APInt.cpp revision b04973edfaffb12905f58379d632f0d7e4bb5d9b
1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Sheng Zhou and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integral
11// constant values.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Support/MathExtras.h"
18#include <cstring>
19#include <cstdlib>
20using namespace llvm;
21
22/// mul_1 - This function performs the multiplication operation on a
23/// large integer (represented as an integer array) and a uint64_t integer.
24/// @returns the carry of the multiplication.
25static uint64_t mul_1(uint64_t dest[], uint64_t x[],
26                     unsigned len, uint64_t y) {
27  // Split y into high 32-bit part and low 32-bit part.
28  uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
29  uint64_t carry = 0, lx, hx;
30  for (unsigned i = 0; i < len; ++i) {
31    lx = x[i] & 0xffffffffULL;
32    hx = x[i] >> 32;
33    // hasCarry - A flag to indicate if has carry.
34    // hasCarry == 0, no carry
35    // hasCarry == 1, has carry
36    // hasCarry == 2, no carry and the calculation result == 0.
37    uint8_t hasCarry = 0;
38    dest[i] = carry + lx * ly;
39    // Determine if the add above introduces carry.
40    hasCarry = (dest[i] < carry) ? 1 : 0;
41    carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
42    // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
43    // (2^32 - 1) + 2^32 = 2^64.
44    hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
45
46    carry += (lx * hy) & 0xffffffffULL;
47    dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
48    carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
49            (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
50  }
51
52  return carry;
53}
54
55/// mul - This function multiplies integer array x[] by integer array y[] and
56/// stores the result into integer array dest[].
57/// Note the array dest[]'s size should no less than xlen + ylen.
58static void mul(uint64_t dest[], uint64_t x[], unsigned xlen,
59               uint64_t y[], unsigned ylen) {
60  dest[xlen] = mul_1(dest, x, xlen, y[0]);
61
62  for (unsigned i = 1; i < ylen; ++i) {
63    uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
64    uint64_t carry = 0, lx, hx;
65    for (unsigned j = 0; j < xlen; ++j) {
66      lx = x[j] & 0xffffffffULL;
67      hx = x[j] >> 32;
68      // hasCarry - A flag to indicate if has carry.
69      // hasCarry == 0, no carry
70      // hasCarry == 1, has carry
71      // hasCarry == 2, no carry and the calculation result == 0.
72      uint8_t hasCarry = 0;
73      uint64_t resul = carry + lx * ly;
74      hasCarry = (resul < carry) ? 1 : 0;
75      carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
76      hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
77
78      carry += (lx * hy) & 0xffffffffULL;
79      resul = (carry << 32) | (resul & 0xffffffffULL);
80      dest[i+j] += resul;
81      carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
82              (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
83              ((lx * hy) >> 32) + hx * hy;
84    }
85    dest[i+xlen] = carry;
86  }
87}
88
89/// add_1 - This function adds the integer array x[] by integer y and
90/// returns the carry.
91/// @returns the carry of the addition.
92static uint64_t add_1(uint64_t dest[], uint64_t x[],
93                      unsigned len, uint64_t y) {
94  uint64_t carry = y;
95
96  for (unsigned i = 0; i < len; ++i) {
97    dest[i] = carry + x[i];
98    carry = (dest[i] < carry) ? 1 : 0;
99  }
100  return carry;
101}
102
103/// add - This function adds the integer array x[] by integer array
104/// y[] and returns the carry.
105static uint64_t add(uint64_t dest[], uint64_t x[],
106                    uint64_t y[], unsigned len) {
107  unsigned carry = 0;
108
109  for (unsigned i = 0; i< len; ++i) {
110    carry += x[i];
111    dest[i] = carry + y[i];
112    carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0);
113  }
114  return carry;
115}
116
117/// sub_1 - This function subtracts the integer array x[] by
118/// integer y and returns the borrow-out carry.
119static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) {
120  uint64_t cy = y;
121
122  for (unsigned i = 0; i < len; ++i) {
123    uint64_t X = x[i];
124    x[i] -= cy;
125    if (cy > X)
126      cy = 1;
127    else {
128      cy = 0;
129      break;
130    }
131  }
132
133  return cy;
134}
135
136/// sub - This function subtracts the integer array x[] by
137/// integer array y[], and returns the borrow-out carry.
138static uint64_t sub(uint64_t dest[], uint64_t x[],
139                    uint64_t y[], unsigned len) {
140  // Carry indicator.
141  uint64_t cy = 0;
142
143  for (unsigned i = 0; i < len; ++i) {
144    uint64_t Y = y[i], X = x[i];
145    Y += cy;
146
147    cy = Y < cy ? 1 : 0;
148    Y = X - Y;
149    cy += Y > X ? 1 : 0;
150    dest[i] = Y;
151  }
152  return cy;
153}
154
155/// UnitDiv - This function divides N by D,
156/// and returns (remainder << 32) | quotient.
157/// Assumes (N >> 32) < D.
158static uint64_t unitDiv(uint64_t N, unsigned D) {
159  uint64_t q, r;                   // q: quotient, r: remainder.
160  uint64_t a1 = N >> 32;           // a1: high 32-bit part of N.
161  uint64_t a0 = N & 0xffffffffL;   // a0: low 32-bit part of N
162  if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
163      q = N / D;
164      r = N % D;
165  }
166  else {
167    // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
168    uint64_t c = N - ((uint64_t) D << 31);
169    // Divide (c1*2^32 + c0) by d
170    q = c / D;
171    r = c % D;
172    // Add 2^31 to quotient
173    q += 1 << 31;
174  }
175
176  return (r << 32) | (q & 0xFFFFFFFFl);
177}
178
179/// subMul - This function substracts x[len-1:0] * y from
180/// dest[offset+len-1:offset], and returns the most significant
181/// word of the product, minus the borrow-out from the subtraction.
182static unsigned subMul(unsigned dest[], unsigned offset,
183                        unsigned x[], unsigned len, unsigned y) {
184  uint64_t yl = (uint64_t) y & 0xffffffffL;
185  unsigned carry = 0;
186  unsigned j = 0;
187  do {
188    uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl;
189    unsigned prod_low = (unsigned) prod;
190    unsigned prod_high = (unsigned) (prod >> 32);
191    prod_low += carry;
192    carry = (prod_low < carry ? 1 : 0) + prod_high;
193    unsigned x_j = dest[offset+j];
194    prod_low = x_j - prod_low;
195    if (prod_low > x_j) ++carry;
196    dest[offset+j] = prod_low;
197  } while (++j < len);
198  return carry;
199}
200
201/// div - This is basically Knuth's formulation of the classical algorithm.
202/// Correspondance with Knuth's notation:
203/// Knuth's u[0:m+n] == zds[nx:0].
204/// Knuth's v[1:n] == y[ny-1:0]
205/// Knuth's n == ny.
206/// Knuth's m == nx-ny.
207/// Our nx == Knuth's m+n.
208/// Could be re-implemented using gmp's mpn_divrem:
209/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
210static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) {
211  unsigned j = nx;
212  do {                          // loop over digits of quotient
213    // Knuth's j == our nx-j.
214    // Knuth's u[j:j+n] == our zds[j:j-ny].
215    unsigned qhat;  // treated as unsigned
216    if (zds[j] == y[ny-1]) qhat = -1U;  // 0xffffffff
217    else {
218      uint64_t w = (((uint64_t)(zds[j])) << 32) +
219                   ((uint64_t)zds[j-1] & 0xffffffffL);
220      qhat = (unsigned) unitDiv(w, y[ny-1]);
221    }
222    if (qhat) {
223      unsigned borrow = subMul(zds, j - ny, y, ny, qhat);
224      unsigned save = zds[j];
225      uint64_t num = ((uint64_t)save&0xffffffffL) -
226                     ((uint64_t)borrow&0xffffffffL);
227      while (num) {
228        qhat--;
229        uint64_t carry = 0;
230        for (unsigned i = 0;  i < ny; i++) {
231          carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL)
232            + ((uint64_t) y[i] & 0xffffffffL);
233          zds[j-ny+i] = (unsigned) carry;
234          carry >>= 32;
235        }
236        zds[j] += carry;
237        num = carry - 1;
238      }
239    }
240    zds[j] = qhat;
241  } while (--j >= ny);
242}
243
244/// lshift - This function shift x[0:len-1] left by shiftAmt bits, and
245/// store the len least significant words of the result in
246/// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from
247/// the most significant digit.
248static uint64_t lshift(uint64_t dest[], unsigned d_offset,
249                       uint64_t x[], unsigned len, unsigned shiftAmt) {
250  unsigned count = 64 - shiftAmt;
251  int i = len - 1;
252  uint64_t high_word = x[i], retVal = high_word >> count;
253  ++d_offset;
254  while (--i >= 0) {
255    uint64_t low_word = x[i];
256    dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count);
257    high_word = low_word;
258  }
259  dest[d_offset+i] = high_word << shiftAmt;
260  return retVal;
261}
262
263APInt::APInt(uint64_t val, unsigned numBits)
264  : BitsNum(numBits) {
265  assert(BitsNum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
266  assert(BitsNum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
267  if (isSingleWord())
268    VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitsNum));
269  else {
270    // Memory allocation and check if successful.
271    assert((pVal = new uint64_t[getNumWords()]) &&
272            "APInt memory allocation fails!");
273    memset(pVal, 0, getNumWords() * 8);
274    pVal[0] = val;
275  }
276}
277
278APInt::APInt(unsigned numBits, uint64_t bigVal[])
279  : BitsNum(numBits) {
280  assert(BitsNum >= IntegerType::MIN_INT_BITS && "bitwidth too small");
281  assert(BitsNum <= IntegerType::MAX_INT_BITS && "bitwidth too large");
282  assert(bigVal && "Null pointer detected!");
283  if (isSingleWord())
284    VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitsNum));
285  else {
286    // Memory allocation and check if successful.
287    assert((pVal = new uint64_t[getNumWords()]) &&
288           "APInt memory allocation fails!");
289    // Calculate the actual length of bigVal[].
290    unsigned n = sizeof(*bigVal) / sizeof(bigVal[0]);
291    unsigned maxN = std::max<unsigned>(n, getNumWords());
292    unsigned minN = std::min<unsigned>(n, getNumWords());
293    memcpy(pVal, bigVal, (minN - 1) * 8);
294    pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (64 - BitsNum % 64));
295    if (maxN == getNumWords())
296      memset(pVal+n, 0, (getNumWords() - n) * 8);
297  }
298}
299
300/// @brief Create a new APInt by translating the char array represented
301/// integer value.
302APInt::APInt(const char StrStart[], unsigned slen, uint8_t radix) {
303  StrToAPInt(StrStart, slen, radix);
304}
305
306/// @brief Create a new APInt by translating the string represented
307/// integer value.
308APInt::APInt(const std::string& Val, uint8_t radix) {
309  assert(!Val.empty() && "String empty?");
310  StrToAPInt(Val.c_str(), Val.size(), radix);
311}
312
313/// @brief Converts a char array into an integer.
314void APInt::StrToAPInt(const char *StrStart, unsigned slen, uint8_t radix) {
315  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
316         "Radix should be 2, 8, 10, or 16!");
317  assert(StrStart && "String empty?");
318  unsigned size = 0;
319  // If the radix is a power of 2, read the input
320  // from most significant to least significant.
321  if ((radix & (radix - 1)) == 0) {
322    unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2;
323    uint64_t resDigit = 0;
324    BitsNum = slen * bits_per_digit;
325    if (getNumWords() > 1)
326      assert((pVal = new uint64_t[getNumWords()]) &&
327             "APInt memory allocation fails!");
328    for (int i = slen - 1; i >= 0; --i) {
329      uint64_t digit = StrStart[i] - 48;             // '0' == 48.
330      resDigit |= digit << nextBitPos;
331      nextBitPos += bits_per_digit;
332      if (nextBitPos >= 64) {
333        if (isSingleWord()) {
334          VAL = resDigit;
335           break;
336        }
337        pVal[size++] = resDigit;
338        nextBitPos -= 64;
339        resDigit = digit >> (bits_per_digit - nextBitPos);
340      }
341    }
342    if (!isSingleWord() && size <= getNumWords())
343      pVal[size] = resDigit;
344  } else {   // General case.  The radix is not a power of 2.
345    // For 10-radix, the max value of 64-bit integer is 18446744073709551615,
346    // and its digits number is 20.
347    const unsigned chars_per_word = 20;
348    if (slen < chars_per_word ||
349        (slen == chars_per_word &&             // In case the value <= 2^64 - 1
350         strcmp(StrStart, "18446744073709551615") <= 0)) {
351      BitsNum = 64;
352      VAL = strtoull(StrStart, 0, 10);
353    } else { // In case the value > 2^64 - 1
354      BitsNum = (slen / chars_per_word + 1) * 64;
355      assert((pVal = new uint64_t[getNumWords()]) &&
356             "APInt memory allocation fails!");
357      memset(pVal, 0, getNumWords() * 8);
358      unsigned str_pos = 0;
359      while (str_pos < slen) {
360        unsigned chunk = slen - str_pos;
361        if (chunk > chars_per_word - 1)
362          chunk = chars_per_word - 1;
363        uint64_t resDigit = StrStart[str_pos++] - 48;  // 48 == '0'.
364        uint64_t big_base = radix;
365        while (--chunk > 0) {
366          resDigit = resDigit * radix + StrStart[str_pos++] - 48;
367          big_base *= radix;
368        }
369
370        uint64_t carry;
371        if (!size)
372          carry = resDigit;
373        else {
374          carry = mul_1(pVal, pVal, size, big_base);
375          carry += add_1(pVal, pVal, size, resDigit);
376        }
377
378        if (carry) pVal[size++] = carry;
379      }
380    }
381  }
382}
383
384APInt::APInt(const APInt& APIVal)
385  : BitsNum(APIVal.BitsNum) {
386  if (isSingleWord()) VAL = APIVal.VAL;
387  else {
388    // Memory allocation and check if successful.
389    assert((pVal = new uint64_t[getNumWords()]) &&
390           "APInt memory allocation fails!");
391    memcpy(pVal, APIVal.pVal, getNumWords() * 8);
392  }
393}
394
395APInt::~APInt() {
396  if (!isSingleWord() && pVal) delete[] pVal;
397}
398
399/// @brief Copy assignment operator. Create a new object from the given
400/// APInt one by initialization.
401APInt& APInt::operator=(const APInt& RHS) {
402  if (isSingleWord()) VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
403  else {
404    unsigned minN = std::min(getNumWords(), RHS.getNumWords());
405    memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8);
406    if (getNumWords() != minN)
407      memset(pVal + minN, 0, (getNumWords() - minN) * 8);
408  }
409  return *this;
410}
411
412/// @brief Assignment operator. Assigns a common case integer value to
413/// the APInt.
414APInt& APInt::operator=(uint64_t RHS) {
415  if (isSingleWord()) VAL = RHS;
416  else {
417    pVal[0] = RHS;
418    memset(pVal, 0, (getNumWords() - 1) * 8);
419  }
420  TruncToBits();
421  return *this;
422}
423
424/// @brief Prefix increment operator. Increments the APInt by one.
425APInt& APInt::operator++() {
426  if (isSingleWord()) ++VAL;
427  else
428    add_1(pVal, pVal, getNumWords(), 1);
429  TruncToBits();
430  return *this;
431}
432
433/// @brief Prefix decrement operator. Decrements the APInt by one.
434APInt& APInt::operator--() {
435  if (isSingleWord()) --VAL;
436  else
437    sub_1(pVal, getNumWords(), 1);
438  TruncToBits();
439  return *this;
440}
441
442/// @brief Addition assignment operator. Adds this APInt by the given APInt&
443/// RHS and assigns the result to this APInt.
444APInt& APInt::operator+=(const APInt& RHS) {
445  if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
446  else {
447    if (RHS.isSingleWord()) add_1(pVal, pVal, getNumWords(), RHS.VAL);
448    else {
449      if (getNumWords() <= RHS.getNumWords())
450        add(pVal, pVal, RHS.pVal, getNumWords());
451      else {
452        uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.getNumWords());
453        add_1(pVal + RHS.getNumWords(), pVal + RHS.getNumWords(),
454              getNumWords() - RHS.getNumWords(), carry);
455      }
456    }
457  }
458  TruncToBits();
459  return *this;
460}
461
462/// @brief Subtraction assignment operator. Subtracts this APInt by the given
463/// APInt &RHS and assigns the result to this APInt.
464APInt& APInt::operator-=(const APInt& RHS) {
465  if (isSingleWord())
466    VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
467  else {
468    if (RHS.isSingleWord())
469      sub_1(pVal, getNumWords(), RHS.VAL);
470    else {
471      if (RHS.getNumWords() < getNumWords()) {
472        uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.getNumWords());
473        sub_1(pVal + RHS.getNumWords(), getNumWords() - RHS.getNumWords(), carry);
474      }
475      else
476        sub(pVal, pVal, RHS.pVal, getNumWords());
477    }
478  }
479  TruncToBits();
480  return *this;
481}
482
483/// @brief Multiplication assignment operator. Multiplies this APInt by the
484/// given APInt& RHS and assigns the result to this APInt.
485APInt& APInt::operator*=(const APInt& RHS) {
486  if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
487  else {
488    // one-based first non-zero bit position.
489    unsigned first = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
490    unsigned xlen = !first ? 0 : whichWord(first - 1) + 1;
491    if (!xlen)
492      return *this;
493    else if (RHS.isSingleWord())
494      mul_1(pVal, pVal, xlen, RHS.VAL);
495    else {
496      first = RHS.getNumWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
497      unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
498      if (!ylen) {
499        memset(pVal, 0, getNumWords() * 8);
500        return *this;
501      }
502      uint64_t *dest = new uint64_t[xlen+ylen];
503      assert(dest && "Memory Allocation Failed!");
504      mul(dest, pVal, xlen, RHS.pVal, ylen);
505      memcpy(pVal, dest, ((xlen + ylen >= getNumWords()) ?
506                         getNumWords() : xlen + ylen) * 8);
507      delete[] dest;
508    }
509  }
510  TruncToBits();
511  return *this;
512}
513
514/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
515/// this APInt and the given APInt& RHS, assigns the result to this APInt.
516APInt& APInt::operator&=(const APInt& RHS) {
517  if (isSingleWord()) {
518    if (RHS.isSingleWord()) VAL &= RHS.VAL;
519    else VAL &= RHS.pVal[0];
520  } else {
521    if (RHS.isSingleWord()) {
522      memset(pVal, 0, (getNumWords() - 1) * 8);
523      pVal[0] &= RHS.VAL;
524    } else {
525      unsigned minwords = getNumWords() < RHS.getNumWords() ?
526                          getNumWords() : RHS.getNumWords();
527      for (unsigned i = 0; i < minwords; ++i)
528        pVal[i] &= RHS.pVal[i];
529      if (getNumWords() > minwords)
530        memset(pVal+minwords, 0, (getNumWords() - minwords) * 8);
531    }
532  }
533  return *this;
534}
535
536/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on
537/// this APInt and the given APInt& RHS, assigns the result to this APInt.
538APInt& APInt::operator|=(const APInt& RHS) {
539  if (isSingleWord()) {
540    if (RHS.isSingleWord()) VAL |= RHS.VAL;
541    else VAL |= RHS.pVal[0];
542  } else {
543    if (RHS.isSingleWord()) {
544      pVal[0] |= RHS.VAL;
545    } else {
546      unsigned minwords = getNumWords() < RHS.getNumWords() ?
547                          getNumWords() : RHS.getNumWords();
548      for (unsigned i = 0; i < minwords; ++i)
549        pVal[i] |= RHS.pVal[i];
550    }
551  }
552  TruncToBits();
553  return *this;
554}
555
556/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
557/// this APInt and the given APInt& RHS, assigns the result to this APInt.
558APInt& APInt::operator^=(const APInt& RHS) {
559  if (isSingleWord()) {
560    if (RHS.isSingleWord()) VAL ^= RHS.VAL;
561    else VAL ^= RHS.pVal[0];
562  } else {
563    if (RHS.isSingleWord()) {
564      for (unsigned i = 0; i < getNumWords(); ++i)
565        pVal[i] ^= RHS.VAL;
566    } else {
567      unsigned minwords = getNumWords() < RHS.getNumWords() ?
568                          getNumWords() : RHS.getNumWords();
569      for (unsigned i = 0; i < minwords; ++i)
570        pVal[i] ^= RHS.pVal[i];
571      if (getNumWords() > minwords)
572        for (unsigned i = minwords; i < getNumWords(); ++i)
573          pVal[i] ^= 0;
574    }
575  }
576  TruncToBits();
577  return *this;
578}
579
580/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
581/// and the given APInt& RHS.
582APInt APInt::operator&(const APInt& RHS) const {
583  APInt API(RHS);
584  return API &= *this;
585}
586
587/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt
588/// and the given APInt& RHS.
589APInt APInt::operator|(const APInt& RHS) const {
590  APInt API(RHS);
591  API |= *this;
592  API.TruncToBits();
593  return API;
594}
595
596/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
597/// and the given APInt& RHS.
598APInt APInt::operator^(const APInt& RHS) const {
599  APInt API(RHS);
600  API ^= *this;
601  API.TruncToBits();
602  return API;
603}
604
605/// @brief Logical AND operator. Performs logical AND operation on this APInt
606/// and the given APInt& RHS.
607bool APInt::operator&&(const APInt& RHS) const {
608  if (isSingleWord())
609    return RHS.isSingleWord() ? VAL && RHS.VAL : VAL && RHS.pVal[0];
610  else if (RHS.isSingleWord())
611    return RHS.VAL && pVal[0];
612  else {
613    unsigned minN = std::min(getNumWords(), RHS.getNumWords());
614    for (unsigned i = 0; i < minN; ++i)
615      if (pVal[i] && RHS.pVal[i])
616        return true;
617  }
618  return false;
619}
620
621/// @brief Logical OR operator. Performs logical OR operation on this APInt
622/// and the given APInt& RHS.
623bool APInt::operator||(const APInt& RHS) const {
624  if (isSingleWord())
625    return RHS.isSingleWord() ? VAL || RHS.VAL : VAL || RHS.pVal[0];
626  else if (RHS.isSingleWord())
627    return RHS.VAL || pVal[0];
628  else {
629    unsigned minN = std::min(getNumWords(), RHS.getNumWords());
630    for (unsigned i = 0; i < minN; ++i)
631      if (pVal[i] || RHS.pVal[i])
632        return true;
633  }
634  return false;
635}
636
637/// @brief Logical negation operator. Performs logical negation operation on
638/// this APInt.
639bool APInt::operator !() const {
640  if (isSingleWord())
641    return !VAL;
642  else
643    for (unsigned i = 0; i < getNumWords(); ++i)
644       if (pVal[i])
645         return false;
646  return true;
647}
648
649/// @brief Multiplication operator. Multiplies this APInt by the given APInt&
650/// RHS.
651APInt APInt::operator*(const APInt& RHS) const {
652  APInt API(RHS);
653  API *= *this;
654  API.TruncToBits();
655  return API;
656}
657
658/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
659APInt APInt::operator+(const APInt& RHS) const {
660  APInt API(*this);
661  API += RHS;
662  API.TruncToBits();
663  return API;
664}
665
666/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
667APInt APInt::operator-(const APInt& RHS) const {
668  APInt API(*this);
669  API -= RHS;
670  return API;
671}
672
673/// @brief Array-indexing support.
674bool APInt::operator[](unsigned bitPosition) const {
675  return (maskBit(bitPosition) & (isSingleWord() ?
676          VAL : pVal[whichWord(bitPosition)])) != 0;
677}
678
679/// @brief Equality operator. Compare this APInt with the given APInt& RHS
680/// for the validity of the equality relationship.
681bool APInt::operator==(const APInt& RHS) const {
682  unsigned n1 = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros(),
683    n2 = RHS.getNumWords() * APINT_BITS_PER_WORD - RHS.CountLeadingZeros();
684  if (n1 != n2) return false;
685  else if (isSingleWord())
686    return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
687  else {
688    if (n1 <= 64)
689      return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
690    for (int i = whichWord(n1 - 1); i >= 0; --i)
691      if (pVal[i] != RHS.pVal[i]) return false;
692  }
693  return true;
694}
695
696/// @brief Equality operator. Compare this APInt with the given uint64_t value
697/// for the validity of the equality relationship.
698bool APInt::operator==(uint64_t Val) const {
699  if (isSingleWord())
700    return VAL == Val;
701  else {
702    unsigned n = getNumWords() * APINT_BITS_PER_WORD - CountLeadingZeros();
703    if (n <= 64)
704      return pVal[0] == Val;
705    else
706      return false;
707  }
708}
709
710/// @brief Less-than operator. Compare this APInt with the given APInt& RHS
711/// for the validity of the less-than relationship.
712bool APInt::operator <(const APInt& RHS) const {
713  unsigned n1 = getNumWords() * 64 - CountLeadingZeros(),
714           n2 = RHS.getNumWords() * 64 - RHS.CountLeadingZeros();
715  if (n1 < n2) return true;
716  else if (n1 > n2) return false;
717  else if (isSingleWord())
718    return VAL < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
719  else {
720    if (n1 <= 64)
721      return pVal[0] < (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
722    for (int i = whichWord(n1 - 1); i >= 0; --i) {
723      if (pVal[i] > RHS.pVal[i]) return false;
724      else if (pVal[i] < RHS.pVal[i]) return true;
725    }
726  }
727  return false;
728}
729
730/// @brief Less-than-or-equal operator. Compare this APInt with the given
731/// APInt& RHS for the validity of the less-than-or-equal relationship.
732bool APInt::operator<=(const APInt& RHS) const {
733  return (*this) == RHS || (*this) < RHS;
734}
735
736/// @brief Greater-than operator. Compare this APInt with the given APInt& RHS
737/// for the validity of the greater-than relationship.
738bool APInt::operator >(const APInt& RHS) const {
739  return !((*this) <= RHS);
740}
741
742/// @brief Greater-than-or-equal operator. Compare this APInt with the given
743/// APInt& RHS for the validity of the greater-than-or-equal relationship.
744bool APInt::operator>=(const APInt& RHS) const {
745  return !((*this) < RHS);
746}
747
748/// Set the given bit to 1 whose poition is given as "bitPosition".
749/// @brief Set a given bit to 1.
750APInt& APInt::set(unsigned bitPosition) {
751  if (isSingleWord()) VAL |= maskBit(bitPosition);
752  else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
753  return *this;
754}
755
756/// @brief Set every bit to 1.
757APInt& APInt::set() {
758  if (isSingleWord()) VAL = ~0ULL >> (64 - BitsNum);
759  else {
760    for (unsigned i = 0; i < getNumWords() - 1; ++i)
761      pVal[i] = -1ULL;
762    pVal[getNumWords() - 1] = ~0ULL >> (64 - BitsNum % 64);
763  }
764  return *this;
765}
766
767/// Set the given bit to 0 whose position is given as "bitPosition".
768/// @brief Set a given bit to 0.
769APInt& APInt::clear(unsigned bitPosition) {
770  if (isSingleWord()) VAL &= ~maskBit(bitPosition);
771  else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
772  return *this;
773}
774
775/// @brief Set every bit to 0.
776APInt& APInt::clear() {
777  if (isSingleWord()) VAL = 0;
778  else
779    memset(pVal, 0, getNumWords() * 8);
780  return *this;
781}
782
783/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
784/// this APInt.
785APInt APInt::operator~() const {
786  APInt API(*this);
787  API.flip();
788  return API;
789}
790
791/// @brief Toggle every bit to its opposite value.
792APInt& APInt::flip() {
793  if (isSingleWord()) VAL = (~(VAL << (64 - BitsNum))) >> (64 - BitsNum);
794  else {
795    unsigned i = 0;
796    for (; i < getNumWords() - 1; ++i)
797      pVal[i] = ~pVal[i];
798    unsigned offset = 64 - (BitsNum - 64 * (i - 1));
799    pVal[i] = (~(pVal[i] << offset)) >> offset;
800  }
801  return *this;
802}
803
804/// Toggle a given bit to its opposite value whose position is given
805/// as "bitPosition".
806/// @brief Toggles a given bit to its opposite value.
807APInt& APInt::flip(unsigned bitPosition) {
808  assert(bitPosition < BitsNum && "Out of the bit-width range!");
809  if ((*this)[bitPosition]) clear(bitPosition);
810  else set(bitPosition);
811  return *this;
812}
813
814/// to_string - This function translates the APInt into a string.
815std::string APInt::to_string(uint8_t radix) const {
816  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
817         "Radix should be 2, 8, 10, or 16!");
818  static const char *digits[] = {
819    "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
820  };
821  std::string result;
822  unsigned bits_used = getNumWords() * 64 - CountLeadingZeros();
823  if (isSingleWord()) {
824    char buf[65];
825    const char *format = (radix == 10 ? "%llu" :
826       (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
827    if (format) {
828      sprintf(buf, format, VAL);
829    } else {
830      memset(buf, 0, 65);
831      uint64_t v = VAL;
832      while (bits_used) {
833        unsigned bit = v & 1;
834        bits_used--;
835        buf[bits_used] = digits[bit][0];
836        v >>=1;
837      }
838    }
839    result = buf;
840    return result;
841  }
842
843  APInt tmp(*this);
844  APInt divisor(radix,64);
845  if (tmp == 0)
846    result = "0";
847  else while (tmp != 0) {
848    APInt APdigit = APIntOps::URem(tmp,divisor);
849    unsigned digit = APdigit.getValue();
850    assert(digit < radix && "URem failed");
851    result.insert(0,digits[digit]);
852    tmp = APIntOps::UDiv(tmp, divisor);
853  }
854
855  return result;
856}
857
858/// getMaxValue - This function returns the largest value
859/// for an APInt of the specified bit-width and if isSign == true,
860/// it should be largest signed value, otherwise unsigned value.
861APInt APInt::getMaxValue(unsigned numBits, bool isSign) {
862  APInt APIVal(0, numBits);
863  APIVal.set();
864  if (isSign) APIVal.clear(numBits - 1);
865  return APIVal;
866}
867
868/// getMinValue - This function returns the smallest value for
869/// an APInt of the given bit-width and if isSign == true,
870/// it should be smallest signed value, otherwise zero.
871APInt APInt::getMinValue(unsigned numBits, bool isSign) {
872  APInt APIVal(0, numBits);
873  if (isSign) APIVal.set(numBits - 1);
874  return APIVal;
875}
876
877/// getAllOnesValue - This function returns an all-ones value for
878/// an APInt of the specified bit-width.
879APInt APInt::getAllOnesValue(unsigned numBits) {
880  return getMaxValue(numBits, false);
881}
882
883/// getNullValue - This function creates an '0' value for an
884/// APInt of the specified bit-width.
885APInt APInt::getNullValue(unsigned numBits) {
886  return getMinValue(numBits, false);
887}
888
889/// HiBits - This function returns the high "numBits" bits of this APInt.
890APInt APInt::HiBits(unsigned numBits) const {
891  return APIntOps::LShr(*this, BitsNum - numBits);
892}
893
894/// LoBits - This function returns the low "numBits" bits of this APInt.
895APInt APInt::LoBits(unsigned numBits) const {
896  return APIntOps::LShr(APIntOps::Shl(*this, BitsNum - numBits),
897                        BitsNum - numBits);
898}
899
900/// CountLeadingZeros - This function is a APInt version corresponding to
901/// llvm/include/llvm/Support/MathExtras.h's function
902/// CountLeadingZeros_{32, 64}. It performs platform optimal form of counting
903/// the number of zeros from the most significant bit to the first one bit.
904/// @returns numWord() * 64 if the value is zero.
905unsigned APInt::CountLeadingZeros() const {
906  if (isSingleWord())
907    return CountLeadingZeros_64(VAL);
908  unsigned Count = 0;
909  for (int i = getNumWords() - 1; i >= 0; --i) {
910    unsigned tmp = CountLeadingZeros_64(pVal[i]);
911    Count += tmp;
912    if (tmp != 64)
913      break;
914  }
915  return Count;
916}
917
918/// CountTrailingZero - This function is a APInt version corresponding to
919/// llvm/include/llvm/Support/MathExtras.h's function
920/// CountTrailingZeros_{32, 64}. It performs platform optimal form of counting
921/// the number of zeros from the least significant bit to the first one bit.
922/// @returns numWord() * 64 if the value is zero.
923unsigned APInt::CountTrailingZeros() const {
924  if (isSingleWord())
925    return CountTrailingZeros_64(~VAL & (VAL - 1));
926  APInt Tmp = ~(*this) & ((*this) - 1);
927  return getNumWords() * 64 - Tmp.CountLeadingZeros();
928}
929
930/// CountPopulation - This function is a APInt version corresponding to
931/// llvm/include/llvm/Support/MathExtras.h's function
932/// CountPopulation_{32, 64}. It counts the number of set bits in a value.
933/// @returns 0 if the value is zero.
934unsigned APInt::CountPopulation() const {
935  if (isSingleWord())
936    return CountPopulation_64(VAL);
937  unsigned Count = 0;
938  for (unsigned i = 0; i < getNumWords(); ++i)
939    Count += CountPopulation_64(pVal[i]);
940  return Count;
941}
942
943
944/// ByteSwap - This function returns a byte-swapped representation of the
945/// this APInt.
946APInt APInt::ByteSwap() const {
947  assert(BitsNum >= 16 && BitsNum % 16 == 0 && "Cannot byteswap!");
948  if (BitsNum == 16)
949    return APInt(ByteSwap_16(VAL), BitsNum);
950  else if (BitsNum == 32)
951    return APInt(ByteSwap_32(VAL), BitsNum);
952  else if (BitsNum == 48) {
953    uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
954    Tmp1 = ByteSwap_32(Tmp1);
955    uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
956    Tmp2 = ByteSwap_16(Tmp2);
957    return
958      APInt((Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16),
959            BitsNum);
960  } else if (BitsNum == 64)
961    return APInt(ByteSwap_64(VAL), BitsNum);
962  else {
963    APInt Result(0, BitsNum);
964    char *pByte = (char*)Result.pVal;
965    for (unsigned i = 0; i < BitsNum / 8 / 2; ++i) {
966      char Tmp = pByte[i];
967      pByte[i] = pByte[BitsNum / 8 - 1 - i];
968      pByte[BitsNum / 8 - i - 1] = Tmp;
969    }
970    return Result;
971  }
972}
973
974/// GreatestCommonDivisor - This function returns the greatest common
975/// divisor of the two APInt values using Enclid's algorithm.
976APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
977                                            const APInt& API2) {
978  APInt A = API1, B = API2;
979  while (!!B) {
980    APInt T = B;
981    B = APIntOps::URem(A, B);
982    A = T;
983  }
984  return A;
985}
986
987/// DoubleRoundToAPInt - This function convert a double value to
988/// a APInt value.
989APInt llvm::APIntOps::DoubleRoundToAPInt(double Double) {
990  union {
991    double D;
992    uint64_t I;
993  } T;
994  T.D = Double;
995  bool isNeg = T.I >> 63;
996  int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
997  if (exp < 0)
998    return APInt(0);
999  uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52);
1000  if (exp < 52)
1001    return isNeg ? -APInt(mantissa >> (52 - exp)) :
1002                    APInt(mantissa >> (52 - exp));
1003  APInt Tmp(mantissa, exp + 1);
1004  Tmp = Tmp.Shl(exp - 52);
1005  return isNeg ? -Tmp : Tmp;
1006}
1007
1008/// RoundToDouble - This function convert this APInt to a double.
1009/// The layout for double is as following (IEEE Standard 754):
1010///  --------------------------------------
1011/// |  Sign    Exponent    Fraction    Bias |
1012/// |-------------------------------------- |
1013/// |  1[63]   11[62-52]   52[51-00]   1023 |
1014///  --------------------------------------
1015double APInt::RoundToDouble(bool isSigned) const {
1016  bool isNeg = isSigned ? (*this)[BitsNum-1] : false;
1017  APInt Tmp(isNeg ? -(*this) : (*this));
1018  if (Tmp.isSingleWord())
1019    return isSigned ? double(int64_t(Tmp.VAL)) : double(Tmp.VAL);
1020  unsigned n = Tmp.getNumWords() * 64 - Tmp.CountLeadingZeros();
1021  if (n <= 64)
1022    return isSigned ? double(int64_t(Tmp.pVal[0])) : double(Tmp.pVal[0]);
1023  // Exponent when normalized to have decimal point directly after
1024  // leading one. This is stored excess 1023 in the exponent bit field.
1025  uint64_t exp = n - 1;
1026
1027  // Gross overflow.
1028  assert(exp <= 1023 && "Infinity value!");
1029
1030  // Number of bits in mantissa including the leading one
1031  // equals to 53.
1032  uint64_t mantissa;
1033  if (n % 64 >= 53)
1034    mantissa = Tmp.pVal[whichWord(n - 1)] >> (n % 64 - 53);
1035  else
1036    mantissa = (Tmp.pVal[whichWord(n - 1)] << (53 - n % 64)) |
1037               (Tmp.pVal[whichWord(n - 1) - 1] >> (11 + n % 64));
1038  // The leading bit of mantissa is implicit, so get rid of it.
1039  mantissa &= ~(1ULL << 52);
1040  uint64_t sign = isNeg ? (1ULL << 63) : 0;
1041  exp += 1023;
1042  union {
1043    double D;
1044    uint64_t I;
1045  } T;
1046  T.I = sign | (exp << 52) | mantissa;
1047  return T.D;
1048}
1049
1050/// Arithmetic right-shift this APInt by shiftAmt.
1051/// @brief Arithmetic right-shift function.
1052APInt APInt::AShr(unsigned shiftAmt) const {
1053  APInt API(*this);
1054  if (API.isSingleWord())
1055    API.VAL = (((int64_t(API.VAL) << (64 - API.BitsNum)) >> (64 - API.BitsNum))
1056               >> shiftAmt) & (~uint64_t(0UL) >> (64 - API.BitsNum));
1057  else {
1058    if (shiftAmt >= API.BitsNum) {
1059      memset(API.pVal, API[API.BitsNum-1] ? 1 : 0, (API.getNumWords()-1) * 8);
1060      API.pVal[API.getNumWords() - 1] = ~uint64_t(0UL) >>
1061                                        (64 - API.BitsNum % 64);
1062    } else {
1063      unsigned i = 0;
1064      for (; i < API.BitsNum - shiftAmt; ++i)
1065        if (API[i+shiftAmt])
1066          API.set(i);
1067        else
1068          API.clear(i);
1069      for (; i < API.BitsNum; ++i)
1070        if (API[API.BitsNum-1])
1071          API.set(i);
1072        else API.clear(i);
1073    }
1074  }
1075  return API;
1076}
1077
1078/// Logical right-shift this APInt by shiftAmt.
1079/// @brief Logical right-shift function.
1080APInt APInt::LShr(unsigned shiftAmt) const {
1081  APInt API(*this);
1082  if (API.isSingleWord())
1083    API.VAL >>= shiftAmt;
1084  else {
1085    if (shiftAmt >= API.BitsNum)
1086      memset(API.pVal, 0, API.getNumWords() * 8);
1087    unsigned i = 0;
1088    for (i = 0; i < API.BitsNum - shiftAmt; ++i)
1089      if (API[i+shiftAmt]) API.set(i);
1090      else API.clear(i);
1091    for (; i < API.BitsNum; ++i)
1092      API.clear(i);
1093  }
1094  return API;
1095}
1096
1097/// Left-shift this APInt by shiftAmt.
1098/// @brief Left-shift function.
1099APInt APInt::Shl(unsigned shiftAmt) const {
1100  APInt API(*this);
1101  if (API.isSingleWord())
1102    API.VAL <<= shiftAmt;
1103  else if (shiftAmt >= API.BitsNum)
1104    memset(API.pVal, 0, API.getNumWords() * 8);
1105  else {
1106    if (unsigned offset = shiftAmt / 64) {
1107      for (unsigned i = API.getNumWords() - 1; i > offset - 1; --i)
1108        API.pVal[i] = API.pVal[i-offset];
1109      memset(API.pVal, 0, offset * 8);
1110    }
1111    shiftAmt %= 64;
1112    unsigned i;
1113    for (i = API.getNumWords() - 1; i > 0; --i)
1114      API.pVal[i] = (API.pVal[i] << shiftAmt) |
1115                    (API.pVal[i-1] >> (64-shiftAmt));
1116    API.pVal[i] <<= shiftAmt;
1117  }
1118  API.TruncToBits();
1119  return API;
1120}
1121
1122/// Unsigned divide this APInt by APInt RHS.
1123/// @brief Unsigned division function for APInt.
1124APInt APInt::UDiv(const APInt& RHS) const {
1125  APInt API(*this);
1126  unsigned first = RHS.getNumWords() * APInt::APINT_BITS_PER_WORD -
1127                   RHS.CountLeadingZeros();
1128  unsigned ylen = !first ? 0 : APInt::whichWord(first - 1) + 1;
1129  assert(ylen && "Divided by zero???");
1130  if (API.isSingleWord()) {
1131    API.VAL = RHS.isSingleWord() ? (API.VAL / RHS.VAL) :
1132              (ylen > 1 ? 0 : API.VAL / RHS.pVal[0]);
1133  } else {
1134    unsigned first2 = API.getNumWords() * APInt::APINT_BITS_PER_WORD -
1135                      API.CountLeadingZeros();
1136    unsigned xlen = !first2 ? 0 : APInt::whichWord(first2 - 1) + 1;
1137    if (!xlen)
1138      return API;
1139    else if (xlen < ylen || API < RHS)
1140      memset(API.pVal, 0, API.getNumWords() * 8);
1141    else if (API == RHS) {
1142      memset(API.pVal, 0, API.getNumWords() * 8);
1143      API.pVal[0] = 1;
1144    } else if (xlen == 1)
1145      API.pVal[0] /= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1146    else {
1147      APInt X(0, (xlen+1)*64), Y(0, ylen*64);
1148      if (unsigned nshift = 63 - (first - 1) % 64) {
1149        Y = APIntOps::Shl(RHS, nshift);
1150        X = APIntOps::Shl(API, nshift);
1151        ++xlen;
1152      }
1153      div((unsigned*)X.pVal, xlen*2-1,
1154          (unsigned*)(Y.isSingleWord() ? &Y.VAL : Y.pVal), ylen*2);
1155      memset(API.pVal, 0, API.getNumWords() * 8);
1156      memcpy(API.pVal, X.pVal + ylen, (xlen - ylen) * 8);
1157    }
1158  }
1159  return API;
1160}
1161
1162/// Unsigned remainder operation on APInt.
1163/// @brief Function for unsigned remainder operation.
1164APInt APInt::URem(const APInt& RHS) const {
1165  APInt API(*this);
1166  unsigned first = RHS.getNumWords() * APInt::APINT_BITS_PER_WORD -
1167                   RHS.CountLeadingZeros();
1168  unsigned ylen = !first ? 0 : APInt::whichWord(first - 1) + 1;
1169  assert(ylen && "Performing remainder operation by zero ???");
1170  if (API.isSingleWord()) {
1171    API.VAL = RHS.isSingleWord() ? (API.VAL % RHS.VAL) :
1172              (ylen > 1 ? API.VAL : API.VAL % RHS.pVal[0]);
1173  } else {
1174    unsigned first2 = API.getNumWords() * APInt::APINT_BITS_PER_WORD -
1175                      API.CountLeadingZeros();
1176    unsigned xlen = !first2 ? 0 : API.whichWord(first2 - 1) + 1;
1177    if (!xlen || xlen < ylen || API < RHS)
1178      return API;
1179    else if (API == RHS)
1180      memset(API.pVal, 0, API.getNumWords() * 8);
1181    else if (xlen == 1)
1182      API.pVal[0] %= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1183    else {
1184      APInt X(0, (xlen+1)*64), Y(0, ylen*64);
1185      unsigned nshift = 63 - (first - 1) % 64;
1186      if (nshift) {
1187        APIntOps::Shl(Y, nshift);
1188        APIntOps::Shl(X, nshift);
1189      }
1190      div((unsigned*)X.pVal, xlen*2-1,
1191          (unsigned*)(Y.isSingleWord() ? &Y.VAL : Y.pVal), ylen*2);
1192      memset(API.pVal, 0, API.getNumWords() * 8);
1193      for (unsigned i = 0; i < ylen-1; ++i)
1194        API.pVal[i] = (X.pVal[i] >> nshift) | (X.pVal[i+1] << (64 - nshift));
1195      API.pVal[ylen-1] = X.pVal[ylen-1] >> nshift;
1196    }
1197  }
1198  return API;
1199}
1200