APInt.cpp revision 68e2300ad965bf08af11ae363bb85e3badf964dc
1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Sheng Zhou and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/MathExtras.h"
20#include <cstring>
21#include <cstdlib>
22#ifndef NDEBUG
23#include <iomanip>
24#endif
25
26using namespace llvm;
27
28/// A utility function for allocating memory, checking for allocation failures,
29/// and ensuring the contents are zeroed.
30inline static uint64_t* getClearedMemory(uint32_t numWords) {
31  uint64_t * result = new uint64_t[numWords];
32  assert(result && "APInt memory allocation fails!");
33  memset(result, 0, numWords * sizeof(uint64_t));
34  return result;
35}
36
37/// A utility function for allocating memory and checking for allocation
38/// failure.  The content is not zeroed.
39inline static uint64_t* getMemory(uint32_t numWords) {
40  uint64_t * result = new uint64_t[numWords];
41  assert(result && "APInt memory allocation fails!");
42  return result;
43}
44
45APInt::APInt(uint32_t numBits, uint64_t val) : BitWidth(numBits), VAL(0) {
46  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
47  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
48  if (isSingleWord())
49    VAL = val;
50  else {
51    pVal = getClearedMemory(getNumWords());
52    pVal[0] = val;
53  }
54  clearUnusedBits();
55}
56
57APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
58  : BitWidth(numBits), VAL(0)  {
59  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
60  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
61  assert(bigVal && "Null pointer detected!");
62  if (isSingleWord())
63    VAL = bigVal[0];
64  else {
65    // Get memory, cleared to 0
66    pVal = getClearedMemory(getNumWords());
67    // Calculate the number of words to copy
68    uint32_t words = std::min<uint32_t>(numWords, getNumWords());
69    // Copy the words from bigVal to pVal
70    memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
71  }
72  // Make sure unused high bits are cleared
73  clearUnusedBits();
74}
75
76APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
77             uint8_t radix)
78  : BitWidth(numbits), VAL(0) {
79  fromString(numbits, StrStart, slen, radix);
80}
81
82APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
83  : BitWidth(numbits), VAL(0) {
84  assert(!Val.empty() && "String empty?");
85  fromString(numbits, Val.c_str(), Val.size(), radix);
86}
87
88APInt::APInt(const APInt& that)
89  : BitWidth(that.BitWidth), VAL(0) {
90  if (isSingleWord())
91    VAL = that.VAL;
92  else {
93    pVal = getMemory(getNumWords());
94    memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
95  }
96}
97
98APInt::~APInt() {
99  if (!isSingleWord() && pVal)
100    delete [] pVal;
101}
102
103APInt& APInt::operator=(const APInt& RHS) {
104  // Don't do anything for X = X
105  if (this == &RHS)
106    return *this;
107
108  // If the bitwidths are the same, we can avoid mucking with memory
109  if (BitWidth == RHS.getBitWidth()) {
110    if (isSingleWord())
111      VAL = RHS.VAL;
112    else
113      memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
114    return *this;
115  }
116
117  if (isSingleWord())
118    if (RHS.isSingleWord())
119      VAL = RHS.VAL;
120    else {
121      VAL = 0;
122      pVal = getMemory(RHS.getNumWords());
123      memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
124    }
125  else if (getNumWords() == RHS.getNumWords())
126    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
127  else if (RHS.isSingleWord()) {
128    delete [] pVal;
129    VAL = RHS.VAL;
130  } else {
131    delete [] pVal;
132    pVal = getMemory(RHS.getNumWords());
133    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
134  }
135  BitWidth = RHS.BitWidth;
136  return clearUnusedBits();
137}
138
139APInt& APInt::operator=(uint64_t RHS) {
140  if (isSingleWord())
141    VAL = RHS;
142  else {
143    pVal[0] = RHS;
144    memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
145  }
146  return clearUnusedBits();
147}
148
149/// add_1 - This function adds a single "digit" integer, y, to the multiple
150/// "digit" integer array,  x[]. x[] is modified to reflect the addition and
151/// 1 is returned if there is a carry out, otherwise 0 is returned.
152/// @returns the carry of the addition.
153static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
154  for (uint32_t i = 0; i < len; ++i) {
155    dest[i] = y + x[i];
156    if (dest[i] < y)
157      y = 1; // Carry one to next digit.
158    else {
159      y = 0; // No need to carry so exit early
160      break;
161    }
162  }
163  return y;
164}
165
166/// @brief Prefix increment operator. Increments the APInt by one.
167APInt& APInt::operator++() {
168  if (isSingleWord())
169    ++VAL;
170  else
171    add_1(pVal, pVal, getNumWords(), 1);
172  return clearUnusedBits();
173}
174
175/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
176/// the multi-digit integer array, x[], propagating the borrowed 1 value until
177/// no further borrowing is neeeded or it runs out of "digits" in x.  The result
178/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
179/// In other words, if y > x then this function returns 1, otherwise 0.
180/// @returns the borrow out of the subtraction
181static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
182  for (uint32_t i = 0; i < len; ++i) {
183    uint64_t X = x[i];
184    x[i] -= y;
185    if (y > X)
186      y = 1;  // We have to "borrow 1" from next "digit"
187    else {
188      y = 0;  // No need to borrow
189      break;  // Remaining digits are unchanged so exit early
190    }
191  }
192  return bool(y);
193}
194
195/// @brief Prefix decrement operator. Decrements the APInt by one.
196APInt& APInt::operator--() {
197  if (isSingleWord())
198    --VAL;
199  else
200    sub_1(pVal, getNumWords(), 1);
201  return clearUnusedBits();
202}
203
204/// add - This function adds the integer array x to the integer array Y and
205/// places the result in dest.
206/// @returns the carry out from the addition
207/// @brief General addition of 64-bit integer arrays
208static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
209                uint32_t len) {
210  bool carry = false;
211  for (uint32_t i = 0; i< len; ++i) {
212    uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
213    dest[i] = x[i] + y[i] + carry;
214    carry = dest[i] < limit || (carry && dest[i] == limit);
215  }
216  return carry;
217}
218
219/// Adds the RHS APint to this APInt.
220/// @returns this, after addition of RHS.
221/// @brief Addition assignment operator.
222APInt& APInt::operator+=(const APInt& RHS) {
223  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
224  if (isSingleWord())
225    VAL += RHS.VAL;
226  else {
227    add(pVal, pVal, RHS.pVal, getNumWords());
228  }
229  return clearUnusedBits();
230}
231
232/// Subtracts the integer array y from the integer array x
233/// @returns returns the borrow out.
234/// @brief Generalized subtraction of 64-bit integer arrays.
235static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
236                uint32_t len) {
237  bool borrow = false;
238  for (uint32_t i = 0; i < len; ++i) {
239    uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
240    borrow = y[i] > x_tmp || (borrow && x[i] == 0);
241    dest[i] = x_tmp - y[i];
242  }
243  return borrow;
244}
245
246/// Subtracts the RHS APInt from this APInt
247/// @returns this, after subtraction
248/// @brief Subtraction assignment operator.
249APInt& APInt::operator-=(const APInt& RHS) {
250  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
251  if (isSingleWord())
252    VAL -= RHS.VAL;
253  else
254    sub(pVal, pVal, RHS.pVal, getNumWords());
255  return clearUnusedBits();
256}
257
258/// Multiplies an integer array, x by a a uint64_t integer and places the result
259/// into dest.
260/// @returns the carry out of the multiplication.
261/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
262static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
263  // Split y into high 32-bit part (hy)  and low 32-bit part (ly)
264  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
265  uint64_t carry = 0;
266
267  // For each digit of x.
268  for (uint32_t i = 0; i < len; ++i) {
269    // Split x into high and low words
270    uint64_t lx = x[i] & 0xffffffffULL;
271    uint64_t hx = x[i] >> 32;
272    // hasCarry - A flag to indicate if there is a carry to the next digit.
273    // hasCarry == 0, no carry
274    // hasCarry == 1, has carry
275    // hasCarry == 2, no carry and the calculation result == 0.
276    uint8_t hasCarry = 0;
277    dest[i] = carry + lx * ly;
278    // Determine if the add above introduces carry.
279    hasCarry = (dest[i] < carry) ? 1 : 0;
280    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
281    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
282    // (2^32 - 1) + 2^32 = 2^64.
283    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
284
285    carry += (lx * hy) & 0xffffffffULL;
286    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
287    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
288            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
289  }
290  return carry;
291}
292
293/// Multiplies integer array x by integer array y and stores the result into
294/// the integer array dest. Note that dest's size must be >= xlen + ylen.
295/// @brief Generalized multiplicate of integer arrays.
296static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
297                uint32_t ylen) {
298  dest[xlen] = mul_1(dest, x, xlen, y[0]);
299  for (uint32_t i = 1; i < ylen; ++i) {
300    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
301    uint64_t carry = 0, lx = 0, hx = 0;
302    for (uint32_t j = 0; j < xlen; ++j) {
303      lx = x[j] & 0xffffffffULL;
304      hx = x[j] >> 32;
305      // hasCarry - A flag to indicate if has carry.
306      // hasCarry == 0, no carry
307      // hasCarry == 1, has carry
308      // hasCarry == 2, no carry and the calculation result == 0.
309      uint8_t hasCarry = 0;
310      uint64_t resul = carry + lx * ly;
311      hasCarry = (resul < carry) ? 1 : 0;
312      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
313      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
314
315      carry += (lx * hy) & 0xffffffffULL;
316      resul = (carry << 32) | (resul & 0xffffffffULL);
317      dest[i+j] += resul;
318      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
319              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
320              ((lx * hy) >> 32) + hx * hy;
321    }
322    dest[i+xlen] = carry;
323  }
324}
325
326APInt& APInt::operator*=(const APInt& RHS) {
327  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
328  if (isSingleWord()) {
329    VAL *= RHS.VAL;
330    clearUnusedBits();
331    return *this;
332  }
333
334  // Get some bit facts about LHS and check for zero
335  uint32_t lhsBits = getActiveBits();
336  uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
337  if (!lhsWords)
338    // 0 * X ===> 0
339    return *this;
340
341  // Get some bit facts about RHS and check for zero
342  uint32_t rhsBits = RHS.getActiveBits();
343  uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
344  if (!rhsWords) {
345    // X * 0 ===> 0
346    clear();
347    return *this;
348  }
349
350  // Allocate space for the result
351  uint32_t destWords = rhsWords + lhsWords;
352  uint64_t *dest = getMemory(destWords);
353
354  // Perform the long multiply
355  mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
356
357  // Copy result back into *this
358  clear();
359  uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
360  memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
361
362  // delete dest array and return
363  delete[] dest;
364  return *this;
365}
366
367APInt& APInt::operator&=(const APInt& RHS) {
368  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
369  if (isSingleWord()) {
370    VAL &= RHS.VAL;
371    return *this;
372  }
373  uint32_t numWords = getNumWords();
374  for (uint32_t i = 0; i < numWords; ++i)
375    pVal[i] &= RHS.pVal[i];
376  return *this;
377}
378
379APInt& APInt::operator|=(const APInt& RHS) {
380  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
381  if (isSingleWord()) {
382    VAL |= RHS.VAL;
383    return *this;
384  }
385  uint32_t numWords = getNumWords();
386  for (uint32_t i = 0; i < numWords; ++i)
387    pVal[i] |= RHS.pVal[i];
388  return *this;
389}
390
391APInt& APInt::operator^=(const APInt& RHS) {
392  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
393  if (isSingleWord()) {
394    VAL ^= RHS.VAL;
395    this->clearUnusedBits();
396    return *this;
397  }
398  uint32_t numWords = getNumWords();
399  for (uint32_t i = 0; i < numWords; ++i)
400    pVal[i] ^= RHS.pVal[i];
401  return clearUnusedBits();
402}
403
404APInt APInt::operator&(const APInt& RHS) const {
405  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
406  if (isSingleWord())
407    return APInt(getBitWidth(), VAL & RHS.VAL);
408
409  uint32_t numWords = getNumWords();
410  uint64_t* val = getMemory(numWords);
411  for (uint32_t i = 0; i < numWords; ++i)
412    val[i] = pVal[i] & RHS.pVal[i];
413  return APInt(val, getBitWidth());
414}
415
416APInt APInt::operator|(const APInt& RHS) const {
417  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
418  if (isSingleWord())
419    return APInt(getBitWidth(), VAL | RHS.VAL);
420
421  uint32_t numWords = getNumWords();
422  uint64_t *val = getMemory(numWords);
423  for (uint32_t i = 0; i < numWords; ++i)
424    val[i] = pVal[i] | RHS.pVal[i];
425  return APInt(val, getBitWidth());
426}
427
428APInt APInt::operator^(const APInt& RHS) const {
429  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
430  if (isSingleWord())
431    return APInt(BitWidth, VAL ^ RHS.VAL);
432
433  uint32_t numWords = getNumWords();
434  uint64_t *val = getMemory(numWords);
435  for (uint32_t i = 0; i < numWords; ++i)
436    val[i] = pVal[i] ^ RHS.pVal[i];
437
438  // 0^0==1 so clear the high bits in case they got set.
439  return APInt(val, getBitWidth()).clearUnusedBits();
440}
441
442bool APInt::operator !() const {
443  if (isSingleWord())
444    return !VAL;
445
446  for (uint32_t i = 0; i < getNumWords(); ++i)
447    if (pVal[i])
448      return false;
449  return true;
450}
451
452APInt APInt::operator*(const APInt& RHS) const {
453  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
454  if (isSingleWord())
455    return APInt(BitWidth, VAL * RHS.VAL);
456  APInt Result(*this);
457  Result *= RHS;
458  return Result.clearUnusedBits();
459}
460
461APInt APInt::operator+(const APInt& RHS) const {
462  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
463  if (isSingleWord())
464    return APInt(BitWidth, VAL + RHS.VAL);
465  APInt Result(BitWidth, 0);
466  add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
467  return Result.clearUnusedBits();
468}
469
470APInt APInt::operator-(const APInt& RHS) const {
471  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
472  if (isSingleWord())
473    return APInt(BitWidth, VAL - RHS.VAL);
474  APInt Result(BitWidth, 0);
475  sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
476  return Result.clearUnusedBits();
477}
478
479bool APInt::operator[](uint32_t bitPosition) const {
480  return (maskBit(bitPosition) &
481          (isSingleWord() ?  VAL : pVal[whichWord(bitPosition)])) != 0;
482}
483
484bool APInt::operator==(const APInt& RHS) const {
485  assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
486  if (isSingleWord())
487    return VAL == RHS.VAL;
488
489  // Get some facts about the number of bits used in the two operands.
490  uint32_t n1 = getActiveBits();
491  uint32_t n2 = RHS.getActiveBits();
492
493  // If the number of bits isn't the same, they aren't equal
494  if (n1 != n2)
495    return false;
496
497  // If the number of bits fits in a word, we only need to compare the low word.
498  if (n1 <= APINT_BITS_PER_WORD)
499    return pVal[0] == RHS.pVal[0];
500
501  // Otherwise, compare everything
502  for (int i = whichWord(n1 - 1); i >= 0; --i)
503    if (pVal[i] != RHS.pVal[i])
504      return false;
505  return true;
506}
507
508bool APInt::operator==(uint64_t Val) const {
509  if (isSingleWord())
510    return VAL == Val;
511
512  uint32_t n = getActiveBits();
513  if (n <= APINT_BITS_PER_WORD)
514    return pVal[0] == Val;
515  else
516    return false;
517}
518
519bool APInt::ult(const APInt& RHS) const {
520  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
521  if (isSingleWord())
522    return VAL < RHS.VAL;
523
524  // Get active bit length of both operands
525  uint32_t n1 = getActiveBits();
526  uint32_t n2 = RHS.getActiveBits();
527
528  // If magnitude of LHS is less than RHS, return true.
529  if (n1 < n2)
530    return true;
531
532  // If magnitude of RHS is greather than LHS, return false.
533  if (n2 < n1)
534    return false;
535
536  // If they bot fit in a word, just compare the low order word
537  if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
538    return pVal[0] < RHS.pVal[0];
539
540  // Otherwise, compare all words
541  uint32_t topWord = whichWord(std::max(n1,n2)-1);
542  for (int i = topWord; i >= 0; --i) {
543    if (pVal[i] > RHS.pVal[i])
544      return false;
545    if (pVal[i] < RHS.pVal[i])
546      return true;
547  }
548  return false;
549}
550
551bool APInt::slt(const APInt& RHS) const {
552  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
553  if (isSingleWord()) {
554    int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
555    int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
556    return lhsSext < rhsSext;
557  }
558
559  APInt lhs(*this);
560  APInt rhs(RHS);
561  bool lhsNeg = isNegative();
562  bool rhsNeg = rhs.isNegative();
563  if (lhsNeg) {
564    // Sign bit is set so perform two's complement to make it positive
565    lhs.flip();
566    lhs++;
567  }
568  if (rhsNeg) {
569    // Sign bit is set so perform two's complement to make it positive
570    rhs.flip();
571    rhs++;
572  }
573
574  // Now we have unsigned values to compare so do the comparison if necessary
575  // based on the negativeness of the values.
576  if (lhsNeg)
577    if (rhsNeg)
578      return lhs.ugt(rhs);
579    else
580      return true;
581  else if (rhsNeg)
582    return false;
583  else
584    return lhs.ult(rhs);
585}
586
587APInt& APInt::set(uint32_t bitPosition) {
588  if (isSingleWord())
589    VAL |= maskBit(bitPosition);
590  else
591    pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
592  return *this;
593}
594
595APInt& APInt::set() {
596  if (isSingleWord()) {
597    VAL = -1ULL;
598    return clearUnusedBits();
599  }
600
601  // Set all the bits in all the words.
602  for (uint32_t i = 0; i < getNumWords() - 1; ++i)
603    pVal[i] = -1ULL;
604  // Clear the unused ones
605  return clearUnusedBits();
606}
607
608/// Set the given bit to 0 whose position is given as "bitPosition".
609/// @brief Set a given bit to 0.
610APInt& APInt::clear(uint32_t bitPosition) {
611  if (isSingleWord())
612    VAL &= ~maskBit(bitPosition);
613  else
614    pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
615  return *this;
616}
617
618/// @brief Set every bit to 0.
619APInt& APInt::clear() {
620  if (isSingleWord())
621    VAL = 0;
622  else
623    memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
624  return *this;
625}
626
627/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
628/// this APInt.
629APInt APInt::operator~() const {
630  APInt Result(*this);
631  Result.flip();
632  return Result;
633}
634
635/// @brief Toggle every bit to its opposite value.
636APInt& APInt::flip() {
637  if (isSingleWord()) {
638    VAL ^= -1ULL;
639    return clearUnusedBits();
640  }
641  for (uint32_t i = 0; i < getNumWords(); ++i)
642    pVal[i] ^= -1ULL;
643  return clearUnusedBits();
644}
645
646/// Toggle a given bit to its opposite value whose position is given
647/// as "bitPosition".
648/// @brief Toggles a given bit to its opposite value.
649APInt& APInt::flip(uint32_t bitPosition) {
650  assert(bitPosition < BitWidth && "Out of the bit-width range!");
651  if ((*this)[bitPosition]) clear(bitPosition);
652  else set(bitPosition);
653  return *this;
654}
655
656uint64_t APInt::getHashValue() const {
657  // Put the bit width into the low order bits.
658  uint64_t hash = BitWidth;
659
660  // Add the sum of the words to the hash.
661  if (isSingleWord())
662    hash += VAL << 6; // clear separation of up to 64 bits
663  else
664    for (uint32_t i = 0; i < getNumWords(); ++i)
665      hash += pVal[i] << 6; // clear sepration of up to 64 bits
666  return hash;
667}
668
669/// HiBits - This function returns the high "numBits" bits of this APInt.
670APInt APInt::getHiBits(uint32_t numBits) const {
671  return APIntOps::lshr(*this, BitWidth - numBits);
672}
673
674/// LoBits - This function returns the low "numBits" bits of this APInt.
675APInt APInt::getLoBits(uint32_t numBits) const {
676  return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
677                        BitWidth - numBits);
678}
679
680bool APInt::isPowerOf2() const {
681  return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
682}
683
684uint32_t APInt::countLeadingZeros() const {
685  uint32_t Count = 0;
686  if (isSingleWord())
687    Count = CountLeadingZeros_64(VAL);
688  else {
689    for (uint32_t i = getNumWords(); i > 0u; --i) {
690      if (pVal[i-1] == 0)
691        Count += APINT_BITS_PER_WORD;
692      else {
693        Count += CountLeadingZeros_64(pVal[i-1]);
694        break;
695      }
696    }
697  }
698  uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
699  if (remainder)
700    Count -= APINT_BITS_PER_WORD - remainder;
701  return Count;
702}
703
704static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
705  uint32_t Count = 0;
706  if (skip)
707    V <<= skip;
708  while (V && (V & (1ULL << 63))) {
709    Count++;
710    V <<= 1;
711  }
712  return Count;
713}
714
715uint32_t APInt::countLeadingOnes() const {
716  if (isSingleWord())
717    return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
718
719  uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
720  uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
721  int i = getNumWords() - 1;
722  uint32_t Count = countLeadingOnes_64(pVal[i], shift);
723  if (Count == highWordBits) {
724    for (i--; i >= 0; --i) {
725      if (pVal[i] == -1ULL)
726        Count += APINT_BITS_PER_WORD;
727      else {
728        Count += countLeadingOnes_64(pVal[i], 0);
729        break;
730      }
731    }
732  }
733  return Count;
734}
735
736uint32_t APInt::countTrailingZeros() const {
737  if (isSingleWord())
738    return CountTrailingZeros_64(VAL);
739  uint32_t Count = 0;
740  uint32_t i = 0;
741  for (; i < getNumWords() && pVal[i] == 0; ++i)
742    Count += APINT_BITS_PER_WORD;
743  if (i < getNumWords())
744    Count += CountTrailingZeros_64(pVal[i]);
745  return Count;
746}
747
748uint32_t APInt::countPopulation() const {
749  if (isSingleWord())
750    return CountPopulation_64(VAL);
751  uint32_t Count = 0;
752  for (uint32_t i = 0; i < getNumWords(); ++i)
753    Count += CountPopulation_64(pVal[i]);
754  return Count;
755}
756
757APInt APInt::byteSwap() const {
758  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
759  if (BitWidth == 16)
760    return APInt(BitWidth, ByteSwap_16(VAL));
761  else if (BitWidth == 32)
762    return APInt(BitWidth, ByteSwap_32(VAL));
763  else if (BitWidth == 48) {
764    uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
765    Tmp1 = ByteSwap_32(Tmp1);
766    uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
767    Tmp2 = ByteSwap_16(Tmp2);
768    return
769      APInt(BitWidth,
770            (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16));
771  } else if (BitWidth == 64)
772    return APInt(BitWidth, ByteSwap_64(VAL));
773  else {
774    APInt Result(BitWidth, 0);
775    char *pByte = (char*)Result.pVal;
776    for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
777      char Tmp = pByte[i];
778      pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
779      pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
780    }
781    return Result;
782  }
783}
784
785APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
786                                            const APInt& API2) {
787  APInt A = API1, B = API2;
788  while (!!B) {
789    APInt T = B;
790    B = APIntOps::urem(A, B);
791    A = T;
792  }
793  return A;
794}
795
796APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
797  union {
798    double D;
799    uint64_t I;
800  } T;
801  T.D = Double;
802
803  // Get the sign bit from the highest order bit
804  bool isNeg = T.I >> 63;
805
806  // Get the 11-bit exponent and adjust for the 1023 bit bias
807  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
808
809  // If the exponent is negative, the value is < 0 so just return 0.
810  if (exp < 0)
811    return APInt(width, 0u);
812
813  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
814  uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
815
816  // If the exponent doesn't shift all bits out of the mantissa
817  if (exp < 52)
818    return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
819                    APInt(width, mantissa >> (52 - exp));
820
821  // If the client didn't provide enough bits for us to shift the mantissa into
822  // then the result is undefined, just return 0
823  if (width <= exp - 52)
824    return APInt(width, 0);
825
826  // Otherwise, we have to shift the mantissa bits up to the right location
827  APInt Tmp(width, mantissa);
828  Tmp = Tmp.shl(exp - 52);
829  return isNeg ? -Tmp : Tmp;
830}
831
832/// RoundToDouble - This function convert this APInt to a double.
833/// The layout for double is as following (IEEE Standard 754):
834///  --------------------------------------
835/// |  Sign    Exponent    Fraction    Bias |
836/// |-------------------------------------- |
837/// |  1[63]   11[62-52]   52[51-00]   1023 |
838///  --------------------------------------
839double APInt::roundToDouble(bool isSigned) const {
840
841  // Handle the simple case where the value is contained in one uint64_t.
842  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
843    if (isSigned) {
844      int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
845      return double(sext);
846    } else
847      return double(VAL);
848  }
849
850  // Determine if the value is negative.
851  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
852
853  // Construct the absolute value if we're negative.
854  APInt Tmp(isNeg ? -(*this) : (*this));
855
856  // Figure out how many bits we're using.
857  uint32_t n = Tmp.getActiveBits();
858
859  // The exponent (without bias normalization) is just the number of bits
860  // we are using. Note that the sign bit is gone since we constructed the
861  // absolute value.
862  uint64_t exp = n;
863
864  // Return infinity for exponent overflow
865  if (exp > 1023) {
866    if (!isSigned || !isNeg)
867      return double(1.0E300 * 1.0E300); // positive infinity
868    else
869      return double(-1.0E300 * 1.0E300); // negative infinity
870  }
871  exp += 1023; // Increment for 1023 bias
872
873  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
874  // extract the high 52 bits from the correct words in pVal.
875  uint64_t mantissa;
876  unsigned hiWord = whichWord(n-1);
877  if (hiWord == 0) {
878    mantissa = Tmp.pVal[0];
879    if (n > 52)
880      mantissa >>= n - 52; // shift down, we want the top 52 bits.
881  } else {
882    assert(hiWord > 0 && "huh?");
883    uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
884    uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
885    mantissa = hibits | lobits;
886  }
887
888  // The leading bit of mantissa is implicit, so get rid of it.
889  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
890  union {
891    double D;
892    uint64_t I;
893  } T;
894  T.I = sign | (exp << 52) | mantissa;
895  return T.D;
896}
897
898// Truncate to new width.
899APInt &APInt::trunc(uint32_t width) {
900  assert(width < BitWidth && "Invalid APInt Truncate request");
901  assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
902  uint32_t wordsBefore = getNumWords();
903  BitWidth = width;
904  uint32_t wordsAfter = getNumWords();
905  if (wordsBefore != wordsAfter) {
906    if (wordsAfter == 1) {
907      uint64_t *tmp = pVal;
908      VAL = pVal[0];
909      delete [] tmp;
910    } else {
911      uint64_t *newVal = getClearedMemory(wordsAfter);
912      for (uint32_t i = 0; i < wordsAfter; ++i)
913        newVal[i] = pVal[i];
914      delete [] pVal;
915      pVal = newVal;
916    }
917  }
918  return clearUnusedBits();
919}
920
921// Sign extend to a new width.
922APInt &APInt::sext(uint32_t width) {
923  assert(width > BitWidth && "Invalid APInt SignExtend request");
924  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
925  // If the sign bit isn't set, this is the same as zext.
926  if (!isNegative()) {
927    zext(width);
928    return *this;
929  }
930
931  // The sign bit is set. First, get some facts
932  uint32_t wordsBefore = getNumWords();
933  uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
934  BitWidth = width;
935  uint32_t wordsAfter = getNumWords();
936
937  // Mask the high order word appropriately
938  if (wordsBefore == wordsAfter) {
939    uint32_t newWordBits = width % APINT_BITS_PER_WORD;
940    // The extension is contained to the wordsBefore-1th word.
941    uint64_t mask = (~0ULL >> (APINT_BITS_PER_WORD - newWordBits)) <<  wordBits;
942    if (wordsBefore == 1)
943      VAL |= mask;
944    else
945      pVal[wordsBefore-1] |= mask;
946    clearUnusedBits();
947    return *this;
948  }
949
950  uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
951  uint64_t *newVal = getMemory(wordsAfter);
952  if (wordsBefore == 1)
953    newVal[0] = VAL | mask;
954  else {
955    for (uint32_t i = 0; i < wordsBefore; ++i)
956      newVal[i] = pVal[i];
957    newVal[wordsBefore-1] |= mask;
958  }
959  for (uint32_t i = wordsBefore; i < wordsAfter; i++)
960    newVal[i] = -1ULL;
961  if (wordsBefore != 1)
962    delete [] pVal;
963  pVal = newVal;
964  return clearUnusedBits();
965}
966
967//  Zero extend to a new width.
968APInt &APInt::zext(uint32_t width) {
969  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
970  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
971  uint32_t wordsBefore = getNumWords();
972  BitWidth = width;
973  uint32_t wordsAfter = getNumWords();
974  if (wordsBefore != wordsAfter) {
975    uint64_t *newVal = getClearedMemory(wordsAfter);
976    if (wordsBefore == 1)
977      newVal[0] = VAL;
978    else
979      for (uint32_t i = 0; i < wordsBefore; ++i)
980        newVal[i] = pVal[i];
981    if (wordsBefore != 1)
982      delete [] pVal;
983    pVal = newVal;
984  }
985  return *this;
986}
987
988APInt &APInt::zextOrTrunc(uint32_t width) {
989  if (BitWidth < width)
990    return zext(width);
991  if (BitWidth > width)
992    return trunc(width);
993  return *this;
994}
995
996APInt &APInt::sextOrTrunc(uint32_t width) {
997  if (BitWidth < width)
998    return sext(width);
999  if (BitWidth > width)
1000    return trunc(width);
1001  return *this;
1002}
1003
1004/// Arithmetic right-shift this APInt by shiftAmt.
1005/// @brief Arithmetic right-shift function.
1006APInt APInt::ashr(uint32_t shiftAmt) const {
1007  assert(shiftAmt <= BitWidth && "Invalid shift amount");
1008  if (isSingleWord()) {
1009    if (shiftAmt == BitWidth)
1010      return APInt(BitWidth, 0); // undefined
1011    else {
1012      uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
1013      return APInt(BitWidth,
1014        (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1015    }
1016  }
1017
1018  // If all the bits were shifted out, the result is 0 or -1. This avoids issues
1019  // with shifting by the size of the integer type, which produces undefined
1020  // results.
1021  if (shiftAmt == BitWidth)
1022    if (isNegative())
1023      return APInt(BitWidth, -1ULL);
1024    else
1025      return APInt(BitWidth, 0);
1026
1027  // Create some space for the result.
1028  uint64_t * val = new uint64_t[getNumWords()];
1029
1030  // If we are shifting less than a word, compute the shift with a simple carry
1031  if (shiftAmt < APINT_BITS_PER_WORD) {
1032    uint64_t carry = 0;
1033    for (int i = getNumWords()-1; i >= 0; --i) {
1034      val[i] = (pVal[i] >> shiftAmt) | carry;
1035      carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1036    }
1037    return APInt(val, BitWidth).clearUnusedBits();
1038  }
1039
1040  // Compute some values needed by the remaining shift algorithms
1041  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1042  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1043
1044  // If we are shifting whole words, just move whole words
1045  if (wordShift == 0) {
1046    for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1047      val[i] = pVal[i+offset];
1048    for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1049      val[i] = (isNegative() ? -1ULL : 0);
1050    return APInt(val,BitWidth).clearUnusedBits();
1051  }
1052
1053  // Shift the low order words
1054  uint32_t breakWord = getNumWords() - offset -1;
1055  for (uint32_t i = 0; i < breakWord; ++i)
1056    val[i] = (pVal[i+offset] >> wordShift) |
1057             (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1058  // Shift the break word.
1059  uint32_t SignBit = APINT_BITS_PER_WORD - (BitWidth % APINT_BITS_PER_WORD);
1060  val[breakWord] = uint64_t(
1061    (((int64_t(pVal[breakWord+offset]) << SignBit) >> SignBit) >> wordShift));
1062
1063  // Remaining words are 0 or -1
1064  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1065    val[i] = (isNegative() ? -1ULL : 0);
1066  return APInt(val, BitWidth).clearUnusedBits();
1067}
1068
1069/// Logical right-shift this APInt by shiftAmt.
1070/// @brief Logical right-shift function.
1071APInt APInt::lshr(uint32_t shiftAmt) const {
1072  if (isSingleWord())
1073    if (shiftAmt == BitWidth)
1074      return APInt(BitWidth, 0);
1075    else
1076      return APInt(BitWidth, this->VAL >> shiftAmt);
1077
1078  // If all the bits were shifted out, the result is 0. This avoids issues
1079  // with shifting by the size of the integer type, which produces undefined
1080  // results. We define these "undefined results" to always be 0.
1081  if (shiftAmt == BitWidth)
1082    return APInt(BitWidth, 0);
1083
1084  // Create some space for the result.
1085  uint64_t * val = new uint64_t[getNumWords()];
1086
1087  // If we are shifting less than a word, compute the shift with a simple carry
1088  if (shiftAmt < APINT_BITS_PER_WORD) {
1089    uint64_t carry = 0;
1090    for (int i = getNumWords()-1; i >= 0; --i) {
1091      val[i] = (pVal[i] >> shiftAmt) | carry;
1092      carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1093    }
1094    return APInt(val, BitWidth).clearUnusedBits();
1095  }
1096
1097  // Compute some values needed by the remaining shift algorithms
1098  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1099  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1100
1101  // If we are shifting whole words, just move whole words
1102  if (wordShift == 0) {
1103    for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1104      val[i] = pVal[i+offset];
1105    for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1106      val[i] = 0;
1107    return APInt(val,BitWidth).clearUnusedBits();
1108  }
1109
1110  // Shift the low order words
1111  uint32_t breakWord = getNumWords() - offset -1;
1112  for (uint32_t i = 0; i < breakWord; ++i)
1113    val[i] = (pVal[i+offset] >> wordShift) |
1114             (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1115  // Shift the break word.
1116  val[breakWord] = pVal[breakWord+offset] >> wordShift;
1117
1118  // Remaining words are 0
1119  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1120    val[i] = 0;
1121  return APInt(val, BitWidth).clearUnusedBits();
1122}
1123
1124/// Left-shift this APInt by shiftAmt.
1125/// @brief Left-shift function.
1126APInt APInt::shl(uint32_t shiftAmt) const {
1127  assert(shiftAmt <= BitWidth && "Invalid shift amount");
1128  if (isSingleWord()) {
1129    if (shiftAmt == BitWidth)
1130      return APInt(BitWidth, 0); // avoid undefined shift results
1131    return APInt(BitWidth, VAL << shiftAmt);
1132  }
1133
1134  // If all the bits were shifted out, the result is 0. This avoids issues
1135  // with shifting by the size of the integer type, which produces undefined
1136  // results. We define these "undefined results" to always be 0.
1137  if (shiftAmt == BitWidth)
1138    return APInt(BitWidth, 0);
1139
1140  // Create some space for the result.
1141  uint64_t * val = new uint64_t[getNumWords()];
1142
1143  // If we are shifting less than a word, do it the easy way
1144  if (shiftAmt < APINT_BITS_PER_WORD) {
1145    uint64_t carry = 0;
1146    for (uint32_t i = 0; i < getNumWords(); i++) {
1147      val[i] = pVal[i] << shiftAmt | carry;
1148      carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1149    }
1150    return APInt(val, BitWidth).clearUnusedBits();
1151  }
1152
1153  // Compute some values needed by the remaining shift algorithms
1154  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1155  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1156
1157  // If we are shifting whole words, just move whole words
1158  if (wordShift == 0) {
1159    for (uint32_t i = 0; i < offset; i++)
1160      val[i] = 0;
1161    for (uint32_t i = offset; i < getNumWords(); i++)
1162      val[i] = pVal[i-offset];
1163    return APInt(val,BitWidth).clearUnusedBits();
1164  }
1165
1166  // Copy whole words from this to Result.
1167  uint32_t i = getNumWords() - 1;
1168  for (; i > offset; --i)
1169    val[i] = pVal[i-offset] << wordShift |
1170             pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1171  val[offset] = pVal[0] << wordShift;
1172  for (i = 0; i < offset; ++i)
1173    val[i] = 0;
1174  return APInt(val, BitWidth).clearUnusedBits();
1175}
1176
1177
1178// Square Root - this method computes and returns the square root of "this".
1179// Three mechanisms are used for computation. For small values (<= 5 bits),
1180// a table lookup is done. This gets some performance for common cases. For
1181// values using less than 52 bits, the value is converted to double and then
1182// the libc sqrt function is called. The result is rounded and then converted
1183// back to a uint64_t which is then used to construct the result. Finally,
1184// the Babylonian method for computing square roots is used.
1185APInt APInt::sqrt() const {
1186
1187  // Determine the magnitude of the value.
1188  uint32_t magnitude = getActiveBits();
1189
1190  // Use a fast table for some small values. This also gets rid of some
1191  // rounding errors in libc sqrt for small values.
1192  if (magnitude <= 5) {
1193    static uint8_t results[32] = {
1194      /*     0 */ 0,
1195      /*  1- 2 */ 1, 1,
1196      /*  3- 6 */ 2, 2, 2, 2,
1197      /*  7-12 */ 3, 3, 3, 3, 3, 3,
1198      /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1199      /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1200      /*    31 */ 6
1201    };
1202    return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1203  }
1204
1205  // If the magnitude of the value fits in less than 52 bits (the precision of
1206  // an IEEE double precision floating point value), then we can use the
1207  // libc sqrt function which will probably use a hardware sqrt computation.
1208  // This should be faster than the algorithm below.
1209  if (magnitude < 52)
1210    return APInt(BitWidth,
1211                 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1212
1213  // Okay, all the short cuts are exhausted. We must compute it. The following
1214  // is a classical Babylonian method for computing the square root. This code
1215  // was adapted to APINt from a wikipedia article on such computations.
1216  // See http://www.wikipedia.org/ and go to the page named
1217  // Calculate_an_integer_square_root.
1218  uint32_t nbits = BitWidth, i = 4;
1219  APInt testy(BitWidth, 16);
1220  APInt x_old(BitWidth, 1);
1221  APInt x_new(BitWidth, 0);
1222  APInt two(BitWidth, 2);
1223
1224  // Select a good starting value using binary logarithms.
1225  for (;; i += 2, testy = testy.shl(2))
1226    if (i >= nbits || this->ule(testy)) {
1227      x_old = x_old.shl(i / 2);
1228      break;
1229    }
1230
1231  // Use the Babylonian method to arrive at the integer square root:
1232  for (;;) {
1233    x_new = (this->udiv(x_old) + x_old).udiv(two);
1234    if (x_old.ule(x_new))
1235      break;
1236    x_old = x_new;
1237  }
1238
1239  // Make sure we return the closest approximation
1240  APInt square(x_old * x_old);
1241  APInt nextSquare((x_old + 1) * (x_old +1));
1242  if (this->ult(square))
1243    return x_old;
1244  else if (this->ule(nextSquare))
1245    if ((nextSquare - *this).ult(*this - square))
1246      return x_old + 1;
1247    else
1248      return x_old;
1249  else
1250    assert(0 && "Error in APInt::sqrt computation");
1251  return x_old + 1;
1252}
1253
1254/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1255/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1256/// variables here have the same names as in the algorithm. Comments explain
1257/// the algorithm and any deviation from it.
1258static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1259                     uint32_t m, uint32_t n) {
1260  assert(u && "Must provide dividend");
1261  assert(v && "Must provide divisor");
1262  assert(q && "Must provide quotient");
1263  assert(u != v && u != q && v != q && "Must us different memory");
1264  assert(n>1 && "n must be > 1");
1265
1266  // Knuth uses the value b as the base of the number system. In our case b
1267  // is 2^31 so we just set it to -1u.
1268  uint64_t b = uint64_t(1) << 32;
1269
1270  DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1271  DEBUG(cerr << "KnuthDiv: original:");
1272  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1273  DEBUG(cerr << " by");
1274  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1275  DEBUG(cerr << '\n');
1276  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1277  // u and v by d. Note that we have taken Knuth's advice here to use a power
1278  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1279  // 2 allows us to shift instead of multiply and it is easy to determine the
1280  // shift amount from the leading zeros.  We are basically normalizing the u
1281  // and v so that its high bits are shifted to the top of v's range without
1282  // overflow. Note that this can require an extra word in u so that u must
1283  // be of length m+n+1.
1284  uint32_t shift = CountLeadingZeros_32(v[n-1]);
1285  uint32_t v_carry = 0;
1286  uint32_t u_carry = 0;
1287  if (shift) {
1288    for (uint32_t i = 0; i < m+n; ++i) {
1289      uint32_t u_tmp = u[i] >> (32 - shift);
1290      u[i] = (u[i] << shift) | u_carry;
1291      u_carry = u_tmp;
1292    }
1293    for (uint32_t i = 0; i < n; ++i) {
1294      uint32_t v_tmp = v[i] >> (32 - shift);
1295      v[i] = (v[i] << shift) | v_carry;
1296      v_carry = v_tmp;
1297    }
1298  }
1299  u[m+n] = u_carry;
1300  DEBUG(cerr << "KnuthDiv:   normal:");
1301  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1302  DEBUG(cerr << " by");
1303  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1304  DEBUG(cerr << '\n');
1305
1306  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1307  int j = m;
1308  do {
1309    DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1310    // D3. [Calculate q'.].
1311    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1312    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1313    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1314    // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1315    // on v[n-2] determines at high speed most of the cases in which the trial
1316    // value qp is one too large, and it eliminates all cases where qp is two
1317    // too large.
1318    uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1319    DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1320    uint64_t qp = dividend / v[n-1];
1321    uint64_t rp = dividend % v[n-1];
1322    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1323      qp--;
1324      rp += v[n-1];
1325      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1326        qp--;
1327    }
1328    DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1329
1330    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1331    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1332    // consists of a simple multiplication by a one-place number, combined with
1333    // a subtraction.
1334    bool isNeg = false;
1335    for (uint32_t i = 0; i < n; ++i) {
1336      uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1337      uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1338      bool borrow = subtrahend > u_tmp;
1339      DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1340                 << ", subtrahend == " << subtrahend
1341                 << ", borrow = " << borrow << '\n');
1342
1343      uint64_t result = u_tmp - subtrahend;
1344      uint32_t k = j + i;
1345      u[k++] = result & (b-1); // subtract low word
1346      u[k++] = result >> 32;   // subtract high word
1347      while (borrow && k <= m+n) { // deal with borrow to the left
1348        borrow = u[k] == 0;
1349        u[k]--;
1350        k++;
1351      }
1352      isNeg |= borrow;
1353      DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ",  u[j+i+1] == " <<
1354                    u[j+i+1] << '\n');
1355    }
1356    DEBUG(cerr << "KnuthDiv: after subtraction:");
1357    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1358    DEBUG(cerr << '\n');
1359    // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1360    // this step is actually negative, (u[j+n]...u[j]) should be left as the
1361    // true value plus b**(n+1), namely as the b's complement of
1362    // the true value, and a "borrow" to the left should be remembered.
1363    //
1364    if (isNeg) {
1365      bool carry = true;  // true because b's complement is "complement + 1"
1366      for (uint32_t i = 0; i <= m+n; ++i) {
1367        u[i] = ~u[i] + carry; // b's complement
1368        carry = carry && u[i] == 0;
1369      }
1370    }
1371    DEBUG(cerr << "KnuthDiv: after complement:");
1372    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1373    DEBUG(cerr << '\n');
1374
1375    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1376    // negative, go to step D6; otherwise go on to step D7.
1377    q[j] = qp;
1378    if (isNeg) {
1379      // D6. [Add back]. The probability that this step is necessary is very
1380      // small, on the order of only 2/b. Make sure that test data accounts for
1381      // this possibility. Decrease q[j] by 1
1382      q[j]--;
1383      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1384      // A carry will occur to the left of u[j+n], and it should be ignored
1385      // since it cancels with the borrow that occurred in D4.
1386      bool carry = false;
1387      for (uint32_t i = 0; i < n; i++) {
1388        uint32_t limit = std::min(u[j+i],v[i]);
1389        u[j+i] += v[i] + carry;
1390        carry = u[j+i] < limit || (carry && u[j+i] == limit);
1391      }
1392      u[j+n] += carry;
1393    }
1394    DEBUG(cerr << "KnuthDiv: after correction:");
1395    DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1396    DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1397
1398  // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1399  } while (--j >= 0);
1400
1401  DEBUG(cerr << "KnuthDiv: quotient:");
1402  DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1403  DEBUG(cerr << '\n');
1404
1405  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1406  // remainder may be obtained by dividing u[...] by d. If r is non-null we
1407  // compute the remainder (urem uses this).
1408  if (r) {
1409    // The value d is expressed by the "shift" value above since we avoided
1410    // multiplication by d by using a shift left. So, all we have to do is
1411    // shift right here. In order to mak
1412    if (shift) {
1413      uint32_t carry = 0;
1414      DEBUG(cerr << "KnuthDiv: remainder:");
1415      for (int i = n-1; i >= 0; i--) {
1416        r[i] = (u[i] >> shift) | carry;
1417        carry = u[i] << (32 - shift);
1418        DEBUG(cerr << " " << r[i]);
1419      }
1420    } else {
1421      for (int i = n-1; i >= 0; i--) {
1422        r[i] = u[i];
1423        DEBUG(cerr << " " << r[i]);
1424      }
1425    }
1426    DEBUG(cerr << '\n');
1427  }
1428  DEBUG(cerr << std::setbase(10) << '\n');
1429}
1430
1431void APInt::divide(const APInt LHS, uint32_t lhsWords,
1432                   const APInt &RHS, uint32_t rhsWords,
1433                   APInt *Quotient, APInt *Remainder)
1434{
1435  assert(lhsWords >= rhsWords && "Fractional result");
1436
1437  // First, compose the values into an array of 32-bit words instead of
1438  // 64-bit words. This is a necessity of both the "short division" algorithm
1439  // and the the Knuth "classical algorithm" which requires there to be native
1440  // operations for +, -, and * on an m bit value with an m*2 bit result. We
1441  // can't use 64-bit operands here because we don't have native results of
1442  // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1443  // work on large-endian machines.
1444  uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1445  uint32_t n = rhsWords * 2;
1446  uint32_t m = (lhsWords * 2) - n;
1447
1448  // Allocate space for the temporary values we need either on the stack, if
1449  // it will fit, or on the heap if it won't.
1450  uint32_t SPACE[128];
1451  uint32_t *U = 0;
1452  uint32_t *V = 0;
1453  uint32_t *Q = 0;
1454  uint32_t *R = 0;
1455  if ((Remainder?4:3)*n+2*m+1 <= 128) {
1456    U = &SPACE[0];
1457    V = &SPACE[m+n+1];
1458    Q = &SPACE[(m+n+1) + n];
1459    if (Remainder)
1460      R = &SPACE[(m+n+1) + n + (m+n)];
1461  } else {
1462    U = new uint32_t[m + n + 1];
1463    V = new uint32_t[n];
1464    Q = new uint32_t[m+n];
1465    if (Remainder)
1466      R = new uint32_t[n];
1467  }
1468
1469  // Initialize the dividend
1470  memset(U, 0, (m+n+1)*sizeof(uint32_t));
1471  for (unsigned i = 0; i < lhsWords; ++i) {
1472    uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1473    U[i * 2] = tmp & mask;
1474    U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1475  }
1476  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1477
1478  // Initialize the divisor
1479  memset(V, 0, (n)*sizeof(uint32_t));
1480  for (unsigned i = 0; i < rhsWords; ++i) {
1481    uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1482    V[i * 2] = tmp & mask;
1483    V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1484  }
1485
1486  // initialize the quotient and remainder
1487  memset(Q, 0, (m+n) * sizeof(uint32_t));
1488  if (Remainder)
1489    memset(R, 0, n * sizeof(uint32_t));
1490
1491  // Now, adjust m and n for the Knuth division. n is the number of words in
1492  // the divisor. m is the number of words by which the dividend exceeds the
1493  // divisor (i.e. m+n is the length of the dividend). These sizes must not
1494  // contain any zero words or the Knuth algorithm fails.
1495  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1496    n--;
1497    m++;
1498  }
1499  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1500    m--;
1501
1502  // If we're left with only a single word for the divisor, Knuth doesn't work
1503  // so we implement the short division algorithm here. This is much simpler
1504  // and faster because we are certain that we can divide a 64-bit quantity
1505  // by a 32-bit quantity at hardware speed and short division is simply a
1506  // series of such operations. This is just like doing short division but we
1507  // are using base 2^32 instead of base 10.
1508  assert(n != 0 && "Divide by zero?");
1509  if (n == 1) {
1510    uint32_t divisor = V[0];
1511    uint32_t remainder = 0;
1512    for (int i = m+n-1; i >= 0; i--) {
1513      uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1514      if (partial_dividend == 0) {
1515        Q[i] = 0;
1516        remainder = 0;
1517      } else if (partial_dividend < divisor) {
1518        Q[i] = 0;
1519        remainder = partial_dividend;
1520      } else if (partial_dividend == divisor) {
1521        Q[i] = 1;
1522        remainder = 0;
1523      } else {
1524        Q[i] = partial_dividend / divisor;
1525        remainder = partial_dividend - (Q[i] * divisor);
1526      }
1527    }
1528    if (R)
1529      R[0] = remainder;
1530  } else {
1531    // Now we're ready to invoke the Knuth classical divide algorithm. In this
1532    // case n > 1.
1533    KnuthDiv(U, V, Q, R, m, n);
1534  }
1535
1536  // If the caller wants the quotient
1537  if (Quotient) {
1538    // Set up the Quotient value's memory.
1539    if (Quotient->BitWidth != LHS.BitWidth) {
1540      if (Quotient->isSingleWord())
1541        Quotient->VAL = 0;
1542      else
1543        delete [] Quotient->pVal;
1544      Quotient->BitWidth = LHS.BitWidth;
1545      if (!Quotient->isSingleWord())
1546        Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1547    } else
1548      Quotient->clear();
1549
1550    // The quotient is in Q. Reconstitute the quotient into Quotient's low
1551    // order words.
1552    if (lhsWords == 1) {
1553      uint64_t tmp =
1554        uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1555      if (Quotient->isSingleWord())
1556        Quotient->VAL = tmp;
1557      else
1558        Quotient->pVal[0] = tmp;
1559    } else {
1560      assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1561      for (unsigned i = 0; i < lhsWords; ++i)
1562        Quotient->pVal[i] =
1563          uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1564    }
1565  }
1566
1567  // If the caller wants the remainder
1568  if (Remainder) {
1569    // Set up the Remainder value's memory.
1570    if (Remainder->BitWidth != RHS.BitWidth) {
1571      if (Remainder->isSingleWord())
1572        Remainder->VAL = 0;
1573      else
1574        delete [] Remainder->pVal;
1575      Remainder->BitWidth = RHS.BitWidth;
1576      if (!Remainder->isSingleWord())
1577        Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1578    } else
1579      Remainder->clear();
1580
1581    // The remainder is in R. Reconstitute the remainder into Remainder's low
1582    // order words.
1583    if (rhsWords == 1) {
1584      uint64_t tmp =
1585        uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1586      if (Remainder->isSingleWord())
1587        Remainder->VAL = tmp;
1588      else
1589        Remainder->pVal[0] = tmp;
1590    } else {
1591      assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1592      for (unsigned i = 0; i < rhsWords; ++i)
1593        Remainder->pVal[i] =
1594          uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1595    }
1596  }
1597
1598  // Clean up the memory we allocated.
1599  if (U != &SPACE[0]) {
1600    delete [] U;
1601    delete [] V;
1602    delete [] Q;
1603    delete [] R;
1604  }
1605}
1606
1607APInt APInt::udiv(const APInt& RHS) const {
1608  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1609
1610  // First, deal with the easy case
1611  if (isSingleWord()) {
1612    assert(RHS.VAL != 0 && "Divide by zero?");
1613    return APInt(BitWidth, VAL / RHS.VAL);
1614  }
1615
1616  // Get some facts about the LHS and RHS number of bits and words
1617  uint32_t rhsBits = RHS.getActiveBits();
1618  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1619  assert(rhsWords && "Divided by zero???");
1620  uint32_t lhsBits = this->getActiveBits();
1621  uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1622
1623  // Deal with some degenerate cases
1624  if (!lhsWords)
1625    // 0 / X ===> 0
1626    return APInt(BitWidth, 0);
1627  else if (lhsWords < rhsWords || this->ult(RHS)) {
1628    // X / Y ===> 0, iff X < Y
1629    return APInt(BitWidth, 0);
1630  } else if (*this == RHS) {
1631    // X / X ===> 1
1632    return APInt(BitWidth, 1);
1633  } else if (lhsWords == 1 && rhsWords == 1) {
1634    // All high words are zero, just use native divide
1635    return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1636  }
1637
1638  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1639  APInt Quotient(1,0); // to hold result.
1640  divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1641  return Quotient;
1642}
1643
1644APInt APInt::urem(const APInt& RHS) const {
1645  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1646  if (isSingleWord()) {
1647    assert(RHS.VAL != 0 && "Remainder by zero?");
1648    return APInt(BitWidth, VAL % RHS.VAL);
1649  }
1650
1651  // Get some facts about the LHS
1652  uint32_t lhsBits = getActiveBits();
1653  uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1654
1655  // Get some facts about the RHS
1656  uint32_t rhsBits = RHS.getActiveBits();
1657  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1658  assert(rhsWords && "Performing remainder operation by zero ???");
1659
1660  // Check the degenerate cases
1661  if (lhsWords == 0) {
1662    // 0 % Y ===> 0
1663    return APInt(BitWidth, 0);
1664  } else if (lhsWords < rhsWords || this->ult(RHS)) {
1665    // X % Y ===> X, iff X < Y
1666    return *this;
1667  } else if (*this == RHS) {
1668    // X % X == 0;
1669    return APInt(BitWidth, 0);
1670  } else if (lhsWords == 1) {
1671    // All high words are zero, just use native remainder
1672    return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1673  }
1674
1675  // We have to compute it the hard way. Invoke the Knute divide algorithm.
1676  APInt Remainder(1,0);
1677  divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1678  return Remainder;
1679}
1680
1681void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1682                       uint8_t radix) {
1683  // Check our assumptions here
1684  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1685         "Radix should be 2, 8, 10, or 16!");
1686  assert(str && "String is null?");
1687  bool isNeg = str[0] == '-';
1688  if (isNeg)
1689    str++, slen--;
1690  assert(slen <= numbits || radix != 2 && "Insufficient bit width");
1691  assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width");
1692  assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width");
1693  assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width");
1694
1695  // Allocate memory
1696  if (!isSingleWord())
1697    pVal = getClearedMemory(getNumWords());
1698
1699  // Figure out if we can shift instead of multiply
1700  uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1701
1702  // Set up an APInt for the digit to add outside the loop so we don't
1703  // constantly construct/destruct it.
1704  APInt apdigit(getBitWidth(), 0);
1705  APInt apradix(getBitWidth(), radix);
1706
1707  // Enter digit traversal loop
1708  for (unsigned i = 0; i < slen; i++) {
1709    // Get a digit
1710    uint32_t digit = 0;
1711    char cdigit = str[i];
1712    if (isdigit(cdigit))
1713      digit = cdigit - '0';
1714    else if (isxdigit(cdigit))
1715      if (cdigit >= 'a')
1716        digit = cdigit - 'a' + 10;
1717      else if (cdigit >= 'A')
1718        digit = cdigit - 'A' + 10;
1719      else
1720        assert(0 && "huh?");
1721    else
1722      assert(0 && "Invalid character in digit string");
1723
1724    // Shift or multiple the value by the radix
1725    if (shift)
1726      this->shl(shift);
1727    else
1728      *this *= apradix;
1729
1730    // Add in the digit we just interpreted
1731    if (apdigit.isSingleWord())
1732      apdigit.VAL = digit;
1733    else
1734      apdigit.pVal[0] = digit;
1735    *this += apdigit;
1736  }
1737  // If its negative, put it in two's complement form
1738  if (isNeg) {
1739    (*this)--;
1740    this->flip();
1741  }
1742}
1743
1744std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1745  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1746         "Radix should be 2, 8, 10, or 16!");
1747  static const char *digits[] = {
1748    "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1749  };
1750  std::string result;
1751  uint32_t bits_used = getActiveBits();
1752  if (isSingleWord()) {
1753    char buf[65];
1754    const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1755       (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1756    if (format) {
1757      if (wantSigned) {
1758        int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1759                           (APINT_BITS_PER_WORD-BitWidth);
1760        sprintf(buf, format, sextVal);
1761      } else
1762        sprintf(buf, format, VAL);
1763    } else {
1764      memset(buf, 0, 65);
1765      uint64_t v = VAL;
1766      while (bits_used) {
1767        uint32_t bit = v & 1;
1768        bits_used--;
1769        buf[bits_used] = digits[bit][0];
1770        v >>=1;
1771      }
1772    }
1773    result = buf;
1774    return result;
1775  }
1776
1777  if (radix != 10) {
1778    uint64_t mask = radix - 1;
1779    uint32_t shift = (radix == 16 ? 4 : radix  == 8 ? 3 : 1);
1780    uint32_t nibbles = APINT_BITS_PER_WORD / shift;
1781    for (uint32_t i = 0; i < getNumWords(); ++i) {
1782      uint64_t value = pVal[i];
1783      for (uint32_t j = 0; j < nibbles; ++j) {
1784        result.insert(0, digits[ value & mask ]);
1785        value >>= shift;
1786      }
1787    }
1788    return result;
1789  }
1790
1791  APInt tmp(*this);
1792  APInt divisor(4, radix);
1793  APInt zero(tmp.getBitWidth(), 0);
1794  size_t insert_at = 0;
1795  if (wantSigned && tmp[BitWidth-1]) {
1796    // They want to print the signed version and it is a negative value
1797    // Flip the bits and add one to turn it into the equivalent positive
1798    // value and put a '-' in the result.
1799    tmp.flip();
1800    tmp++;
1801    result = "-";
1802    insert_at = 1;
1803  }
1804  if (tmp == APInt(tmp.getBitWidth(), 0))
1805    result = "0";
1806  else while (tmp.ne(zero)) {
1807    APInt APdigit(1,0);
1808    APInt tmp2(tmp.getBitWidth(), 0);
1809    divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
1810           &APdigit);
1811    uint32_t digit = APdigit.getZExtValue();
1812    assert(digit < radix && "divide failed");
1813    result.insert(insert_at,digits[digit]);
1814    tmp = tmp2;
1815  }
1816
1817  return result;
1818}
1819
1820#ifndef NDEBUG
1821void APInt::dump() const
1822{
1823  cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
1824  if (isSingleWord())
1825    cerr << VAL;
1826  else for (unsigned i = getNumWords(); i > 0; i--) {
1827    cerr << pVal[i-1] << " ";
1828  }
1829  cerr << " U(" << this->toString(10) << ") S(" << this->toStringSigned(10)
1830       << ")\n" << std::setbase(10);
1831}
1832#endif
1833