // since it cancels with the borrow that occurred in D4.
1261      bool carry = false;
1262      for (uint32_t i = 0; i < n; i++) {
1263        uint32_t limit = std::min(u[j+i],v[i]);
1264        u[j+i] += v[i] + carry;
1265        carry = u[j+i] < limit || (carry && u[j+i] == limit);
1266      }
1267      u[j+n] += carry;
1268    }
1269    DEBUG(cerr << "KnuthDiv: after correction:");
1270    DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1271    DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1272
1273  // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1274  } while (--j >= 0);
1275
1276  DEBUG(cerr << "KnuthDiv: quotient:");
1277  DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1278  DEBUG(cerr << '\n');
1279
1280  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1281  // remainder may be obtained by dividing u[...] by d. If r is non-null we
1282  // compute the remainder (urem uses this).
1283  if (r) {
1284    // The value d is expressed by the "shift" value above since we avoided
1285    // multiplication by d by using a shift left. So, all we have to do is
1286    // shift right here. In order to mak
1287    if (shift) {
1288      uint32_t carry = 0;
1289      DEBUG(cerr << "KnuthDiv: remainder:");
1290      for (int i = n-1; i >= 0; i--) {
1291        r[i] = (u[i] >> shift) | carry;
1292        carry = u[i] << (32 - shift);
1293        DEBUG(cerr << " " << r[i]);
1294      }
1295    } else {
1296      for (int i = n-1; i >= 0; i--) {
1297        r[i] = u[i];
1298        DEBUG(cerr << " " << r[i]);
1299      }
1300    }
1301    DEBUG(cerr << '\n');
1302  }
1303  DEBUG(cerr << std::setbase(10) << '\n');
1304}
1305
1306void APInt::divide(const APInt LHS, uint32_t lhsWords,
1307                   const APInt &RHS, uint32_t rhsWords,
1308                   APInt *Quotient, APInt *Remainder)
1309{
1310  assert(lhsWords >= rhsWords && "Fractional result");
1311
1312  // First, compose the values into an array of 32-bit words instead of
1313  // 64-bit words. This is a necessity of both the "short division" algorithm
1314  // and the the Knuth "classical algorithm" which requires there to be native
1315  // operations for +, -, and * on an m bit value with an m*2 bit result. We
1316  // can't use 64-bit operands here because we don't have native results of
1317  // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1318  // work on large-endian machines.
1319  uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1320  uint32_t n = rhsWords * 2;
1321  uint32_t m = (lhsWords * 2) - n;
1322
1323  // Allocate space for the temporary values we need either on the stack, if
1324  // it will fit, or on the heap if it won't.
1325  uint32_t SPACE[128];
1326  uint32_t *U = 0;
1327  uint32_t *V = 0;
1328  uint32_t *Q = 0;
1329  uint32_t *R = 0;
1330  if ((Remainder?4:3)*n+2*m+1 <= 128) {
1331    U = &SPACE[0];
1332    V = &SPACE[m+n+1];
1333    Q = &SPACE[(m+n+1) + n];
1334    if (Remainder)
1335      R = &SPACE[(m+n+1) + n + (m+n)];
1336  } else {
1337    U = new uint32_t[m + n + 1];
1338    V = new uint32_t[n];
1339    Q = new uint32_t[m+n];
1340    if (Remainder)
1341      R = new uint32_t[n];
1342  }
1343
1344  // Initialize the dividend
1345  memset(U, 0, (m+n+1)*sizeof(uint32_t));
1346  for (unsigned i = 0; i < lhsWords; ++i) {
1347    uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1348    U[i * 2] = tmp & mask;
1349    U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1350  }
1351  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1352
1353  // Initialize the divisor
1354  memset(V, 0, (n)*sizeof(uint32_t));
1355  for (unsigned i = 0; i < rhsWords; ++i) {
1356    uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1357    V[i * 2] = tmp & mask;
1358    V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1359  }
1360
1361  // initialize the quotient and remainder
1362  memset(Q, 0, (m+n) * sizeof(uint32_t));
1363  if (Remainder)
1364    memset(R, 0, n * sizeof(uint32_t));
1365
1366  // Now, adjust m and n for the Knuth division. n is the number of words in
1367  // the divisor. m is the number of words by which the dividend exceeds the
1368  // divisor (i.e. m+n is the length of the dividend). These sizes must not
1369  // contain any zero words or the Knuth algorithm fails.
1370  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1371    n--;
1372    m++;
1373  }
1374  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1375    m--;
1376
1377  // If we're left with only a single word for the divisor, Knuth doesn't work
1378  // so we implement the short division algorithm here. This is much simpler
1379  // and faster because we are certain that we can divide a 64-bit quantity
1380  // by a 32-bit quantity at hardware speed and short division is simply a
1381  // series of such operations. This is just like doing short division but we
1382  // are using base 2^32 instead of base 10.
1383  assert(n != 0 && "Divide by zero?");
1384  if (n == 1) {
1385    uint32_t divisor = V[0];
1386    uint32_t remainder = 0;
1387    for (int i = m+n-1; i >= 0; i--) {
1388      uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1389      if (partial_dividend == 0) {
1390        Q[i] = 0;
1391        remainder = 0;
1392      } else if (partial_dividend < divisor) {
1393        Q[i] = 0;
1394        remainder = partial_dividend;
1395      } else if (partial_dividend == divisor) {
1396        Q[i] = 1;
1397        remainder = 0;
1398      } else {
1399        Q[i] = partial_dividend / divisor;
1400        remainder = partial_dividend - (Q[i] * divisor);
1401      }
1402    }
1403    if (R)
1404      R[0] = remainder;
1405  } else {
1406    // Now we're ready to invoke the Knuth classical divide algorithm. In this
1407    // case n > 1.
1408    KnuthDiv(U, V, Q, R, m, n);
1409  }
1410
1411  // If the caller wants the quotient
1412  if (Quotient) {
1413    // Set up the Quotient value's memory.
1414    if (Quotient->BitWidth != LHS.BitWidth) {
1415      if (Quotient->isSingleWord())
1416        Quotient->VAL = 0;
1417      else
1418        delete [] Quotient->pVal;
1419      Quotient->BitWidth = LHS.BitWidth;
1420      if (!Quotient->isSingleWord())
1421        Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1422    } else
1423      Quotient->clear();
1424
1425    // The quotient is in Q. Reconstitute the quotient into Quotient's low
1426    // order words.
1427    if (lhsWords == 1) {
1428      uint64_t tmp =
1429        uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1430      if (Quotient->isSingleWord())
1431        Quotient->VAL = tmp;
1432      else
1433        Quotient->pVal[0] = tmp;
1434    } else {
1435      assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1436      for (unsigned i = 0; i < lhsWords; ++i)
1437        Quotient->pVal[i] =
1438          uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1439    }
1440  }
1441
1442  // If the caller wants the remainder
1443  if (Remainder) {
1444    // Set up the Remainder value's memory.
1445    if (Remainder->BitWidth != RHS.BitWidth) {
1446      if (Remainder->isSingleWord())
1447        Remainder->VAL = 0;
1448      else
1449        delete [] Remainder->pVal;
1450      Remainder->BitWidth = RHS.BitWidth;
1451      if (!Remainder->isSingleWord())
1452        Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1453    } else
1454      Remainder->clear();
1455
1456    // The remainder is in R. Reconstitute the remainder into Remainder's low
1457    // order words.
1458    if (rhsWords == 1) {
1459      uint64_t tmp =
1460        uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1461      if (Remainder->isSingleWord())
1462        Remainder->VAL = tmp;
1463      else
1464        Remainder->pVal[0] = tmp;
1465    } else {
1466      assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1467      for (unsigned i = 0; i < rhsWords; ++i)
1468        Remainder->pVal[i] =
1469          uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1470    }
1471  }
1472
1473  // Clean up the memory we allocated.
1474  if (U != &SPACE[0]) {
1475    delete [] U;
1476    delete [] V;
1477    delete [] Q;
1478    delete [] R;
1479  }
1480}
1481
1482APInt APInt::udiv(const APInt& RHS) const {
1483  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1484
1485  // First, deal with the easy case
1486  if (isSingleWord()) {
1487    assert(RHS.VAL != 0 && "Divide by zero?");
1488    return APInt(BitWidth, VAL / RHS.VAL);
1489  }
1490
1491  // Get some facts about the LHS and RHS number of bits and words
1492  uint32_t rhsBits = RHS.getActiveBits();
1493  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1494  assert(rhsWords && "Divided by zero???");
1495  uint32_t lhsBits = this->getActiveBits();
1496  uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1497
1498  // Deal with some degenerate cases
1499  if (!lhsWords)
1500    // 0 / X ===> 0
1501    return APInt(BitWidth, 0);
1502  else if (lhsWords < rhsWords || this->ult(RHS)) {
1503    // X / Y ===> 0, iff X < Y
1504    return APInt(BitWidth, 0);
1505  } else if (*this == RHS) {
1506    // X / X ===> 1
1507    return APInt(BitWidth, 1);
1508  } else if (lhsWords == 1 && rhsWords == 1) {
1509    // All high words are zero, just use native divide
1510    return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1511  }
1512
1513  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1514  APInt Quotient(1,0); // to hold result.
1515  divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1516  return Quotient;
1517}
1518
1519APInt APInt::urem(const APInt& RHS) const {
1520  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1521  if (isSingleWord()) {
1522    assert(RHS.VAL != 0 && "Remainder by zero?");
1523    return APInt(BitWidth, VAL % RHS.VAL);
1524  }
1525
1526  // Get some facts about the LHS
1527  uint32_t lhsBits = getActiveBits();
1528  uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1529
1530  // Get some facts about the RHS
1531  uint32_t rhsBits = RHS.getActiveBits();
1532  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1533  assert(rhsWords && "Performing remainder operation by zero ???");
1534
1535  // Check the degenerate cases
1536  if (lhsWords == 0) {
1537    // 0 % Y ===> 0
1538    return APInt(BitWidth, 0);
1539  } else if (lhsWords < rhsWords || this->ult(RHS)) {
1540    // X % Y ===> X, iff X < Y
1541    return *this;
1542  } else if (*this == RHS) {
1543    // X % X == 0;
1544    return APInt(BitWidth, 0);
1545  } else if (lhsWords == 1) {
1546    // All high words are zero, just use native remainder
1547    return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1548  }
1549
1550  // We have to compute it the hard way. Invoke the Knute divide algorithm.
1551  APInt Remainder(1,0);
1552  divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1553  return Remainder;
1554}
1555
1556void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1557                       uint8_t radix) {
1558  // Check our assumptions here
1559  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1560         "Radix should be 2, 8, 10, or 16!");
1561  assert(str && "String is null?");
1562  bool isNeg = str[0] == '-';
1563  if (isNeg)
1564    str++, slen--;
1565  assert(slen <= numbits || radix != 2 && "Insufficient bit width");
1566  assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width");
1567  assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width");
1568  assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width");
1569
1570  // Allocate memory
1571  if (!isSingleWord())
1572    pVal = getClearedMemory(getNumWords());
1573
1574  // Figure out if we can shift instead of multiply
1575  uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1576
1577  // Set up an APInt for the digit to add outside the loop so we don't
1578  // constantly construct/destruct it.
1579  APInt apdigit(getBitWidth(), 0);
1580  APInt apradix(getBitWidth(), radix);
1581
1582  // Enter digit traversal loop
1583  for (unsigned i = 0; i < slen; i++) {
1584    // Get a digit
1585    uint32_t digit = 0;
1586    char cdigit = str[i];
1587    if (isdigit(cdigit))
1588      digit = cdigit - '0';
1589    else if (isxdigit(cdigit))
1590      if (cdigit >= 'a')
1591        digit = cdigit - 'a' + 10;
1592      else if (cdigit >= 'A')
1593        digit = cdigit - 'A' + 10;
1594      else
1595        assert(0 && "huh?");
1596    else
1597      assert(0 && "Invalid character in digit string");
1598
1599    // Shift or multiple the value by the radix
1600    if (shift)
1601      this->shl(shift);
1602    else
1603      *this *= apradix;
1604
1605    // Add in the digit we just interpreted
1606    if (apdigit.isSingleWord())
1607      apdigit.VAL = digit;
1608    else
1609      apdigit.pVal[0] = digit;
1610    *this += apdigit;
1611  }
1612  // If its negative, put it in two's complement form
1613  if (isNeg) {
1614    (*this)--;
1615    this->flip();
1616  }
1617}
1618
1619std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1620  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1621         "Radix should be 2, 8, 10, or 16!");
1622  static const char *digits[] = {
1623    "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1624  };
1625  std::string result;
1626  uint32_t bits_used = getActiveBits();
1627  if (isSingleWord()) {
1628    char buf[65];
1629    const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1630       (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1631    if (format) {
1632      if (wantSigned) {
1633        int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1634                           (APINT_BITS_PER_WORD-BitWidth);
1635        sprintf(buf, format, sextVal);
1636      } else
1637        sprintf(buf, format, VAL);
1638    } else {
1639      memset(buf, 0, 65);
1640      uint64_t v = VAL;
1641      while (bits_used) {
1642        uint32_t bit = v & 1;
1643        bits_used--;
1644        buf[bits_used] = digits[bit][0];
1645        v >>=1;
1646      }
1647    }
1648    result = buf;
1649    return result;
1650  }
1651
1652  if (radix != 10) {
1653    uint64_t mask = radix - 1;
1654    uint32_t shift = (radix == 16 ? 4 : radix  == 8 ? 3 : 1);
1655    uint32_t nibbles = APINT_BITS_PER_WORD / shift;
1656    for (uint32_t i = 0; i < getNumWords(); ++i) {
1657      uint64_t value = pVal[i];
1658      for (uint32_t j = 0; j < nibbles; ++j) {
1659        result.insert(0, digits[ value & mask ]);
1660        value >>= shift;
1661      }
1662    }
1663    return result;
1664  }
1665
1666  APInt tmp(*this);
1667  APInt divisor(4, radix);
1668  APInt zero(tmp.getBitWidth(), 0);
1669  size_t insert_at = 0;
1670  if (wantSigned && tmp[BitWidth-1]) {
1671    // They want to print the signed version and it is a negative value
1672    // Flip the bits and add one to turn it into the equivalent positive
1673    // value and put a '-' in the result.
1674    tmp.flip();
1675    tmp++;
1676    result = "-";
1677    insert_at = 1;
1678  }
1679  if (tmp == APInt(tmp.getBitWidth(), 0))
1680    result = "0";
1681  else while (tmp.ne(zero)) {
1682    APInt APdigit(1,0);
1683    APInt tmp2(tmp.getBitWidth(), 0);
1684    divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
1685           &APdigit);
1686    uint32_t digit = APdigit.getZExtValue();
1687    assert(digit < radix && "divide failed");
1688    result.insert(insert_at,digits[digit]);
1689    tmp = tmp2;
1690  }
1691
1692  return result;
1693}
1694
1695#ifndef NDEBUG
1696void APInt::dump() const
1697{
1698  cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
1699  if (isSingleWord())
1700    cerr << VAL;
1701  else for (unsigned i = getNumWords(); i > 0; i--) {
1702    cerr << pVal[i-1] << " ";
1703  }
1704  cerr << " (" << this->toString(10) << ")\n" << std::setbase(10);
1705}
1706#endif
1707