APInt.cpp revision 6dbe233959eed02971f3075e0c48234238ff6fa3
1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Sheng Zhou and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/MathExtras.h"
20#include <math.h>
21#include <limits>
22#include <cstring>
23#include <cstdlib>
24#ifndef NDEBUG
25#include <iomanip>
26#endif
27
28using namespace llvm;
29
30/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
32inline static uint64_t* getClearedMemory(uint32_t numWords) {
33  uint64_t * result = new uint64_t[numWords];
34  assert(result && "APInt memory allocation fails!");
35  memset(result, 0, numWords * sizeof(uint64_t));
36  return result;
37}
38
39/// A utility function for allocating memory and checking for allocation
40/// failure.  The content is not zeroed.
41inline static uint64_t* getMemory(uint32_t numWords) {
42  uint64_t * result = new uint64_t[numWords];
43  assert(result && "APInt memory allocation fails!");
44  return result;
45}
46
47APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned)
48  : BitWidth(numBits), VAL(0) {
49  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
50  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
51  if (isSingleWord())
52    VAL = val;
53  else {
54    pVal = getClearedMemory(getNumWords());
55    pVal[0] = val;
56    if (isSigned && int64_t(val) < 0)
57      for (unsigned i = 1; i < getNumWords(); ++i)
58        pVal[i] = -1ULL;
59  }
60  clearUnusedBits();
61}
62
63APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
64  : BitWidth(numBits), VAL(0)  {
65  assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
66  assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
67  assert(bigVal && "Null pointer detected!");
68  if (isSingleWord())
69    VAL = bigVal[0];
70  else {
71    // Get memory, cleared to 0
72    pVal = getClearedMemory(getNumWords());
73    // Calculate the number of words to copy
74    uint32_t words = std::min<uint32_t>(numWords, getNumWords());
75    // Copy the words from bigVal to pVal
76    memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
77  }
78  // Make sure unused high bits are cleared
79  clearUnusedBits();
80}
81
82APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
83             uint8_t radix)
84  : BitWidth(numbits), VAL(0) {
85  fromString(numbits, StrStart, slen, radix);
86}
87
88APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
89  : BitWidth(numbits), VAL(0) {
90  assert(!Val.empty() && "String empty?");
91  fromString(numbits, Val.c_str(), Val.size(), radix);
92}
93
94APInt::APInt(const APInt& that)
95  : BitWidth(that.BitWidth), VAL(0) {
96  if (isSingleWord())
97    VAL = that.VAL;
98  else {
99    pVal = getMemory(getNumWords());
100    memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
101  }
102}
103
104APInt::~APInt() {
105  if (!isSingleWord() && pVal)
106    delete [] pVal;
107}
108
109APInt& APInt::operator=(const APInt& RHS) {
110  // Don't do anything for X = X
111  if (this == &RHS)
112    return *this;
113
114  // If the bitwidths are the same, we can avoid mucking with memory
115  if (BitWidth == RHS.getBitWidth()) {
116    if (isSingleWord())
117      VAL = RHS.VAL;
118    else
119      memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
120    return *this;
121  }
122
123  if (isSingleWord())
124    if (RHS.isSingleWord())
125      VAL = RHS.VAL;
126    else {
127      VAL = 0;
128      pVal = getMemory(RHS.getNumWords());
129      memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
130    }
131  else if (getNumWords() == RHS.getNumWords())
132    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
133  else if (RHS.isSingleWord()) {
134    delete [] pVal;
135    VAL = RHS.VAL;
136  } else {
137    delete [] pVal;
138    pVal = getMemory(RHS.getNumWords());
139    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
140  }
141  BitWidth = RHS.BitWidth;
142  return clearUnusedBits();
143}
144
145APInt& APInt::operator=(uint64_t RHS) {
146  if (isSingleWord())
147    VAL = RHS;
148  else {
149    pVal[0] = RHS;
150    memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
151  }
152  return clearUnusedBits();
153}
154
155/// add_1 - This function adds a single "digit" integer, y, to the multiple
156/// "digit" integer array,  x[]. x[] is modified to reflect the addition and
157/// 1 is returned if there is a carry out, otherwise 0 is returned.
158/// @returns the carry of the addition.
159static bool add_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
160  for (uint32_t i = 0; i < len; ++i) {
161    dest[i] = y + x[i];
162    if (dest[i] < y)
163      y = 1; // Carry one to next digit.
164    else {
165      y = 0; // No need to carry so exit early
166      break;
167    }
168  }
169  return y;
170}
171
172/// @brief Prefix increment operator. Increments the APInt by one.
173APInt& APInt::operator++() {
174  if (isSingleWord())
175    ++VAL;
176  else
177    add_1(pVal, pVal, getNumWords(), 1);
178  return clearUnusedBits();
179}
180
181/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
182/// the multi-digit integer array, x[], propagating the borrowed 1 value until
183/// no further borrowing is neeeded or it runs out of "digits" in x.  The result
184/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
185/// In other words, if y > x then this function returns 1, otherwise 0.
186/// @returns the borrow out of the subtraction
187static bool sub_1(uint64_t x[], uint32_t len, uint64_t y) {
188  for (uint32_t i = 0; i < len; ++i) {
189    uint64_t X = x[i];
190    x[i] -= y;
191    if (y > X)
192      y = 1;  // We have to "borrow 1" from next "digit"
193    else {
194      y = 0;  // No need to borrow
195      break;  // Remaining digits are unchanged so exit early
196    }
197  }
198  return bool(y);
199}
200
201/// @brief Prefix decrement operator. Decrements the APInt by one.
202APInt& APInt::operator--() {
203  if (isSingleWord())
204    --VAL;
205  else
206    sub_1(pVal, getNumWords(), 1);
207  return clearUnusedBits();
208}
209
210/// add - This function adds the integer array x to the integer array Y and
211/// places the result in dest.
212/// @returns the carry out from the addition
213/// @brief General addition of 64-bit integer arrays
214static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
215                uint32_t len) {
216  bool carry = false;
217  for (uint32_t i = 0; i< len; ++i) {
218    uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
219    dest[i] = x[i] + y[i] + carry;
220    carry = dest[i] < limit || (carry && dest[i] == limit);
221  }
222  return carry;
223}
224
225/// Adds the RHS APint to this APInt.
226/// @returns this, after addition of RHS.
227/// @brief Addition assignment operator.
228APInt& APInt::operator+=(const APInt& RHS) {
229  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
230  if (isSingleWord())
231    VAL += RHS.VAL;
232  else {
233    add(pVal, pVal, RHS.pVal, getNumWords());
234  }
235  return clearUnusedBits();
236}
237
238/// Subtracts the integer array y from the integer array x
239/// @returns returns the borrow out.
240/// @brief Generalized subtraction of 64-bit integer arrays.
241static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
242                uint32_t len) {
243  bool borrow = false;
244  for (uint32_t i = 0; i < len; ++i) {
245    uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
246    borrow = y[i] > x_tmp || (borrow && x[i] == 0);
247    dest[i] = x_tmp - y[i];
248  }
249  return borrow;
250}
251
252/// Subtracts the RHS APInt from this APInt
253/// @returns this, after subtraction
254/// @brief Subtraction assignment operator.
255APInt& APInt::operator-=(const APInt& RHS) {
256  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
257  if (isSingleWord())
258    VAL -= RHS.VAL;
259  else
260    sub(pVal, pVal, RHS.pVal, getNumWords());
261  return clearUnusedBits();
262}
263
264/// Multiplies an integer array, x by a a uint64_t integer and places the result
265/// into dest.
266/// @returns the carry out of the multiplication.
267/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
268static uint64_t mul_1(uint64_t dest[], uint64_t x[], uint32_t len, uint64_t y) {
269  // Split y into high 32-bit part (hy)  and low 32-bit part (ly)
270  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
271  uint64_t carry = 0;
272
273  // For each digit of x.
274  for (uint32_t i = 0; i < len; ++i) {
275    // Split x into high and low words
276    uint64_t lx = x[i] & 0xffffffffULL;
277    uint64_t hx = x[i] >> 32;
278    // hasCarry - A flag to indicate if there is a carry to the next digit.
279    // hasCarry == 0, no carry
280    // hasCarry == 1, has carry
281    // hasCarry == 2, no carry and the calculation result == 0.
282    uint8_t hasCarry = 0;
283    dest[i] = carry + lx * ly;
284    // Determine if the add above introduces carry.
285    hasCarry = (dest[i] < carry) ? 1 : 0;
286    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
287    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
288    // (2^32 - 1) + 2^32 = 2^64.
289    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
290
291    carry += (lx * hy) & 0xffffffffULL;
292    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
293    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
294            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
295  }
296  return carry;
297}
298
299/// Multiplies integer array x by integer array y and stores the result into
300/// the integer array dest. Note that dest's size must be >= xlen + ylen.
301/// @brief Generalized multiplicate of integer arrays.
302static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen, uint64_t y[],
303                uint32_t ylen) {
304  dest[xlen] = mul_1(dest, x, xlen, y[0]);
305  for (uint32_t i = 1; i < ylen; ++i) {
306    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
307    uint64_t carry = 0, lx = 0, hx = 0;
308    for (uint32_t j = 0; j < xlen; ++j) {
309      lx = x[j] & 0xffffffffULL;
310      hx = x[j] >> 32;
311      // hasCarry - A flag to indicate if has carry.
312      // hasCarry == 0, no carry
313      // hasCarry == 1, has carry
314      // hasCarry == 2, no carry and the calculation result == 0.
315      uint8_t hasCarry = 0;
316      uint64_t resul = carry + lx * ly;
317      hasCarry = (resul < carry) ? 1 : 0;
318      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
319      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
320
321      carry += (lx * hy) & 0xffffffffULL;
322      resul = (carry << 32) | (resul & 0xffffffffULL);
323      dest[i+j] += resul;
324      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
325              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
326              ((lx * hy) >> 32) + hx * hy;
327    }
328    dest[i+xlen] = carry;
329  }
330}
331
332APInt& APInt::operator*=(const APInt& RHS) {
333  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
334  if (isSingleWord()) {
335    VAL *= RHS.VAL;
336    clearUnusedBits();
337    return *this;
338  }
339
340  // Get some bit facts about LHS and check for zero
341  uint32_t lhsBits = getActiveBits();
342  uint32_t lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
343  if (!lhsWords)
344    // 0 * X ===> 0
345    return *this;
346
347  // Get some bit facts about RHS and check for zero
348  uint32_t rhsBits = RHS.getActiveBits();
349  uint32_t rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
350  if (!rhsWords) {
351    // X * 0 ===> 0
352    clear();
353    return *this;
354  }
355
356  // Allocate space for the result
357  uint32_t destWords = rhsWords + lhsWords;
358  uint64_t *dest = getMemory(destWords);
359
360  // Perform the long multiply
361  mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
362
363  // Copy result back into *this
364  clear();
365  uint32_t wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
366  memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
367
368  // delete dest array and return
369  delete[] dest;
370  return *this;
371}
372
373APInt& APInt::operator&=(const APInt& RHS) {
374  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
375  if (isSingleWord()) {
376    VAL &= RHS.VAL;
377    return *this;
378  }
379  uint32_t numWords = getNumWords();
380  for (uint32_t i = 0; i < numWords; ++i)
381    pVal[i] &= RHS.pVal[i];
382  return *this;
383}
384
385APInt& APInt::operator|=(const APInt& RHS) {
386  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
387  if (isSingleWord()) {
388    VAL |= RHS.VAL;
389    return *this;
390  }
391  uint32_t numWords = getNumWords();
392  for (uint32_t i = 0; i < numWords; ++i)
393    pVal[i] |= RHS.pVal[i];
394  return *this;
395}
396
397APInt& APInt::operator^=(const APInt& RHS) {
398  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
399  if (isSingleWord()) {
400    VAL ^= RHS.VAL;
401    this->clearUnusedBits();
402    return *this;
403  }
404  uint32_t numWords = getNumWords();
405  for (uint32_t i = 0; i < numWords; ++i)
406    pVal[i] ^= RHS.pVal[i];
407  return clearUnusedBits();
408}
409
410APInt APInt::operator&(const APInt& RHS) const {
411  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
412  if (isSingleWord())
413    return APInt(getBitWidth(), VAL & RHS.VAL);
414
415  uint32_t numWords = getNumWords();
416  uint64_t* val = getMemory(numWords);
417  for (uint32_t i = 0; i < numWords; ++i)
418    val[i] = pVal[i] & RHS.pVal[i];
419  return APInt(val, getBitWidth());
420}
421
422APInt APInt::operator|(const APInt& RHS) const {
423  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
424  if (isSingleWord())
425    return APInt(getBitWidth(), VAL | RHS.VAL);
426
427  uint32_t numWords = getNumWords();
428  uint64_t *val = getMemory(numWords);
429  for (uint32_t i = 0; i < numWords; ++i)
430    val[i] = pVal[i] | RHS.pVal[i];
431  return APInt(val, getBitWidth());
432}
433
434APInt APInt::operator^(const APInt& RHS) const {
435  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
436  if (isSingleWord())
437    return APInt(BitWidth, VAL ^ RHS.VAL);
438
439  uint32_t numWords = getNumWords();
440  uint64_t *val = getMemory(numWords);
441  for (uint32_t i = 0; i < numWords; ++i)
442    val[i] = pVal[i] ^ RHS.pVal[i];
443
444  // 0^0==1 so clear the high bits in case they got set.
445  return APInt(val, getBitWidth()).clearUnusedBits();
446}
447
448bool APInt::operator !() const {
449  if (isSingleWord())
450    return !VAL;
451
452  for (uint32_t i = 0; i < getNumWords(); ++i)
453    if (pVal[i])
454      return false;
455  return true;
456}
457
458APInt APInt::operator*(const APInt& RHS) const {
459  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
460  if (isSingleWord())
461    return APInt(BitWidth, VAL * RHS.VAL);
462  APInt Result(*this);
463  Result *= RHS;
464  return Result.clearUnusedBits();
465}
466
467APInt APInt::operator+(const APInt& RHS) const {
468  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
469  if (isSingleWord())
470    return APInt(BitWidth, VAL + RHS.VAL);
471  APInt Result(BitWidth, 0);
472  add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
473  return Result.clearUnusedBits();
474}
475
476APInt APInt::operator-(const APInt& RHS) const {
477  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
478  if (isSingleWord())
479    return APInt(BitWidth, VAL - RHS.VAL);
480  APInt Result(BitWidth, 0);
481  sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
482  return Result.clearUnusedBits();
483}
484
485bool APInt::operator[](uint32_t bitPosition) const {
486  return (maskBit(bitPosition) &
487          (isSingleWord() ?  VAL : pVal[whichWord(bitPosition)])) != 0;
488}
489
490bool APInt::operator==(const APInt& RHS) const {
491  assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
492  if (isSingleWord())
493    return VAL == RHS.VAL;
494
495  // Get some facts about the number of bits used in the two operands.
496  uint32_t n1 = getActiveBits();
497  uint32_t n2 = RHS.getActiveBits();
498
499  // If the number of bits isn't the same, they aren't equal
500  if (n1 != n2)
501    return false;
502
503  // If the number of bits fits in a word, we only need to compare the low word.
504  if (n1 <= APINT_BITS_PER_WORD)
505    return pVal[0] == RHS.pVal[0];
506
507  // Otherwise, compare everything
508  for (int i = whichWord(n1 - 1); i >= 0; --i)
509    if (pVal[i] != RHS.pVal[i])
510      return false;
511  return true;
512}
513
514bool APInt::operator==(uint64_t Val) const {
515  if (isSingleWord())
516    return VAL == Val;
517
518  uint32_t n = getActiveBits();
519  if (n <= APINT_BITS_PER_WORD)
520    return pVal[0] == Val;
521  else
522    return false;
523}
524
525bool APInt::ult(const APInt& RHS) const {
526  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
527  if (isSingleWord())
528    return VAL < RHS.VAL;
529
530  // Get active bit length of both operands
531  uint32_t n1 = getActiveBits();
532  uint32_t n2 = RHS.getActiveBits();
533
534  // If magnitude of LHS is less than RHS, return true.
535  if (n1 < n2)
536    return true;
537
538  // If magnitude of RHS is greather than LHS, return false.
539  if (n2 < n1)
540    return false;
541
542  // If they bot fit in a word, just compare the low order word
543  if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
544    return pVal[0] < RHS.pVal[0];
545
546  // Otherwise, compare all words
547  uint32_t topWord = whichWord(std::max(n1,n2)-1);
548  for (int i = topWord; i >= 0; --i) {
549    if (pVal[i] > RHS.pVal[i])
550      return false;
551    if (pVal[i] < RHS.pVal[i])
552      return true;
553  }
554  return false;
555}
556
557bool APInt::slt(const APInt& RHS) const {
558  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
559  if (isSingleWord()) {
560    int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
561    int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
562    return lhsSext < rhsSext;
563  }
564
565  APInt lhs(*this);
566  APInt rhs(RHS);
567  bool lhsNeg = isNegative();
568  bool rhsNeg = rhs.isNegative();
569  if (lhsNeg) {
570    // Sign bit is set so perform two's complement to make it positive
571    lhs.flip();
572    lhs++;
573  }
574  if (rhsNeg) {
575    // Sign bit is set so perform two's complement to make it positive
576    rhs.flip();
577    rhs++;
578  }
579
580  // Now we have unsigned values to compare so do the comparison if necessary
581  // based on the negativeness of the values.
582  if (lhsNeg)
583    if (rhsNeg)
584      return lhs.ugt(rhs);
585    else
586      return true;
587  else if (rhsNeg)
588    return false;
589  else
590    return lhs.ult(rhs);
591}
592
593APInt& APInt::set(uint32_t bitPosition) {
594  if (isSingleWord())
595    VAL |= maskBit(bitPosition);
596  else
597    pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
598  return *this;
599}
600
601APInt& APInt::set() {
602  if (isSingleWord()) {
603    VAL = -1ULL;
604    return clearUnusedBits();
605  }
606
607  // Set all the bits in all the words.
608  for (uint32_t i = 0; i < getNumWords(); ++i)
609    pVal[i] = -1ULL;
610  // Clear the unused ones
611  return clearUnusedBits();
612}
613
614/// Set the given bit to 0 whose position is given as "bitPosition".
615/// @brief Set a given bit to 0.
616APInt& APInt::clear(uint32_t bitPosition) {
617  if (isSingleWord())
618    VAL &= ~maskBit(bitPosition);
619  else
620    pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
621  return *this;
622}
623
624/// @brief Set every bit to 0.
625APInt& APInt::clear() {
626  if (isSingleWord())
627    VAL = 0;
628  else
629    memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
630  return *this;
631}
632
633/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
634/// this APInt.
635APInt APInt::operator~() const {
636  APInt Result(*this);
637  Result.flip();
638  return Result;
639}
640
641/// @brief Toggle every bit to its opposite value.
642APInt& APInt::flip() {
643  if (isSingleWord()) {
644    VAL ^= -1ULL;
645    return clearUnusedBits();
646  }
647  for (uint32_t i = 0; i < getNumWords(); ++i)
648    pVal[i] ^= -1ULL;
649  return clearUnusedBits();
650}
651
652/// Toggle a given bit to its opposite value whose position is given
653/// as "bitPosition".
654/// @brief Toggles a given bit to its opposite value.
655APInt& APInt::flip(uint32_t bitPosition) {
656  assert(bitPosition < BitWidth && "Out of the bit-width range!");
657  if ((*this)[bitPosition]) clear(bitPosition);
658  else set(bitPosition);
659  return *this;
660}
661
662uint64_t APInt::getHashValue() const {
663  // Put the bit width into the low order bits.
664  uint64_t hash = BitWidth;
665
666  // Add the sum of the words to the hash.
667  if (isSingleWord())
668    hash += VAL << 6; // clear separation of up to 64 bits
669  else
670    for (uint32_t i = 0; i < getNumWords(); ++i)
671      hash += pVal[i] << 6; // clear sepration of up to 64 bits
672  return hash;
673}
674
675/// HiBits - This function returns the high "numBits" bits of this APInt.
676APInt APInt::getHiBits(uint32_t numBits) const {
677  return APIntOps::lshr(*this, BitWidth - numBits);
678}
679
680/// LoBits - This function returns the low "numBits" bits of this APInt.
681APInt APInt::getLoBits(uint32_t numBits) const {
682  return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
683                        BitWidth - numBits);
684}
685
686bool APInt::isPowerOf2() const {
687  return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
688}
689
690uint32_t APInt::countLeadingZeros() const {
691  uint32_t Count = 0;
692  if (isSingleWord())
693    Count = CountLeadingZeros_64(VAL);
694  else {
695    for (uint32_t i = getNumWords(); i > 0u; --i) {
696      if (pVal[i-1] == 0)
697        Count += APINT_BITS_PER_WORD;
698      else {
699        Count += CountLeadingZeros_64(pVal[i-1]);
700        break;
701      }
702    }
703  }
704  uint32_t remainder = BitWidth % APINT_BITS_PER_WORD;
705  if (remainder)
706    Count -= APINT_BITS_PER_WORD - remainder;
707  return Count;
708}
709
710static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
711  uint32_t Count = 0;
712  if (skip)
713    V <<= skip;
714  while (V && (V & (1ULL << 63))) {
715    Count++;
716    V <<= 1;
717  }
718  return Count;
719}
720
721uint32_t APInt::countLeadingOnes() const {
722  if (isSingleWord())
723    return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
724
725  uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
726  uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
727  int i = getNumWords() - 1;
728  uint32_t Count = countLeadingOnes_64(pVal[i], shift);
729  if (Count == highWordBits) {
730    for (i--; i >= 0; --i) {
731      if (pVal[i] == -1ULL)
732        Count += APINT_BITS_PER_WORD;
733      else {
734        Count += countLeadingOnes_64(pVal[i], 0);
735        break;
736      }
737    }
738  }
739  return Count;
740}
741
742uint32_t APInt::countTrailingZeros() const {
743  if (isSingleWord())
744    return CountTrailingZeros_64(VAL);
745  uint32_t Count = 0;
746  uint32_t i = 0;
747  for (; i < getNumWords() && pVal[i] == 0; ++i)
748    Count += APINT_BITS_PER_WORD;
749  if (i < getNumWords())
750    Count += CountTrailingZeros_64(pVal[i]);
751  return Count;
752}
753
754uint32_t APInt::countPopulation() const {
755  if (isSingleWord())
756    return CountPopulation_64(VAL);
757  uint32_t Count = 0;
758  for (uint32_t i = 0; i < getNumWords(); ++i)
759    Count += CountPopulation_64(pVal[i]);
760  return Count;
761}
762
763APInt APInt::byteSwap() const {
764  assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
765  if (BitWidth == 16)
766    return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
767  else if (BitWidth == 32)
768    return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
769  else if (BitWidth == 48) {
770    uint32_t Tmp1 = uint32_t(VAL >> 16);
771    Tmp1 = ByteSwap_32(Tmp1);
772    uint16_t Tmp2 = uint16_t(VAL);
773    Tmp2 = ByteSwap_16(Tmp2);
774    return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
775  } else if (BitWidth == 64)
776    return APInt(BitWidth, ByteSwap_64(VAL));
777  else {
778    APInt Result(BitWidth, 0);
779    char *pByte = (char*)Result.pVal;
780    for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
781      char Tmp = pByte[i];
782      pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
783      pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
784    }
785    return Result;
786  }
787}
788
789APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
790                                            const APInt& API2) {
791  APInt A = API1, B = API2;
792  while (!!B) {
793    APInt T = B;
794    B = APIntOps::urem(A, B);
795    A = T;
796  }
797  return A;
798}
799
800APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
801  union {
802    double D;
803    uint64_t I;
804  } T;
805  T.D = Double;
806
807  // Get the sign bit from the highest order bit
808  bool isNeg = T.I >> 63;
809
810  // Get the 11-bit exponent and adjust for the 1023 bit bias
811  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
812
813  // If the exponent is negative, the value is < 0 so just return 0.
814  if (exp < 0)
815    return APInt(width, 0u);
816
817  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
818  uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
819
820  // If the exponent doesn't shift all bits out of the mantissa
821  if (exp < 52)
822    return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
823                    APInt(width, mantissa >> (52 - exp));
824
825  // If the client didn't provide enough bits for us to shift the mantissa into
826  // then the result is undefined, just return 0
827  if (width <= exp - 52)
828    return APInt(width, 0);
829
830  // Otherwise, we have to shift the mantissa bits up to the right location
831  APInt Tmp(width, mantissa);
832  Tmp = Tmp.shl(exp - 52);
833  return isNeg ? -Tmp : Tmp;
834}
835
836/// RoundToDouble - This function convert this APInt to a double.
837/// The layout for double is as following (IEEE Standard 754):
838///  --------------------------------------
839/// |  Sign    Exponent    Fraction    Bias |
840/// |-------------------------------------- |
841/// |  1[63]   11[62-52]   52[51-00]   1023 |
842///  --------------------------------------
843double APInt::roundToDouble(bool isSigned) const {
844
845  // Handle the simple case where the value is contained in one uint64_t.
846  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
847    if (isSigned) {
848      int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
849      return double(sext);
850    } else
851      return double(VAL);
852  }
853
854  // Determine if the value is negative.
855  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
856
857  // Construct the absolute value if we're negative.
858  APInt Tmp(isNeg ? -(*this) : (*this));
859
860  // Figure out how many bits we're using.
861  uint32_t n = Tmp.getActiveBits();
862
863  // The exponent (without bias normalization) is just the number of bits
864  // we are using. Note that the sign bit is gone since we constructed the
865  // absolute value.
866  uint64_t exp = n;
867
868  // Return infinity for exponent overflow
869  if (exp > 1023) {
870    if (!isSigned || !isNeg)
871      return std::numeric_limits<double>::infinity();
872    else
873      return -std::numeric_limits<double>::infinity();
874  }
875  exp += 1023; // Increment for 1023 bias
876
877  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
878  // extract the high 52 bits from the correct words in pVal.
879  uint64_t mantissa;
880  unsigned hiWord = whichWord(n-1);
881  if (hiWord == 0) {
882    mantissa = Tmp.pVal[0];
883    if (n > 52)
884      mantissa >>= n - 52; // shift down, we want the top 52 bits.
885  } else {
886    assert(hiWord > 0 && "huh?");
887    uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
888    uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
889    mantissa = hibits | lobits;
890  }
891
892  // The leading bit of mantissa is implicit, so get rid of it.
893  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
894  union {
895    double D;
896    uint64_t I;
897  } T;
898  T.I = sign | (exp << 52) | mantissa;
899  return T.D;
900}
901
902// Truncate to new width.
903APInt &APInt::trunc(uint32_t width) {
904  assert(width < BitWidth && "Invalid APInt Truncate request");
905  assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
906  uint32_t wordsBefore = getNumWords();
907  BitWidth = width;
908  uint32_t wordsAfter = getNumWords();
909  if (wordsBefore != wordsAfter) {
910    if (wordsAfter == 1) {
911      uint64_t *tmp = pVal;
912      VAL = pVal[0];
913      delete [] tmp;
914    } else {
915      uint64_t *newVal = getClearedMemory(wordsAfter);
916      for (uint32_t i = 0; i < wordsAfter; ++i)
917        newVal[i] = pVal[i];
918      delete [] pVal;
919      pVal = newVal;
920    }
921  }
922  return clearUnusedBits();
923}
924
925// Sign extend to a new width.
926APInt &APInt::sext(uint32_t width) {
927  assert(width > BitWidth && "Invalid APInt SignExtend request");
928  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
929  // If the sign bit isn't set, this is the same as zext.
930  if (!isNegative()) {
931    zext(width);
932    return *this;
933  }
934
935  // The sign bit is set. First, get some facts
936  uint32_t wordsBefore = getNumWords();
937  uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
938  BitWidth = width;
939  uint32_t wordsAfter = getNumWords();
940
941  // Mask the high order word appropriately
942  if (wordsBefore == wordsAfter) {
943    uint32_t newWordBits = width % APINT_BITS_PER_WORD;
944    // The extension is contained to the wordsBefore-1th word.
945    uint64_t mask = ~0ULL;
946    if (newWordBits)
947      mask >>= APINT_BITS_PER_WORD - newWordBits;
948    mask <<= wordBits;
949    if (wordsBefore == 1)
950      VAL |= mask;
951    else
952      pVal[wordsBefore-1] |= mask;
953    return clearUnusedBits();
954  }
955
956  uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
957  uint64_t *newVal = getMemory(wordsAfter);
958  if (wordsBefore == 1)
959    newVal[0] = VAL | mask;
960  else {
961    for (uint32_t i = 0; i < wordsBefore; ++i)
962      newVal[i] = pVal[i];
963    newVal[wordsBefore-1] |= mask;
964  }
965  for (uint32_t i = wordsBefore; i < wordsAfter; i++)
966    newVal[i] = -1ULL;
967  if (wordsBefore != 1)
968    delete [] pVal;
969  pVal = newVal;
970  return clearUnusedBits();
971}
972
973//  Zero extend to a new width.
974APInt &APInt::zext(uint32_t width) {
975  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
976  assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
977  uint32_t wordsBefore = getNumWords();
978  BitWidth = width;
979  uint32_t wordsAfter = getNumWords();
980  if (wordsBefore != wordsAfter) {
981    uint64_t *newVal = getClearedMemory(wordsAfter);
982    if (wordsBefore == 1)
983      newVal[0] = VAL;
984    else
985      for (uint32_t i = 0; i < wordsBefore; ++i)
986        newVal[i] = pVal[i];
987    if (wordsBefore != 1)
988      delete [] pVal;
989    pVal = newVal;
990  }
991  return *this;
992}
993
994APInt &APInt::zextOrTrunc(uint32_t width) {
995  if (BitWidth < width)
996    return zext(width);
997  if (BitWidth > width)
998    return trunc(width);
999  return *this;
1000}
1001
1002APInt &APInt::sextOrTrunc(uint32_t width) {
1003  if (BitWidth < width)
1004    return sext(width);
1005  if (BitWidth > width)
1006    return trunc(width);
1007  return *this;
1008}
1009
1010/// Arithmetic right-shift this APInt by shiftAmt.
1011/// @brief Arithmetic right-shift function.
1012APInt APInt::ashr(uint32_t shiftAmt) const {
1013  assert(shiftAmt <= BitWidth && "Invalid shift amount");
1014  // Handle a degenerate case
1015  if (shiftAmt == 0)
1016    return *this;
1017
1018  // Handle single word shifts with built-in ashr
1019  if (isSingleWord()) {
1020    if (shiftAmt == BitWidth)
1021      return APInt(BitWidth, 0); // undefined
1022    else {
1023      uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
1024      return APInt(BitWidth,
1025        (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1026    }
1027  }
1028
1029  // If all the bits were shifted out, the result is, technically, undefined.
1030  // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1031  // issues in the algorithm below.
1032  if (shiftAmt == BitWidth)
1033    if (isNegative())
1034      return APInt(BitWidth, -1ULL);
1035    else
1036      return APInt(BitWidth, 0);
1037
1038  // Create some space for the result.
1039  uint64_t * val = new uint64_t[getNumWords()];
1040
1041  // Compute some values needed by the following shift algorithms
1042  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1043  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1044  uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
1045  uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
1046  if (bitsInWord == 0)
1047    bitsInWord = APINT_BITS_PER_WORD;
1048
1049  // If we are shifting whole words, just move whole words
1050  if (wordShift == 0) {
1051    // Move the words containing significant bits
1052    for (uint32_t i = 0; i <= breakWord; ++i)
1053      val[i] = pVal[i+offset]; // move whole word
1054
1055    // Adjust the top significant word for sign bit fill, if negative
1056    if (isNegative())
1057      if (bitsInWord < APINT_BITS_PER_WORD)
1058        val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1059  } else {
1060    // Shift the low order words
1061    for (uint32_t i = 0; i < breakWord; ++i) {
1062      // This combines the shifted corresponding word with the low bits from
1063      // the next word (shifted into this word's high bits).
1064      val[i] = (pVal[i+offset] >> wordShift) |
1065               (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1066    }
1067
1068    // Shift the break word. In this case there are no bits from the next word
1069    // to include in this word.
1070    val[breakWord] = pVal[breakWord+offset] >> wordShift;
1071
1072    // Deal with sign extenstion in the break word, and possibly the word before
1073    // it.
1074    if (isNegative())
1075      if (wordShift > bitsInWord) {
1076        if (breakWord > 0)
1077          val[breakWord-1] |=
1078            ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1079        val[breakWord] |= ~0ULL;
1080      } else
1081        val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1082  }
1083
1084  // Remaining words are 0 or -1, just assign them.
1085  uint64_t fillValue = (isNegative() ? -1ULL : 0);
1086  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1087    val[i] = fillValue;
1088  return APInt(val, BitWidth).clearUnusedBits();
1089}
1090
1091/// Logical right-shift this APInt by shiftAmt.
1092/// @brief Logical right-shift function.
1093APInt APInt::lshr(uint32_t shiftAmt) const {
1094  if (isSingleWord())
1095    if (shiftAmt == BitWidth)
1096      return APInt(BitWidth, 0);
1097    else
1098      return APInt(BitWidth, this->VAL >> shiftAmt);
1099
1100  // If all the bits were shifted out, the result is 0. This avoids issues
1101  // with shifting by the size of the integer type, which produces undefined
1102  // results. We define these "undefined results" to always be 0.
1103  if (shiftAmt == BitWidth)
1104    return APInt(BitWidth, 0);
1105
1106  // Create some space for the result.
1107  uint64_t * val = new uint64_t[getNumWords()];
1108
1109  // If we are shifting less than a word, compute the shift with a simple carry
1110  if (shiftAmt < APINT_BITS_PER_WORD) {
1111    uint64_t carry = 0;
1112    for (int i = getNumWords()-1; i >= 0; --i) {
1113      val[i] = (pVal[i] >> shiftAmt) | carry;
1114      carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1115    }
1116    return APInt(val, BitWidth).clearUnusedBits();
1117  }
1118
1119  // Compute some values needed by the remaining shift algorithms
1120  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1121  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1122
1123  // If we are shifting whole words, just move whole words
1124  if (wordShift == 0) {
1125    for (uint32_t i = 0; i < getNumWords() - offset; ++i)
1126      val[i] = pVal[i+offset];
1127    for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
1128      val[i] = 0;
1129    return APInt(val,BitWidth).clearUnusedBits();
1130  }
1131
1132  // Shift the low order words
1133  uint32_t breakWord = getNumWords() - offset -1;
1134  for (uint32_t i = 0; i < breakWord; ++i)
1135    val[i] = (pVal[i+offset] >> wordShift) |
1136             (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1137  // Shift the break word.
1138  val[breakWord] = pVal[breakWord+offset] >> wordShift;
1139
1140  // Remaining words are 0
1141  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
1142    val[i] = 0;
1143  return APInt(val, BitWidth).clearUnusedBits();
1144}
1145
1146/// Left-shift this APInt by shiftAmt.
1147/// @brief Left-shift function.
1148APInt APInt::shl(uint32_t shiftAmt) const {
1149  assert(shiftAmt <= BitWidth && "Invalid shift amount");
1150  if (isSingleWord()) {
1151    if (shiftAmt == BitWidth)
1152      return APInt(BitWidth, 0); // avoid undefined shift results
1153    return APInt(BitWidth, VAL << shiftAmt);
1154  }
1155
1156  // If all the bits were shifted out, the result is 0. This avoids issues
1157  // with shifting by the size of the integer type, which produces undefined
1158  // results. We define these "undefined results" to always be 0.
1159  if (shiftAmt == BitWidth)
1160    return APInt(BitWidth, 0);
1161
1162  // Create some space for the result.
1163  uint64_t * val = new uint64_t[getNumWords()];
1164
1165  // If we are shifting less than a word, do it the easy way
1166  if (shiftAmt < APINT_BITS_PER_WORD) {
1167    uint64_t carry = 0;
1168    for (uint32_t i = 0; i < getNumWords(); i++) {
1169      val[i] = pVal[i] << shiftAmt | carry;
1170      carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1171    }
1172    return APInt(val, BitWidth).clearUnusedBits();
1173  }
1174
1175  // Compute some values needed by the remaining shift algorithms
1176  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
1177  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
1178
1179  // If we are shifting whole words, just move whole words
1180  if (wordShift == 0) {
1181    for (uint32_t i = 0; i < offset; i++)
1182      val[i] = 0;
1183    for (uint32_t i = offset; i < getNumWords(); i++)
1184      val[i] = pVal[i-offset];
1185    return APInt(val,BitWidth).clearUnusedBits();
1186  }
1187
1188  // Copy whole words from this to Result.
1189  uint32_t i = getNumWords() - 1;
1190  for (; i > offset; --i)
1191    val[i] = pVal[i-offset] << wordShift |
1192             pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1193  val[offset] = pVal[0] << wordShift;
1194  for (i = 0; i < offset; ++i)
1195    val[i] = 0;
1196  return APInt(val, BitWidth).clearUnusedBits();
1197}
1198
1199
1200// Square Root - this method computes and returns the square root of "this".
1201// Three mechanisms are used for computation. For small values (<= 5 bits),
1202// a table lookup is done. This gets some performance for common cases. For
1203// values using less than 52 bits, the value is converted to double and then
1204// the libc sqrt function is called. The result is rounded and then converted
1205// back to a uint64_t which is then used to construct the result. Finally,
1206// the Babylonian method for computing square roots is used.
1207APInt APInt::sqrt() const {
1208
1209  // Determine the magnitude of the value.
1210  uint32_t magnitude = getActiveBits();
1211
1212  // Use a fast table for some small values. This also gets rid of some
1213  // rounding errors in libc sqrt for small values.
1214  if (magnitude <= 5) {
1215    static const uint8_t results[32] = {
1216      /*     0 */ 0,
1217      /*  1- 2 */ 1, 1,
1218      /*  3- 6 */ 2, 2, 2, 2,
1219      /*  7-12 */ 3, 3, 3, 3, 3, 3,
1220      /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1221      /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1222      /*    31 */ 6
1223    };
1224    return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1225  }
1226
1227  // If the magnitude of the value fits in less than 52 bits (the precision of
1228  // an IEEE double precision floating point value), then we can use the
1229  // libc sqrt function which will probably use a hardware sqrt computation.
1230  // This should be faster than the algorithm below.
1231  if (magnitude < 52) {
1232#ifdef _MSC_VER
1233    // Amazingly, VC++ doesn't have round().
1234    return APInt(BitWidth,
1235                 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1236#else
1237    return APInt(BitWidth,
1238                 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1239#endif
1240  }
1241
1242  // Okay, all the short cuts are exhausted. We must compute it. The following
1243  // is a classical Babylonian method for computing the square root. This code
1244  // was adapted to APINt from a wikipedia article on such computations.
1245  // See http://www.wikipedia.org/ and go to the page named
1246  // Calculate_an_integer_square_root.
1247  uint32_t nbits = BitWidth, i = 4;
1248  APInt testy(BitWidth, 16);
1249  APInt x_old(BitWidth, 1);
1250  APInt x_new(BitWidth, 0);
1251  APInt two(BitWidth, 2);
1252
1253  // Select a good starting value using binary logarithms.
1254  for (;; i += 2, testy = testy.shl(2))
1255    if (i >= nbits || this->ule(testy)) {
1256      x_old = x_old.shl(i / 2);
1257      break;
1258    }
1259
1260  // Use the Babylonian method to arrive at the integer square root:
1261  for (;;) {
1262    x_new = (this->udiv(x_old) + x_old).udiv(two);
1263    if (x_old.ule(x_new))
1264      break;
1265    x_old = x_new;
1266  }
1267
1268  // Make sure we return the closest approximation
1269  // NOTE: The rounding calculation below is correct. It will produce an
1270  // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1271  // determined to be a rounding issue with pari/gp as it begins to use a
1272  // floating point representation after 192 bits. There are no discrepancies
1273  // between this algorithm and pari/gp for bit widths < 192 bits.
1274  APInt square(x_old * x_old);
1275  APInt nextSquare((x_old + 1) * (x_old +1));
1276  if (this->ult(square))
1277    return x_old;
1278  else if (this->ule(nextSquare)) {
1279    APInt midpoint((nextSquare - square).udiv(two));
1280    APInt offset(*this - square);
1281    if (offset.ult(midpoint))
1282      return x_old;
1283    else
1284      return x_old + 1;
1285  } else
1286    assert(0 && "Error in APInt::sqrt computation");
1287  return x_old + 1;
1288}
1289
1290/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1291/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1292/// variables here have the same names as in the algorithm. Comments explain
1293/// the algorithm and any deviation from it.
1294static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1295                     uint32_t m, uint32_t n) {
1296  assert(u && "Must provide dividend");
1297  assert(v && "Must provide divisor");
1298  assert(q && "Must provide quotient");
1299  assert(u != v && u != q && v != q && "Must us different memory");
1300  assert(n>1 && "n must be > 1");
1301
1302  // Knuth uses the value b as the base of the number system. In our case b
1303  // is 2^31 so we just set it to -1u.
1304  uint64_t b = uint64_t(1) << 32;
1305
1306  DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
1307  DEBUG(cerr << "KnuthDiv: original:");
1308  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1309  DEBUG(cerr << " by");
1310  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1311  DEBUG(cerr << '\n');
1312  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1313  // u and v by d. Note that we have taken Knuth's advice here to use a power
1314  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1315  // 2 allows us to shift instead of multiply and it is easy to determine the
1316  // shift amount from the leading zeros.  We are basically normalizing the u
1317  // and v so that its high bits are shifted to the top of v's range without
1318  // overflow. Note that this can require an extra word in u so that u must
1319  // be of length m+n+1.
1320  uint32_t shift = CountLeadingZeros_32(v[n-1]);
1321  uint32_t v_carry = 0;
1322  uint32_t u_carry = 0;
1323  if (shift) {
1324    for (uint32_t i = 0; i < m+n; ++i) {
1325      uint32_t u_tmp = u[i] >> (32 - shift);
1326      u[i] = (u[i] << shift) | u_carry;
1327      u_carry = u_tmp;
1328    }
1329    for (uint32_t i = 0; i < n; ++i) {
1330      uint32_t v_tmp = v[i] >> (32 - shift);
1331      v[i] = (v[i] << shift) | v_carry;
1332      v_carry = v_tmp;
1333    }
1334  }
1335  u[m+n] = u_carry;
1336  DEBUG(cerr << "KnuthDiv:   normal:");
1337  DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
1338  DEBUG(cerr << " by");
1339  DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
1340  DEBUG(cerr << '\n');
1341
1342  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1343  int j = m;
1344  do {
1345    DEBUG(cerr << "KnuthDiv: quotient digit #" << j << '\n');
1346    // D3. [Calculate q'.].
1347    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1348    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1349    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1350    // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1351    // on v[n-2] determines at high speed most of the cases in which the trial
1352    // value qp is one too large, and it eliminates all cases where qp is two
1353    // too large.
1354    uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1355    DEBUG(cerr << "KnuthDiv: dividend == " << dividend << '\n');
1356    uint64_t qp = dividend / v[n-1];
1357    uint64_t rp = dividend % v[n-1];
1358    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1359      qp--;
1360      rp += v[n-1];
1361      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1362        qp--;
1363    }
1364    DEBUG(cerr << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1365
1366    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1367    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1368    // consists of a simple multiplication by a one-place number, combined with
1369    // a subtraction.
1370    bool isNeg = false;
1371    for (uint32_t i = 0; i < n; ++i) {
1372      uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1373      uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1374      bool borrow = subtrahend > u_tmp;
1375      DEBUG(cerr << "KnuthDiv: u_tmp == " << u_tmp
1376                 << ", subtrahend == " << subtrahend
1377                 << ", borrow = " << borrow << '\n');
1378
1379      uint64_t result = u_tmp - subtrahend;
1380      uint32_t k = j + i;
1381      u[k++] = result & (b-1); // subtract low word
1382      u[k++] = result >> 32;   // subtract high word
1383      while (borrow && k <= m+n) { // deal with borrow to the left
1384        borrow = u[k] == 0;
1385        u[k]--;
1386        k++;
1387      }
1388      isNeg |= borrow;
1389      DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ",  u[j+i+1] == " <<
1390                    u[j+i+1] << '\n');
1391    }
1392    DEBUG(cerr << "KnuthDiv: after subtraction:");
1393    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1394    DEBUG(cerr << '\n');
1395    // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1396    // this step is actually negative, (u[j+n]...u[j]) should be left as the
1397    // true value plus b**(n+1), namely as the b's complement of
1398    // the true value, and a "borrow" to the left should be remembered.
1399    //
1400    if (isNeg) {
1401      bool carry = true;  // true because b's complement is "complement + 1"
1402      for (uint32_t i = 0; i <= m+n; ++i) {
1403        u[i] = ~u[i] + carry; // b's complement
1404        carry = carry && u[i] == 0;
1405      }
1406    }
1407    DEBUG(cerr << "KnuthDiv: after complement:");
1408    DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << u[i]);
1409    DEBUG(cerr << '\n');
1410
1411    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1412    // negative, go to step D6; otherwise go on to step D7.
1413    q[j] = qp;
1414    if (isNeg) {
1415      // D6. [Add back]. The probability that this step is necessary is very
1416      // small, on the order of only 2/b. Make sure that test data accounts for
1417      // this possibility. Decrease q[j] by 1
1418      q[j]--;
1419      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1420      // A carry will occur to the left of u[j+n], and it should be ignored
1421      // since it cancels with the borrow that occurred in D4.
1422      bool carry = false;
1423      for (uint32_t i = 0; i < n; i++) {
1424        uint32_t limit = std::min(u[j+i],v[i]);
1425        u[j+i] += v[i] + carry;
1426        carry = u[j+i] < limit || (carry && u[j+i] == limit);
1427      }
1428      u[j+n] += carry;
1429    }
1430    DEBUG(cerr << "KnuthDiv: after correction:");
1431    DEBUG(for (int i = m+n; i >=0; i--) cerr <<" " << u[i]);
1432    DEBUG(cerr << "\nKnuthDiv: digit result = " << q[j] << '\n');
1433
1434  // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1435  } while (--j >= 0);
1436
1437  DEBUG(cerr << "KnuthDiv: quotient:");
1438  DEBUG(for (int i = m; i >=0; i--) cerr <<" " << q[i]);
1439  DEBUG(cerr << '\n');
1440
1441  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1442  // remainder may be obtained by dividing u[...] by d. If r is non-null we
1443  // compute the remainder (urem uses this).
1444  if (r) {
1445    // The value d is expressed by the "shift" value above since we avoided
1446    // multiplication by d by using a shift left. So, all we have to do is
1447    // shift right here. In order to mak
1448    if (shift) {
1449      uint32_t carry = 0;
1450      DEBUG(cerr << "KnuthDiv: remainder:");
1451      for (int i = n-1; i >= 0; i--) {
1452        r[i] = (u[i] >> shift) | carry;
1453        carry = u[i] << (32 - shift);
1454        DEBUG(cerr << " " << r[i]);
1455      }
1456    } else {
1457      for (int i = n-1; i >= 0; i--) {
1458        r[i] = u[i];
1459        DEBUG(cerr << " " << r[i]);
1460      }
1461    }
1462    DEBUG(cerr << '\n');
1463  }
1464  DEBUG(cerr << std::setbase(10) << '\n');
1465}
1466
1467void APInt::divide(const APInt LHS, uint32_t lhsWords,
1468                   const APInt &RHS, uint32_t rhsWords,
1469                   APInt *Quotient, APInt *Remainder)
1470{
1471  assert(lhsWords >= rhsWords && "Fractional result");
1472
1473  // First, compose the values into an array of 32-bit words instead of
1474  // 64-bit words. This is a necessity of both the "short division" algorithm
1475  // and the the Knuth "classical algorithm" which requires there to be native
1476  // operations for +, -, and * on an m bit value with an m*2 bit result. We
1477  // can't use 64-bit operands here because we don't have native results of
1478  // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
1479  // work on large-endian machines.
1480  uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
1481  uint32_t n = rhsWords * 2;
1482  uint32_t m = (lhsWords * 2) - n;
1483
1484  // Allocate space for the temporary values we need either on the stack, if
1485  // it will fit, or on the heap if it won't.
1486  uint32_t SPACE[128];
1487  uint32_t *U = 0;
1488  uint32_t *V = 0;
1489  uint32_t *Q = 0;
1490  uint32_t *R = 0;
1491  if ((Remainder?4:3)*n+2*m+1 <= 128) {
1492    U = &SPACE[0];
1493    V = &SPACE[m+n+1];
1494    Q = &SPACE[(m+n+1) + n];
1495    if (Remainder)
1496      R = &SPACE[(m+n+1) + n + (m+n)];
1497  } else {
1498    U = new uint32_t[m + n + 1];
1499    V = new uint32_t[n];
1500    Q = new uint32_t[m+n];
1501    if (Remainder)
1502      R = new uint32_t[n];
1503  }
1504
1505  // Initialize the dividend
1506  memset(U, 0, (m+n+1)*sizeof(uint32_t));
1507  for (unsigned i = 0; i < lhsWords; ++i) {
1508    uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1509    U[i * 2] = tmp & mask;
1510    U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1511  }
1512  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1513
1514  // Initialize the divisor
1515  memset(V, 0, (n)*sizeof(uint32_t));
1516  for (unsigned i = 0; i < rhsWords; ++i) {
1517    uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1518    V[i * 2] = tmp & mask;
1519    V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
1520  }
1521
1522  // initialize the quotient and remainder
1523  memset(Q, 0, (m+n) * sizeof(uint32_t));
1524  if (Remainder)
1525    memset(R, 0, n * sizeof(uint32_t));
1526
1527  // Now, adjust m and n for the Knuth division. n is the number of words in
1528  // the divisor. m is the number of words by which the dividend exceeds the
1529  // divisor (i.e. m+n is the length of the dividend). These sizes must not
1530  // contain any zero words or the Knuth algorithm fails.
1531  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1532    n--;
1533    m++;
1534  }
1535  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1536    m--;
1537
1538  // If we're left with only a single word for the divisor, Knuth doesn't work
1539  // so we implement the short division algorithm here. This is much simpler
1540  // and faster because we are certain that we can divide a 64-bit quantity
1541  // by a 32-bit quantity at hardware speed and short division is simply a
1542  // series of such operations. This is just like doing short division but we
1543  // are using base 2^32 instead of base 10.
1544  assert(n != 0 && "Divide by zero?");
1545  if (n == 1) {
1546    uint32_t divisor = V[0];
1547    uint32_t remainder = 0;
1548    for (int i = m+n-1; i >= 0; i--) {
1549      uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1550      if (partial_dividend == 0) {
1551        Q[i] = 0;
1552        remainder = 0;
1553      } else if (partial_dividend < divisor) {
1554        Q[i] = 0;
1555        remainder = partial_dividend;
1556      } else if (partial_dividend == divisor) {
1557        Q[i] = 1;
1558        remainder = 0;
1559      } else {
1560        Q[i] = partial_dividend / divisor;
1561        remainder = partial_dividend - (Q[i] * divisor);
1562      }
1563    }
1564    if (R)
1565      R[0] = remainder;
1566  } else {
1567    // Now we're ready to invoke the Knuth classical divide algorithm. In this
1568    // case n > 1.
1569    KnuthDiv(U, V, Q, R, m, n);
1570  }
1571
1572  // If the caller wants the quotient
1573  if (Quotient) {
1574    // Set up the Quotient value's memory.
1575    if (Quotient->BitWidth != LHS.BitWidth) {
1576      if (Quotient->isSingleWord())
1577        Quotient->VAL = 0;
1578      else
1579        delete [] Quotient->pVal;
1580      Quotient->BitWidth = LHS.BitWidth;
1581      if (!Quotient->isSingleWord())
1582        Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1583    } else
1584      Quotient->clear();
1585
1586    // The quotient is in Q. Reconstitute the quotient into Quotient's low
1587    // order words.
1588    if (lhsWords == 1) {
1589      uint64_t tmp =
1590        uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1591      if (Quotient->isSingleWord())
1592        Quotient->VAL = tmp;
1593      else
1594        Quotient->pVal[0] = tmp;
1595    } else {
1596      assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1597      for (unsigned i = 0; i < lhsWords; ++i)
1598        Quotient->pVal[i] =
1599          uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1600    }
1601  }
1602
1603  // If the caller wants the remainder
1604  if (Remainder) {
1605    // Set up the Remainder value's memory.
1606    if (Remainder->BitWidth != RHS.BitWidth) {
1607      if (Remainder->isSingleWord())
1608        Remainder->VAL = 0;
1609      else
1610        delete [] Remainder->pVal;
1611      Remainder->BitWidth = RHS.BitWidth;
1612      if (!Remainder->isSingleWord())
1613        Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1614    } else
1615      Remainder->clear();
1616
1617    // The remainder is in R. Reconstitute the remainder into Remainder's low
1618    // order words.
1619    if (rhsWords == 1) {
1620      uint64_t tmp =
1621        uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1622      if (Remainder->isSingleWord())
1623        Remainder->VAL = tmp;
1624      else
1625        Remainder->pVal[0] = tmp;
1626    } else {
1627      assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1628      for (unsigned i = 0; i < rhsWords; ++i)
1629        Remainder->pVal[i] =
1630          uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1631    }
1632  }
1633
1634  // Clean up the memory we allocated.
1635  if (U != &SPACE[0]) {
1636    delete [] U;
1637    delete [] V;
1638    delete [] Q;
1639    delete [] R;
1640  }
1641}
1642
1643APInt APInt::udiv(const APInt& RHS) const {
1644  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1645
1646  // First, deal with the easy case
1647  if (isSingleWord()) {
1648    assert(RHS.VAL != 0 && "Divide by zero?");
1649    return APInt(BitWidth, VAL / RHS.VAL);
1650  }
1651
1652  // Get some facts about the LHS and RHS number of bits and words
1653  uint32_t rhsBits = RHS.getActiveBits();
1654  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1655  assert(rhsWords && "Divided by zero???");
1656  uint32_t lhsBits = this->getActiveBits();
1657  uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1658
1659  // Deal with some degenerate cases
1660  if (!lhsWords)
1661    // 0 / X ===> 0
1662    return APInt(BitWidth, 0);
1663  else if (lhsWords < rhsWords || this->ult(RHS)) {
1664    // X / Y ===> 0, iff X < Y
1665    return APInt(BitWidth, 0);
1666  } else if (*this == RHS) {
1667    // X / X ===> 1
1668    return APInt(BitWidth, 1);
1669  } else if (lhsWords == 1 && rhsWords == 1) {
1670    // All high words are zero, just use native divide
1671    return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1672  }
1673
1674  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1675  APInt Quotient(1,0); // to hold result.
1676  divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1677  return Quotient;
1678}
1679
1680APInt APInt::urem(const APInt& RHS) const {
1681  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1682  if (isSingleWord()) {
1683    assert(RHS.VAL != 0 && "Remainder by zero?");
1684    return APInt(BitWidth, VAL % RHS.VAL);
1685  }
1686
1687  // Get some facts about the LHS
1688  uint32_t lhsBits = getActiveBits();
1689  uint32_t lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1690
1691  // Get some facts about the RHS
1692  uint32_t rhsBits = RHS.getActiveBits();
1693  uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1694  assert(rhsWords && "Performing remainder operation by zero ???");
1695
1696  // Check the degenerate cases
1697  if (lhsWords == 0) {
1698    // 0 % Y ===> 0
1699    return APInt(BitWidth, 0);
1700  } else if (lhsWords < rhsWords || this->ult(RHS)) {
1701    // X % Y ===> X, iff X < Y
1702    return *this;
1703  } else if (*this == RHS) {
1704    // X % X == 0;
1705    return APInt(BitWidth, 0);
1706  } else if (lhsWords == 1) {
1707    // All high words are zero, just use native remainder
1708    return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1709  }
1710
1711  // We have to compute it the hard way. Invoke the Knute divide algorithm.
1712  APInt Remainder(1,0);
1713  divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1714  return Remainder;
1715}
1716
1717void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
1718                       uint8_t radix) {
1719  // Check our assumptions here
1720  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1721         "Radix should be 2, 8, 10, or 16!");
1722  assert(str && "String is null?");
1723  bool isNeg = str[0] == '-';
1724  if (isNeg)
1725    str++, slen--;
1726  assert(slen <= numbits || radix != 2 && "Insufficient bit width");
1727  assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width");
1728  assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width");
1729  assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width");
1730
1731  // Allocate memory
1732  if (!isSingleWord())
1733    pVal = getClearedMemory(getNumWords());
1734
1735  // Figure out if we can shift instead of multiply
1736  uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1737
1738  // Set up an APInt for the digit to add outside the loop so we don't
1739  // constantly construct/destruct it.
1740  APInt apdigit(getBitWidth(), 0);
1741  APInt apradix(getBitWidth(), radix);
1742
1743  // Enter digit traversal loop
1744  for (unsigned i = 0; i < slen; i++) {
1745    // Get a digit
1746    uint32_t digit = 0;
1747    char cdigit = str[i];
1748    if (isdigit(cdigit))
1749      digit = cdigit - '0';
1750    else if (isxdigit(cdigit))
1751      if (cdigit >= 'a')
1752        digit = cdigit - 'a' + 10;
1753      else if (cdigit >= 'A')
1754        digit = cdigit - 'A' + 10;
1755      else
1756        assert(0 && "huh?");
1757    else
1758      assert(0 && "Invalid character in digit string");
1759
1760    // Shift or multiple the value by the radix
1761    if (shift)
1762      this->shl(shift);
1763    else
1764      *this *= apradix;
1765
1766    // Add in the digit we just interpreted
1767    if (apdigit.isSingleWord())
1768      apdigit.VAL = digit;
1769    else
1770      apdigit.pVal[0] = digit;
1771    *this += apdigit;
1772  }
1773  // If its negative, put it in two's complement form
1774  if (isNeg) {
1775    (*this)--;
1776    this->flip();
1777  }
1778}
1779
1780std::string APInt::toString(uint8_t radix, bool wantSigned) const {
1781  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
1782         "Radix should be 2, 8, 10, or 16!");
1783  static const char *digits[] = {
1784    "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
1785  };
1786  std::string result;
1787  uint32_t bits_used = getActiveBits();
1788  if (isSingleWord()) {
1789    char buf[65];
1790    const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
1791       (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
1792    if (format) {
1793      if (wantSigned) {
1794        int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
1795                           (APINT_BITS_PER_WORD-BitWidth);
1796        sprintf(buf, format, sextVal);
1797      } else
1798        sprintf(buf, format, VAL);
1799    } else {
1800      memset(buf, 0, 65);
1801      uint64_t v = VAL;
1802      while (bits_used) {
1803        uint32_t bit = v & 1;
1804        bits_used--;
1805        buf[bits_used] = digits[bit][0];
1806        v >>=1;
1807      }
1808    }
1809    result = buf;
1810    return result;
1811  }
1812
1813  if (radix != 10) {
1814    uint64_t mask = radix - 1;
1815    uint32_t shift = (radix == 16 ? 4 : radix  == 8 ? 3 : 1);
1816    uint32_t nibbles = APINT_BITS_PER_WORD / shift;
1817    for (uint32_t i = 0; i < getNumWords(); ++i) {
1818      uint64_t value = pVal[i];
1819      for (uint32_t j = 0; j < nibbles; ++j) {
1820        result.insert(0, digits[ value & mask ]);
1821        value >>= shift;
1822      }
1823    }
1824    return result;
1825  }
1826
1827  APInt tmp(*this);
1828  APInt divisor(4, radix);
1829  APInt zero(tmp.getBitWidth(), 0);
1830  size_t insert_at = 0;
1831  if (wantSigned && tmp[BitWidth-1]) {
1832    // They want to print the signed version and it is a negative value
1833    // Flip the bits and add one to turn it into the equivalent positive
1834    // value and put a '-' in the result.
1835    tmp.flip();
1836    tmp++;
1837    result = "-";
1838    insert_at = 1;
1839  }
1840  if (tmp == APInt(tmp.getBitWidth(), 0))
1841    result = "0";
1842  else while (tmp.ne(zero)) {
1843    APInt APdigit(1,0);
1844    APInt tmp2(tmp.getBitWidth(), 0);
1845    divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
1846           &APdigit);
1847    uint32_t digit = APdigit.getZExtValue();
1848    assert(digit < radix && "divide failed");
1849    result.insert(insert_at,digits[digit]);
1850    tmp = tmp2;
1851  }
1852
1853  return result;
1854}
1855
1856#ifndef NDEBUG
1857void APInt::dump() const
1858{
1859  cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
1860  if (isSingleWord())
1861    cerr << VAL;
1862  else for (unsigned i = getNumWords(); i > 0; i--) {
1863    cerr << pVal[i-1] << " ";
1864  }
1865  cerr << " U(" << this->toString(10) << ") S(" << this->toStringSigned(10)
1866       << ")\n" << std::setbase(10);
1867}
1868#endif
1869